Research Papers

Theory of LC circuit-based metamaterials

[+] Author Affiliations
Jing Huang

South China University of Technology, Physics Department, Guangzhou, China

J. Nanophoton. 11(1), 016016 (Mar 21, 2017). doi:10.1117/1.JNP.11.016016
History: Received October 31, 2016; Accepted February 10, 2017
Text Size: A A A

Abstract.  A resonance model, describing an LC circuit interaction with a bipole, is established for the determination of the effective parameters of metamaterials. The dynamic descriptions of both an LC circuit and a bipole are harmonic oscillators. Their interplay will induce a frequency shift, meaning that the most efficient receiving frequency (resonance frequency) of an LC circuit (or split ring) resonator is not the LC intrinsic frequency (ΩLC=1/LC) or the atomic vibration frequency. The relationship between the susceptibilities (χ(2),χ(3)) and the frequencies, including the atomic vibration frequency (Ω0), the LC intrinsic frequency (ΩLC), and the practical emission field frequency (Ω), is obtained. Compared with the other second-order harmonics, the extra DC current is much stronger, regardless of whether the system reaches resonance or not. The third-order harmonics are more likely to approach the resonance states compared with the second-order effect. Once the combined frequency is located at the resonance frequency, it is most likely to create a negative χ(3), and with the increase of the LC intrinsic frequency, a negative χ(3) can be obtained without satisfying the resonance condition.

Figures in this Article
© 2017 Society of Photo-Optical Instrumentation Engineers

Citation

Jing Huang
"Theory of LC circuit-based metamaterials", J. Nanophoton. 11(1), 016016 (Mar 21, 2017). ; http://dx.doi.org/10.1117/1.JNP.11.016016


Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

PubMed Articles
Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.