Research Papers

Squeezing light into subwavelength metallic tapers: single mode matching method

[+] Author Affiliations
Qiao Min, Reuven Gordon

Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 3P6 Canada

J. Nanophoton. 3(1), 033505 (July 24, 2009). doi:10.1117/1.3204944
History: Received April 23, 2009; Revised July 21, 2009; Accepted July 21, 2009; July 24, 2009; Online July 24, 2009
Text Size: A A A

Open Access Open Access

Abstract

A simple single mode matching (SMM) method is proposed to analyze the optical throughput for subwavelength metal tapers. Both a 2D gold-clad taper gap and a 3D gold taper rod are analyzed with the SMM method. Including metal losses, these structures are calculated to have optimal squeezing taper angles of 14° with 71% efficiency and 32° with 44% efficiency, which is in good quantitative agreement with previous finite-difference time-domain simulations. The SMM method uses only analytic calculations and 2-by-2 matrix multiplication. Therefore, compared to past approaches, the SMM method is an efficient method to optimize the subwavelength metallic taper structures, while including losses, and it can be extended to more complex tapers and gratings in an obvious way. It also has the potential for fully analytic calculations.

References

E. Betzig and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science 262, 1422-1425 (1993)
E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier - optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991)
W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999)
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005)
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006)
E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006)
D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004)
A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27, 241-250 (1998)
K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, "Approach to single-molecule detection using surface-enhanced resonance Raman-scattering (serrs) - a study using rhodamine 6g on colloidal silver," Appl. Spectrosc. 49, 780-784 (1995)
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itskan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997)
S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997)
Z. Q. Tian, B. Ren and D.Y. Wu, "Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures," J. Phys. Chem. B 106, 9463-9483 (2002)
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999)
M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, "Nanoparticle-mediated coupling of light into a nanowire," Nano Lett. 7, 2346-2350 (2007)
A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss "Simultaneous fluorescence and Raman scattering from single carbon nanotubes," Science 301, 1354-1356 (2003)
S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999)
B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004)
A. Rasmussen and V. Deckert, "New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy," Anal. Bioanal. Chem. 381, 165-172 (2005)
M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004)
D. P. Tsai, A. Othonos, and M. Moskovits, "Raman-spectroscopy using a fiber optic probe with subwavelength aperture," Appl. Phys. Lett. 64, 1768-1770 (1994)
D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006)
D. K. Gramotnev, M. W. Vogel, and M. I Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008)
D. M. Pozar, Microwave Engineering, 3rd ed., Wiley, Hoboken, NJ (2004).
R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection," Phys. Rev. B. 73, 153405 (2006)
P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides, Springer, New York (2008)
Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Exp. 16, 4888-4894 (2008)
J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Exp. 16, 413-425 (2008)
© 2009 Society of Photo-Optical Instrumentation Engineers

Citation

Qiao Min and Reuven Gordon
"Squeezing light into subwavelength metallic tapers: single mode matching method", J. Nanophoton. 3(1), 033505 (July 24, 2009). ; http://dx.doi.org/10.1117/1.3204944


Figures

Tables

References

E. Betzig and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science 262, 1422-1425 (1993)
E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier - optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991)
W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004)
M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999)
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005)
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006)
E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006)
D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004)
A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27, 241-250 (1998)
K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, "Approach to single-molecule detection using surface-enhanced resonance Raman-scattering (serrs) - a study using rhodamine 6g on colloidal silver," Appl. Spectrosc. 49, 780-784 (1995)
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itskan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997)
S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997)
Z. Q. Tian, B. Ren and D.Y. Wu, "Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures," J. Phys. Chem. B 106, 9463-9483 (2002)
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999)
M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, "Nanoparticle-mediated coupling of light into a nanowire," Nano Lett. 7, 2346-2350 (2007)
A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss "Simultaneous fluorescence and Raman scattering from single carbon nanotubes," Science 301, 1354-1356 (2003)
S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999)
B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004)
A. Rasmussen and V. Deckert, "New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy," Anal. Bioanal. Chem. 381, 165-172 (2005)
M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004)
D. P. Tsai, A. Othonos, and M. Moskovits, "Raman-spectroscopy using a fiber optic probe with subwavelength aperture," Appl. Phys. Lett. 64, 1768-1770 (1994)
D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006)
D. K. Gramotnev, M. W. Vogel, and M. I Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008)
D. M. Pozar, Microwave Engineering, 3rd ed., Wiley, Hoboken, NJ (2004).
R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection," Phys. Rev. B. 73, 153405 (2006)
P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides, Springer, New York (2008)
Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Exp. 16, 4888-4894 (2008)
J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Exp. 16, 413-425 (2008)

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.