Paper
22 February 2006 Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa
Author Affiliations +
Abstract
We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all point to the presence of two classes of molecules: proteins with Cis and Trans-oriented chromophores. Immobilization of HcRed in water-filled pores of polyvinyl alcohol leads to a polymer matrix - protein barrel interaction which results in a 'freezing' of the chromophore in a stable conformation for which non-radiative deactivation pathways are either suppressed or reduced. As a result, proteins with both Cis- and Trans-oriented chromophores can be detected at the single molecule level. Polymer chain motion is suggested as a mediator for an eventual cis-trans isomerization of the chromophore in the case of single immobilized proteins.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mircea Cotlet, Satoshi Habuchi, Jennifer E. Whitier, James H. Werner, Frans C. De Schryver, Johan Hofkens, and Peter M. Goodwin "Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa", Proc. SPIE 6098, Genetically Engineered Probes for Biomedical Applications, 609804 (22 February 2006); https://doi.org/10.1117/12.646811
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Chromophores

Proteins

Molecules

Molecular spectroscopy

Fluorescence spectroscopy

Green fluorescent protein

Back to Top