
Do extended effective-medium formulas scale 
properly? 

Craig F. Bohren 

Department of Meteorology, Pennsylvania State University, University Park, PA 16802 
bohren@meteo.psu.edu 

Abstract. The original Bruggeman and Maxwell Garnett formulas for the average dielectric 
function of a composite medium satisfy a scaling law: if the dielectric functions of both 
components are scaled by the same factor, the average dielectric function scales by this factor. 
These formulas are independent of the size of polarizable elements. Extended formulas 
explicitly account for size, but at least one formula fails to satisfy the scaling law, a likely 
failing of all such formulas.  
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Theories of effective or average dielectric functions of composite media, which could include 
mixtures of gases, liquids, and powders, as well as suspensions of small particles, go back at 
least 200 years. The literature on this subject is voluminous and dispersed among many fields, 
and hence I do not review it here. For classical and modern papers, see the compendium 
edited by Lakhtakia [1].  

For my purpose here the fundamental problem is to determine how the average dielectric 
function avε of a two-component composite particulate medium depends on the dielectric 

functions of its components, denoted by mε  and ε , and their relative amounts (often specified 
by volume fractions). Each component is composed of regions, possibly disconnected, that are 
coherent aggregations of sufficiently many molecules that they can be assigned macroscopic 
properties. Disconnected regions (particles) must be electrically small, that is, small compared 
with all relevant wavelengths. The medium is inhomogeneous with a spatially varying 
dielectric function ( )xε having only two values.  Because of the linearity of the field 

equations and the definition of ( ) ( ) / ( )av = < > < >x E x E xε ε  in terms of spatial averages 
over sufficiently large volumes, any effective-medium theory (homogenization formula) in 
the long-wavelength limit must satisfy the requirement that for arbitrary p  

if m mp→ε ε and p→ε ε , then av avp→ε ε . This scaling law seems not to be widely 
recognized, although it was known to Wiener [2], who called it "the theorem about the 
unaltered ratio of constants" (see, Michel [3]). 

The two most widely used average dielectric function formulas are the Maxwell Garnett 
formula  
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where f is the volume fraction of the component with dielectric function ε , and the 
symmetric Bruggeman formula 
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both of which scale and are independent of the size of the components.      
In recent years, however, extended effective-medium formulas, ones in which the size of 

polarizable elements appears explicitly, have been proposed. Ruppin [4] examines some of 
these formulas in light of various criteria. Perhaps the easiest formula to understand is an 
extended Maxwell Garnett formula, which stems from the Clausius-Mossotti relation. The 
Maxwell Garnett formula in its original form applies to spheres with dielectric function ε  
suspended in a continuous medium with dielectric function mε , and the polarizability of the 
spheres is the expression from electrostatics. But for spheres we can use instead an 
unrestricted expression for the electric dipole term from the Lorenz-Mie series for scattering 
by an arbitrary homogeneous sphere of radius a  illuminated by a plane wave.  The result is 
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The size parameter 2 /mx aπ λ= ε , where λ  is the free-space wavelength, can be 

complex. Because the scattering coefficient 1a  satisfies 1 1a ≤ for all ε , mε , and a , 
3

1 /a x is always finite, but Eq. (3) can satisfy the scaling law only if 3
1a x∝ ; this scattering 

coefficient depends on x and mx , where / mm = ε ε  (the permeabilities of the sphere and 
continuous medium are assumed to be equal). Although m is invariant, x is not. Moreover, 

1a is a function of sines and cosines of x and mx . Thus whatever merits Eq. (3) may possess, 
it does not scale except in the limit 0x → .  

I chose this extended effective-medium formula because of the ease with which it can be 
shown to not satisfy the scaling law. Analytical proofs for more complicated formulas may 
not be possible, and hence one would have to resort to computations to show that they do or 
do not scale. I conjecture, however, that all extended effective-medium theories do not. The 
electrical smallness requirement is indefinite, whereas an extended effective-medium formula 
either satisfies the scaling law or it does not, and one can determine quantitatively the degree 
to which it does not. 

 The only justification for extending effective-medium theories to include a size 
dependence is to describe reality more faithfully, to obtain better agreement with the widest 
class of measurements of likely interest, not just, say, transmission measurements. Given a 
few adjustable parameters (such as size distribution) one can fit any single kind of 
measurement. Benefits in extending effective-medium theories may be accompanied by costs, 
but it is not possible to say a priori if and under what circumstances the benefits exceed the 
costs and by how much. Nevertheless the failure of extended effective-medium theories to 
satisfy a scaling law at the very least signals caution in their use. Moreover, the scaling law 
can be used to compare different extended effective-medium theories. All else being equal, 
the closer an extended effective-medium theory comes to satisfying the scaling law the better 
it is. 
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