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Abstract. The fitting of metal optical properties is a topic that has applications in advanced
simulations of spectroscopy, plasmonics, and optical engineering. In particular, the finite differ-
ence time domain method (FDTD) requires an analytical model of dispersion that verifies spe-
cific conditions to produce a full spectrum in a single run. Combination of Drude and Lorentz
models, and Drude and critical points models, are known to be efficient, but the number of
parameters to be adjusted for fitting data can prevent accurate results from simulated annealing
or Nelder-Mead. The complex number relative permittivities of Au, Ag, Al, Cr, and Ti from
either Palik or Johnson and Christy experimental data in the visible domain of wavelengths
are successfully fitted by using the result of the particle swarm optimization method with
FDTD constraint, as a starting point for the Nelder-Mead method. The results are well positioned
compared to those that can be found in the literature. The results can be used directly for numeri-
cal simulations in the visible domain. The method can be applied to other materials, such as
dielectrics, and to other domain of wavelengths. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
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1 Introduction

The fitting of optical constants of metals has given rise to an extensive literature. The optical
properties of bulk materials1,2 are commonly used for simulations, but recent experimental data
for nanostructured materials will be used in the near future.3,4 Indeed, the surface plasmon
resonance (SPR) setups are able to determine thicknesses of multilayers4 and also optical proper-
ties.5 Therefore, a versatile and efficient method of fitting of experimental data of the optical
properties is of interest.

The historical Drude and Lorentz models (DL) were used6,7 for gold in a wide domain of
wavelengths. Expansion of Lorentzian terms (L4) was proposed by Hao and Nordlander8 and
tested by comparison between Mie theory and finite time difference domain (FDTD). More
recently, the description of gold permittivities by means of critical points model9,10 was proved
to be efficient for the modeling of spectroscopy with FDTD methods,11 finite element method,12

and discrete dipole approximation.13 Fitting of the optical constants is also useful if eigenvalues
of complex structures are computed14,15 or if resonances are searched in dispersion curves.16,17

For the design and the optimization of nanostructures,18 the accuracy of numerical results
depends on the quality of the fitting of the relative permittivities.19,20

The models for fitting the relative permittivity are functions of the angular frequency of illu-
mination ω in a specific range of wavelengths in vacuum λ0. Each model involves parameters
considered as degrees of freedom for the fitting of handbooks experimental data from literature.
The parameters are searched such that the distance between the reference data1,2 and the model is
minimal. The use of these models for FDTD requires filling an additional constraint that is
included in the proposed method. The novelty of this paper is in the method that consists of
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using a particle swarm optimization method (PSO) and then in improving the solution by using
a Nelder-Mead (NM) algorithm, using the solution of the PSO algorithm as starting point.

The combinations of DL, and Drude and critical points models (DCP) are shortly described
in Sec. 2 as well as the criterion that guarantees the convergence of FDTD algorithms. The
principle of the proposed PSO method is given in Sec. 3. The results of the fitting of the relative
permittivity of some metals are given and discussed in Sec. 4 before concluding.

2 Two Models for Fitting: the Combination of Drude and
Lorentz Models, and the Critical Points Model

2.1 Combination of Drude and Lorentz Models

The combination of Drude and Lorentz models (DL) describes both the intraband (Drude model)
and interband (Lorentz model) electronic transitions.21 It enables the imaginary part to be
a decreasing function of ω on the contrary of the single Drude model. The DL model is efficient
in the wavelengths range ½500;1000� nm.7 Nevertheless, the best choice of models of fitting as
well as their physical parameters depends on the investigated domain of wavelengths. This study
is devoted to the fitting in the visible domain of wavelengths, ½400;800� nm.

The limitation to a single Lorentz term limits the memory requirement for FDTD, as it
increases linearly with the number of terms used for the dispersion law.7 The function of fit
ϵDL of the relative permittivity of metal is written as the sum of the Drude and the Lorentz
models.6,10,22

ϵDLðωÞ ¼ ϵ∞ −
ω2
D

ωðωþ iγDÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Drude model

−
Δϵω2

L

ω2 − ω2
L þ iγLω|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Lorentz model

: (1)

The pure imaginary number is denoted as i such as i2 ¼ −1. Frictional forces proportional to
the velocity of electrons with viscous damping coefficients γD and γL are introduced and expressed
in the same units as ω. The plasma frequency ωL is associated with intraband transitions,Δϵ is the
oscillator strength, and ϵ∞ is the relative permittivity for high frequencies. For high frequencies,
electrons cannot follow excitation, and the illumination does not see free electrons anymore; there-
fore ϵ∞ ¼ 1.23 Nevertheless, it is commonly admitted that this asymptotic value could also be
adjusted for fitting of the relative permittivity in a limited wavelength bandwidth. It is therefore
an additional degree of freedom of the fitting. The coefficient ωD is called plasma (or Langmuir)
angular frequency (it is not the frequency of volume plasmon21), with Ne the density of electrons
that contribute to the optical properties [Eq. (3), it is not the valence band electron concentration21],
q the charge of electron, m0 the electron mass, and ϵ0 the relative permittivity of vacuum.

ωD ¼
ffiffiffiffiffiffiffiffiffiffiffi
Neq2

ϵ0m0

s
: (2)

The volume density of the electrons that contribute to the relative permittivity of gold Ne

(m−3) is introduced. It can be evaluated from an atomistic model and is actually a function of the
density ρm and atomic weight M.

Ne ¼
ρmNa

M
ne; (3)

with Na ¼ 6.022 × 1023 the Avogadro constant and ne the supposed number of free electrons in
a single atom. This value can be compared to that obtained by the fitting in the following. The
atomistic volume density of electron Ne is calculated by using outer electron shell of atoms.
Equation (1) could also be written as a product of ω2

D by both Drude and Lorentz terms,21

but the formulation used in Ref. 7 is preferred to facilitate the comparison.
The physical parameters of the model are fϵ∞; γD; Ne;Δϵ;ωL; γLg. Therefore the dimension

of the problem is dimðDÞ ¼ 6 for the fitting.
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2.2 Combination of Drude and Critical Points Models

The critical points model (CP) was introduced in 1998 by Leng et al.24 for silicon and used for
gold.9 This model describes the interband transitions in violet/near-uv region. It satisfies the
Kramers-Kronig consistency and is able to reproduce the dispersion of gold with higher accuracy
than the previous models. It includes a phase factor (ϕ) and corresponds to first-order poles in the
complex plane.9,22,24 The interband transition angular frequency is Ω, and the transition broad-
ening is governed by the damping angular frequency Γ. It is recommended to take two critical
points terms.9 This model helps to suppress the nonphysical absorption of the previous fitting in
the region of transparency or near-transparency.24 In this study, the CP replaces the Lorentz
additional term in Eq. (1), and therefore the model is a combination of Drude and CP (DCP).

ϵDCPðωÞ ¼ ϵ∞ −
Neq2

ϵ0m0

1

ωðωþ iγDÞ
þ
Xi¼2

i¼1

ΔϵiΩi

�
expðiϕiÞ

Ωi − ω − iΓi
þ expð−iϕiÞ

Ωi þ ωþ iΓi

�
: (4)

This approach was used by Vial et al.11 for fitting the relative permittivities of gold
and silver from Johnson and Christy.2 The CP involves 11 physical parameters:
fϵ∞; Ne; γD; Γi; Ωi; Δϵi; andϕig for i ¼ 1, 2. The dimension of the problem of fitting
is dimðDÞ ¼ 11.

2.3 Criterion of Convergence for FDTD

According to Vial et al.,22,25 a criterion must be verified to check the convergence of the FDTD
algorithm.

C ¼ ϵ∞
ϵ∞ þ χ0

< 1; (5)

with

χ0 ¼ −
�
ωD

γD

�
2

½1 − expð−γDΔtÞ� þ
ω2
L

γD
Δtþ

X
R

�
−i

η

α − iβ
f1 − exp½ð−αþ iβÞΔt�g

�
; (6)

where Rð·Þ is the real part of a complex number.
In the case of combination of Drude and Lorentz model, χ0 is a function of α ¼ γL∕2,

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L − α2

p
, and η ¼ Δϵω2

L∕β. For the CP, χ0 is a function of α ¼ Γi, β ¼ Ωi, and
η ¼ 2ΔϵiΩi expð−iΦiÞ.25,26 In Eq. (6), Δt is evaluated from the size of the grid Δx used for
FDTD: Δt ¼ Δx∕ð2cÞ, with c the speed of light in vacuum. In the following, we consider
Δx ¼ 1 nm.25

The criterion in Eq. (5) is a constraint for the method of fitting. Therefore, the random gen-
eration of particles x [Eq. (11)] is stressed by this criterion, and the solution given by the NM
algorithm is selected among those satisfying this criterion.

3 Combined Constrained PSO with Nelder-Mead Algorithm

The problem of data fitting belongs to the same class as the resolution of the inverse problem and
as the optimization of systems. Classical methods were used for the fitting of relative permit-
tivities: the NM method and the simulated annealing.7 The NM method27 searches solutions in
an unbounded domain. This fact could be a drawback as it could lead to nonphysical solutions or
divergence of the algorithm. The NM method was used for problems with small degree of free-
dom [dimðDÞ].28 The simulated annealing subroutine belongs to the same class as the Monte
Carlo method (heuristic methods) and is fully described by Kirkpatrick et al.29 and Tarantola.30

This method can be bounded or not. Both methods require a starting point for the algorithm
initialization and the solution depends on it. The proposed PSO method enables to determine
the starting point of the NM method within a space of parameters that ensures the criterion of
convergence for FDTD [Eq. (5)].

Among heuristic bounded methods without starting point, the PSO method is widely used for
optical applications.31–33 The PSO method was proposed in 1995 by Kennedy and Eberhart.34
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It was used for the optimization of gold nanoshells using discrete dipole approximation (DDA)
and Mie models for photothermal therapy,35 and more general problems of plasmonics including
the optimization of nanostructures and the resolution of the inverse problem.5,36,37

The PSO mimics the behavior of a swarm of particles moving to a potential well with analogy
to the bees swarming in search of pollen. The nearby of particle with respect to the bottom of the
potential well is evaluated through a fitness function F. In the present case, the fitness function F
is the standard deviation of the data computed from model ϵM to the Nref values of the relative
permittivity of reference ϵr.

FðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nref

XNref

1

jϵMðxÞ − ϵrj2
vuut : (7)

The fitness function FðxÞ depends on the physical parameters x that are necessary to compute
the model ϵM for all ω. The models for fitting ϵMðxÞ are described in Sec. 2. In the following,
ϵMðxÞ ¼ ϵDL [Eq. (1)] or ϵMðxÞ ¼ ϵDCP [Eq. (4)]. According to this definition, for all physical
parameters set x, the absolute error of fitting can be defined for the real part and the imaginary
part of ϵrðωÞ.

σR½ϵMðωÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nref

R½ϵMðωÞ − ϵrðωÞ�2
s

; (8)

σI½ϵMðωÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nref

I½ϵMðωÞ − ϵrðωÞ�2
s

: (9)

If particles reach the position of the minimum of potential, then the fitness function is mini-
mum; therefore a good position for a particle corresponds to a small value of the fitness function
and to a good parameters set of the model. All inputs of the model (physical parameters) form a
vector xðtÞ, whose size is the degree of freedom of the model. The simulated cinematic problem
for particles depends on a virtual time t, which is the iteration step of the algorithm. Each particle
moves in the space of physical parameters following Eq. (10).

xðtþ 1Þ ¼ xðtÞ þ Vðtþ 1Þ½ðtþ 1Þ − t� ¼ xðtÞ þ Vðtþ 1Þ: (10)

The velocity Vðtþ 1Þ is computed from the best position pðtÞ of each particle over previous
generations up to step t and from the swarm global best gðtÞ.38

Vðtþ 1Þ ¼ ωPSOVðtÞ þ U1c1½pðtÞ − xðtÞ� þU2c2½gðtÞ − xðtÞ�: (11)

The inertia weight ωPSO linearly decreases from 0.9 to 0.4.39 The random gene Uiði ¼ 1; 2Þ]
always checking the condition given in Eq. (5). The acceleration coefficients are c1 ¼ c2 ¼ 2. If
the speed is too high, the particle leaves the domain of search. In this case, it is regenerated
randomly in this domain. In this study, the number of particles in the swarm is N ¼ 30: at
each step t, N particles are moving in the space of search. In this basic version of the algorithm,
the stop criterion is a maximum number of iterations of PSO (1000). We checked that the results
are hardly dependent on all these exogenous parameters (ωPSO, c1, c2, and N). In Ref. 37, this
property and the efficiency of this method was verified by using evolutionary method based on
evolution strategies.40–42

Then the solution obtained with PSO is used as starting point of an NM algorithm and
the success of the method is revealed by the convergence rate to the same best solution.
Only solutions that satisfy the condition in Eq. (5) are kept. A hundred realizations of the
same algorithm help to check the stability of the solution. If the algorithm gives some identical
solutions along realizations, the best solution is assumed to be determined. In the investigated
cases, each realization takes a few minutes on a personal computer. This property is directly
linked to the simplicity of the models that are detailed in Sec. 2.
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4 Results and Discussion

We first validate the PSO method by comparison of results with those given in the literature.
Then we apply the method to the fitting of gold, silver, chromium, aluminum, and titanium in
the domain of visible wavelengths. The efficiency of the method is tested by comparisons of our
results with published data,7,43 where the domain of wavelengths was ½500;1000� nm. Of course
the influence of the domain of wavelengths for the fitting is crucial to the results.

In this study, the domain of wavelengths is ½400;800� nm and the domain of search for the
physical parameters is D: fγD; γLgb½1013; 1018� ðrad:s−1Þ, ϵ∞ ∈ ½−1000;1000�, Δϵ ∈ ½0;1000�,
Neb½1027; 1030� ðm−3Þ [Eq. (3)]. The fitting of bulk data for gold, silver, chromium, aluminum,
and titanium are, respectively, investigated.

4.1 Gold

Gold has mechanical properties and an ease of implementation, which puts it at the forefront of
materials used in plasmonics. Moreover, it cannot be oxidized by the common surrounding
medium. Table 1 gives the best physical parameters obtained from the proposed method for
the fitting of Johnson and Christy data.2 Figure 1 shows the results of fitting and the absolute
errors σR and σI [Eqs. (8) and (9)].

Table 1 Fitting of Johnson and Christy data (ϵr ) for gold by the combination of Drude and Lorentz
(DL) models [Eq. (1)] and critical points (DCP) model. F is the fitness function, C is the finite differ-
ence time domain (FDTD) criterion, σR is the absolute error between real parts of fitting and data,
and σI is the absolute error between imaginary parts of fitting and data.

Au2

DL DCP

F [Eq. (7)] 0.55 0.15992

C [Eq. (5)] 0.99995 0.92761

σR 1.3292 0.57097

σI 1.2208 1.0747

ϵ∞ 6.15991 −9.06407

γD (rad∕s) 1.66938 × 1015 5.86665 × 1013

ωD (rad∕s) 1.34759 × 1016 1.30423 × 1016

Δϵ 2.07122 —

ωL (rad∕s) 4.66171 × 1015 —

γL (rad∕s) 7.20958 × 1013 —

Ω1 (rad∕s) — 3.2539 × 1016

Γ1 (rad∕s) — 5.5350 × 1015

Δϵ1 — −10.8876

Φ1 (rad) — −2.46009

Ω2 (rad∕s) — 3.91172 × 1015

Γ2 (rad∕s) — 6.95449 × 1014

Δϵ2 — 0.718455

ϕ2 (rad) — −1.13717
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The absolute error for the fittings using Eqs. (8) and (9) are compared to those in the
literature.

• With DL, σRðϵVÞ ¼ 4.5087 and σIðϵVÞ ¼ 3.6146.7 The proposed method gives σR ¼
1.3292 and σI ¼ 1.2208 (Table 1).

• With DCP, σRðϵVÞ¼0.9417, σIðϵVÞ¼1.0606,22 σRðϵ 0VÞ¼0.7882, and σIðϵ 0VÞ¼1.2268.43

The proposed method gives σR ¼ 0.57097 and σI ¼ 1.0747 (Table 1).

These results show that the proposed method is competitive with the simulated
annealing,7,22,43 leaving to smaller errors in the visible range. For DL model, the proposed
method produces absolute errors which are less than one third of those found in the literature.

The fitness function for DL is three times that obtained for DCP. The DCP model is therefore
more accurate to describe the optical properties of gold in the visible range.

The Palik data for gold come from two series of measurements, leading to a change of slope
of the curve. These data are therefore suitable to test the method, by comparison with the fitting
of Johnson and Christy data. Table 2 gives the best physical parameters. Figure 2 shows the
results of fitting and the absolute errors σR and σI [Eqs. (8) and (9)]. The results of fitting
for DL in Table 1 (Johnson and Christy) are close to those in Table 2 (Palik), on the contrary
of DCP fitting. Figure 2 shows that DCP is highly sensitive to the change of slope of the real
part of ϵr. The result of fitting for the imaginary part is therefore affected by the change of slope
(dashed curve).

The accuracy of both models given by the fitness function F is less influenced by the chosen
model (DL or DCP) than for the fitting of Johnson and Christy data. According to the previous
results, the method can be applied to other metals with confidence.

4.2 Silver

Silver is known to be more efficient than gold for plasmonic nanostructures, although silver
suffers from oxidization and changes of optical properties when nanostructured.44 Figure 3
shows both fittings and the error of fitting σðωÞ. The real and imaginary parts of ϵV

22 are
shown for comparison with those obtained from the proposed method (combination of PSO
and NM algorithms). The two errors of fitting are about the same order of magnitude along
ω but exhibit local differences between the reference 22 and the PSO results.

The optical properties of silver are known to have smooth behavior in the visible domain.
Therefore, the fitness function, the absolute errors of fitting, and the angular frequencies ωD are
close together for both models. The amplitudesΔϵi of critical points contributions are larger than
for gold.

The absolute errors for the fitting with DCP, using Eqs. (8) and (9), are compared to those in
the literature for CP model: σRðϵVÞ ¼ 0.66287, σIðϵVÞ ¼ 0.35788,22 σRðϵ 0VÞ ¼ 0.81118, and
σIðϵ 0VÞ ¼ 0.70911.43 They are roughly two times the values in Table 3: σR ¼ 0.36891 and
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Fig. 1 (a) Real and imaginary part of the experimental data for gold2 and fitting with the Drude-
critical points models (DCP) (Table 1). (b) The error between the fitting and the reference data.
The fitting with parameters from Ref. 22 (ϵV ) and Ref. 43 (ϵ 0V ) are plotted.
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Table 2 Fitting of Palik data (ϵr ) for gold by the combination of DL models [Eq. (1)] and DCP
model. F is the fitness function, C is the FDTD criterion, σR is the absolute error between real
parts of fitting and data, and σI is the absolute error between between imaginary parts of fitting
and data.

Au1

DL DCP

F [Eq. (7)] 1.1641 0.69043

C [Eq. (5)] 0.99999 0.98792

σR 7.7965 0.57097

σI 2.7878 1.0747

ϵ∞ 6.90939 −6.23210

γD (rad∕s) 1.75628 × 1015 3.17891 × 1017

ωD (rad∕s) 1.38147 × 1016 1.90105 × 1017

Δϵ 2.31858 —

ωL (rad∕s) 4.68266 × 1015 —

γL (rad∕s) 3.60439 × 1014 —

Ω1 (rad∕s) — 3.37278 × 1015

Γ1 (rad∕s) — 3.69375 × 1014

Δϵ1 — 0.419451

Φ1 (rad) — −4.44248

Ω2 (rad∕s) — 2.04724 × 1015

Γ2 (rad∕s) — 1.23992 × 1015

Δϵ2 — 28.2908

ϕ2 (rad) — −3.52016
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Fig. 2 (a) Real and imaginary part of the experimental data for gold1 and fitting with the
Drude-Lorentz (DL) and the DCP (Table 2). (b) The error between the fitting and the reference
data.
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Fig. 3 (a) Real and imaginary part of the experimental data for silver1 and fitting with the DL and
the DCP (Table 3). (b) The error between the fitting and the reference data. The fitting with param-
eters from Ref. 22 (ϵV ) and Ref. 43 (ϵ 0V ) are plotted.

Table 3 Fitting of Palik data (ϵr ) for silver by the combination of DL models [Eq. (1)] and DCP
model. F is the fitness function, C is the FDTD criterion, σR is the absolute error between real parts
of fitting and data, and σI is the absolute error between imaginary parts of fitting and data.

Ag1

DL DCP

F [Eq. (7)] 0.071605 0.068131

C [Eq. (5)] 0.98913 0.28263

σR 0.37765 0.36891

σI 0.33703 0.34168

ϵ∞ 0.114773 −19.4464

γD (rad∕s) 7.05499 × 1015 9.52533 × 1013

ωD (rad∕s) 1.32589 × 1016 1.32472 × 1016

Δϵ 3.62762 —

ωL (rad∕s) 1.58116 × 1016 —

γL (rad∕s) 1.04632 × 1014 —

Ω1 (rad∕s) — 3.47550 × 1016

Γ1 (rad∕s) — 5.18324 × 1016

Δϵ1 — 1727.14

Φ1 (rad) — 1.04286

Ω2 (rad∕s) — 4.76055 × 1016

Γ2 (rad∕s) — 3.23542 × 1016

Δϵ2 — −742.061

ϕ2 (rad) — 1.75438
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σI ¼ 0.34168. The parameters for the DL model in Table 3 also give a better fit than that in
Ref. 43. The comparison with results of fitting from Refs. 22 and 43 shows a great improvement
of the quality of the solution, which is mainly due to a different interval of wavelengths for
fitting.

4.3 Aluminum

Aluminum is a good candidate to plasmon resonance as the real part of its relative permittivity is
< − 23 in the visible domain, even if this material can be easily oxidized.37 Table 4 gives the
results of fitting for aluminum. These values are used to plot Fig. 4. Figure 4(b) illustrates the
absolute error on the fitting of the real part and of the imaginary part. The comparison with
results of fitting with DCP model (ϵV) from Refs. 22 and 43 are shown for comparison with
those obtained from the PSO method. The errors of fitting between the reference 22,43 and
the proposed fitting are about the same order of magnitude along ω except for wavelengths
>630 nm. The fitting with DL is much less efficient than DCP as DL cannot handle the change
of slope of the real part of ϵr [see Fig. 4(a)].

Both results of fitting show that the Drude model is not suitable to describe the behavior of
the optical properties of aluminum. Consequently, the higher degree of freedom of DCP makes
it more efficient for the fitting. From Refs. 22 and 43, σRðϵVÞ ¼ 2.664 and σIðϵVÞ ¼ 2.178,
where the interval of wavelengths was ½400;1000� nm. In Table 4, the corresponding values
are σR ¼ 1.5629 and σIðϵVÞ ¼ 1.1941. The increase of absolute accuracy is around 2.

Table 4 Fitting of Palik data (ϵr ) for aluminum by the combination of DL models [Eq. (1)] and DCP
model. F is the fitness function, C is the FDTD criterion, σR is the absolute error between real parts
of fitting and data, and σI is the absolute error between imaginary parts of fitting and data.

Al1

DL DCP

F [Eq. (7)] 2.8752 0.29101

C [Eq. (5)] 0.050662 0.27149

σR 8.4152 1.5629

σI 7.9598 1.1941

ϵ∞ 0.0864080 5.79805 × 10−3

γD (rad∕s) 4.75280 × 1015 6.78974 × 1015

ωD (rad∕s) 3.91780 × 1016 2.22564 × 1017

Δϵ −3814.53 —

ωL (rad∕s) 5.67222 × 1014 —

γL (rad∕s) 2.76612 × 1015 —

Ω1 (rad∕s) — 8.10015 × 1013

Γ1 (rad∕s) — 1.92552 × 1016

Δϵ1 — −1.35397 × 103

Φ1 (rad) — −0.683343

Ω2 (rad∕s) — 2.25905 × 1016

Γ2 (rad∕s) — 2.27300 × 1015

Δϵ2 — 3.59426

ϕ2 (rad) — −1.09763
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4.4 Chromium

Chromium is often used in nanotechnologies as adhesion layer for gold on dielectric substrates.
Table 5 gives the results of fitting of Palik data for chromium. The corresponding dispersion
curve is plotted in Fig. 5. Figure 5(b) illustrates the absolute error on the fitting of the real
part and of the imaginary part. The comparison with results of fitting with DCP model (ϵV)
from Refs. 22 and 43 are shown for comparison with those obtained from the PSO method.
The errors of fitting are about the same order of magnitude along ω but exhibit local differences
between the reference 22 and the PSO results.

The optical properties of a nanometric layer of chromium are known to influence the plasmon
resonance of SPR.45 Therefore in the visible domain of wavelengths, the absolute errors
for the fitting with DCP are significant. From Refs. 22 and 43, σRðϵVÞ ¼ 0.93846 and
σIðϵVÞ ¼ 0.58162, where the interval of wavelengths was ½400;1000� nm. In Table 5, the cor-
responding values are σR ¼ 0.29314 and σIðϵVÞ ¼ 0.48649. The comparison with results of
fitting from Refs. 22 and 43 shows a great improvement of the quality of the solution as
shown in Fig. 5(b). Consequently, extending the domain to far-infrared domain is a drawback
for the accurate fitting in the visible domain. The fitting of the optical properties of chromium
must be adapted to the domain of wavelengths of interest.

4.5 Titanium

Titanium is used as an alternative medium for adhesion layer of gold on dielectric samples.45

Table 6 gives the results of fitting for titanium. These values are used to plot Fig. 6. Figure 6(b)
shows the absolute error on the fitting of the real part and of the imaginary part. The fitting with
DL is much less efficient than DCP as DL cannot handle the change of slope of the real part of ϵr
[see Fig. 6(a)]. On the contrary, the imaginary part of the relative permittivity is well described by
both models.

Both results of fitting show that the Drude model is not suitable to describe the behavior of
the optical properties of titanium (Table 6).

4.6 Concluding Remarks

Both models of dispersion can be used according to the value of the fitness function F (Tables 2
to 6), but Figs. 1 to 6 show local discrepancies of data fitting. In the general case, the error of
fitting is spread over the real part or the imaginary part of the relative permittivity. The errors are
globally lower compared to that found in the literature, especially for the DCP method. The DL
model involves two terms and is less efficient than the CP model using three terms. Therefore,
the DL model could be chosen if sparing memory is required for FDTD calculations. However,
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Fig. 4 (a) Real and imaginary part of the experimental data for aluminum1 and fitting with the DL
and the CP (Table 4). (b) The error between the fitting and the reference data. The fitting with
parameters from Refs. 22 and 43 (ϵV ) are plotted.
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Table 5 Fitting of Palik data (ϵr ) for chromium by the combination of DL models [Eq. (1)] and DCP
model. F is the fitness function, C is the FDTD criterion, σR is the absolute error between real parts
of fitting and data, and σI is the absolute error between imaginary parts of fitting and data.

Cr1

DL DCP

F [Eq. (7)] 0.94723 0.077607

C [Eq. (5)] 0.99993 0.88915

σR 4.9121 0.29314

σI 5.625 0.48649

ϵ∞ 2.77667 0.386846

γD (rad∕s) 2.57644 × 1015 1.80690 × 1015

ωD (rad∕s) 1.59078 × 1016 1.39350 × 1016

Δϵ 13.2908 —

ωL (rad∕s) 3.32972 × 1015 —

γL (rad∕s) 2.99660 × 1015 —

Ω1 (rad∕s) — 3.79297 × 1015

Γ1 (rad∕s) — 8.01774 × 1014

Δϵ1 — 2.12352

Φ1 (rad) — 0.883949

Ω2 (rad∕s) — 1.75789 × 1015

Γ2 (rad∕s) — 7.80710 × 1014

Δϵ2 — 11.8586

ϕ2 (rad) — −1.69593
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Fig. 5 (a) Real and imaginary part of the experimental data for chromium1 and fitting with the DL
and the DCP (Table 5). (b) The error between the fitting and the reference data. The fitting with
parameters from Refs. 22 and 43 (ϵV ) are plotted.
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Table 6 Fitting of Johnson and Christy data (ϵr ) for titanium by the combination of DL models
[Eq. (1)] and DCP model. F is the fitness function, C is the FDTD criterion, σR is the absolute error
between real parts of fitting and data, and σI is the absolute error between imaginary parts of fitting
and data.

Ti1

DL DCP

F [Eq. (7)] 0.62496 0.26951

C [Eq. (5)] 0.99959 0.95922

σR 4.418 1.2955

σI 1.4696 1.483

ϵ∞ 2.17069 1.35312

γD (rad∕s) 1.08330 × 1016 3.02914 × 1015

ωD (rad∕s) 8.50868 × 1015 2.00924 × 1016

Δϵ 74.4496 —

ωL (rad∕s) 2.93140 × 1015 —

γL (rad∕s) 1.46986 × 1014 —

Ω1 (rad∕s) — 2.52097 × 1015

Γ1 (rad∕s) — 2.09204 × 1015

Δϵ1 — 9.01823

Φ1 (rad) — −2.06436

Ω2 (rad∕s) — 1.88081 × 1015

Γ2 (rad∕s) — 9.05493 × 1013

Δϵ2 — 3.90173

ϕ2 (rad) — 2.76388

450 500 550 600 650 700 750 800

−5

0

5

10

15

20

25

(a) Ti

λ
0
 (nm)

ε r

 

 

ℜ(ε
r
)

ℑ(ε
r
)

ℜ(ε
DL

)

ℑ(ε
DL

)

ℜ(ε
DCP

)

ℑ(ε
DCP

)

500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Ti

λ
0
 (nm)

E
rr

or

 

 

σ
R
(ε

DL
)

σ
I
(ε

DL
)

σ
R
(ε

DCP
)

σ
I
(ε

DCP
)

Fig. 6 (a) Real and imaginary part of the experimental data for titanium2 and fitting with the DL and
the DCP (Table 6). (b) The error between the fitting and the reference data.
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the DCP model is more accurate for all investigated metals. Aluminum’s optical properties are
not well described by the Drude model. Depending on metals, both models are not equivalent,
and the inspection of results allows to draw conclusions on the use of models that are summa-
rized in Table 7. The performance of the method is better if the number of “+” increases. This
performance is based on the value of the fitness function.

The results of fitting of various metals in the visible bandwidth provide the following
remarks:

• The DLmodel may be considered as competitive with the DCP model in terms of accuracy.
The choice between these models for FDTD is based on a compromise between memory
requirement that increases linearly with the number of terms and the required accuracy of
numerical results.

• The DCP model is able to reproduce the change of slope of the real part of the relative
permittivity on the contrary of the DL model.

• The FDTD parameter Δx ¼ 1 nm is a strong constraint that could be released easily for
applications where the accuracy on the near-field computation is not necessary. The pro-
posed method could generate better fittings in this case.

5 Conclusion

The particle swarm method under constraint followed with an NM algorithm have been success-
fully used for the fitting of the relative permittivity of gold, silver, chromium, aluminum, and
titanium in the visible wavelength domain. The PSO helps to find a good starting point for the
NM method, and the generation of physical parameters that are compatible with their use for
FDTD is ensured. The proposed method seems to be efficient for the hard problem of fitting of
the relative permittivities of metals as shown by comparison with results in the literature.

Two models are involved for the fitting of the relative permittivities: combinations of the
Drude model with Lorentz (DL) and with critical points models (DCP). The efficiency of
both models for fitting is compared for each metal. The fitting coefficients of optical properties
of metals that are currently used in optical design are given. The use of these results could be
particularly useful in plasmonics and design of nanostructured biosensors, but beware of the
crude use of these values: the domain of validity of these properties can change dramatically
when the size of the metal particles is less than a few tens of nanometers.44,46

The results of fitting can be used directly for any spectroscopic simulation and especially in
FDTD codes.8,47 These results are complementary to those found in the literature where more
than two DL terms are used for fitting. This method could also be applied to absorbing dielec-
trics, especially for nanowires and nanotube studies, with other models of fitting or other
domains of wavelengths.48–50 The advantage of such a heuristic method lies in its applicability
to various problems of fitting, the optimization of complex systems in engineering,13,35 the
propagation of uncertainties, or the tolerance study of models.18,28 The use of more complex
models 15,16,51,52 can extend the domain of its application.
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Table 7 Performance of fitting of ϵr by the combination of DLmodels and DCPmodel [Eq. (4)] with
the proposed method (particle swarm optimization+Nelder Mead), in the domain of visible wave-
lengths ½400;800� nm. (P) indicates data from Palik1 and (JC) from Johnson and Christy.2

Au (JC) Au (P) Ag (P) Al (P) Cr (P) Ti (JC)

DCP +++ + +++ ++ +++ ++

DL ++ − +++ − + +
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