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Abstract. We report on the study and characterization of nanoclusters-related recombination
centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence
(μ-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM).
μ-PL measurement shows that the nanoclusters-related recombination center exhibits different
temperature-dependent characteristics compared with the surrounding InGaN quantum-disks-
related recombination center. CL-STEM measurements reveal that these recombination centers
mainly arise from irregularities within the quantum disks, with a strong, spatially localized
emission when measured at low temperature. The spectra obtained from both CL-STEM and
μ-PL correlate well with each other. Our work sheds light on the optical and structural properties
of simultaneously coexisting recombination centers within nanowires heterostructures. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JNP.11.026015]
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1 Introduction

The molecular beam epitaxy (MBE) grown InGaN/GaN-based nanowires heterostructure is
attractive as it can be grown spontaneously on a highly mismatched surface, such as silicon,1–5

oxides,6–9 and metal,10–13 without threading dislocations.14,15 In the planar III-nitride material
system, random alloy fluctuations and phase segregation of In during the growth of the
InGaN layer result in the formation of In-rich clusters.16–18 These clusters result in a separate
recombination center with distinct behavior compared with the typical surrounding InGaN
matrix. The optical properties of these clusters have been studied in planar structures utilizing
both conventional optical microphotoluminescence (μ-PL) measurement19–21 and high-resolu-
tion cathodoluminescence scanning transmission electron microscopy (CL-STEM).22,23

For closely packed quantum-disks (Qdisks)-in-nanowires structures, the diffraction-limited
conventional optical characterization method24 can only provide macroscopic characteristics of
the nanowires ensemble. As the localization centers are typically only several nanometers in size,
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results obtained through a conventional optical method do not provide enough information on
the nature of individual recombination centers. Accurate study of localization centers within
nanowires structures is further complicated due to unique nanowires characteristics, such as
surface-state-related Fermi-level pinning25,26 and nonuniform strain distribution.27–30 Although
cathodoluminescence scanning electron microscopy has previously been utilized to spatially
characterize the emission characteristics of nanowires structures, the structural characterization
is limited to only the surface of the nanowires, and the resolution is not adequate to probe
individual nanoscale-sized recombination centers embedded inside the active region of the
nanowires.31,32 CL-STEM on the other hand is suitable for probing the nanoscale optical proper-
ties of nanowires because of the small interaction volume and high resolution resulting from the
high acceleration voltage used.33–35 Through utilizing CL-STEM, it is possible to simultaneously
retrieve both the optical and structural features of the nanowires while at the same time utilizing a
high-angle annular dark field (HAADF), providing a thorough understanding of how structural
features and luminescence properties of nanowires affect each other. This capability has been
demonstrated to investigate the nanoscale optical properties of nanowire heterostructures,22,36

with features as small as nanometer-sized clusters.37

In this study, we characterized the nature of competing recombination centers inside InGaN/
GaN Qdisks-in-nanowires heterostructure using both macroscopic and nanoscale optical char-
acterization. Initial μ-PL measurement indicates the existence of separate recombination centers
with distinct characteristics from the average Qdisk-related emission. To further elucidate the
results, we utilized CL-STEM to spatially resolve the origin of two distinct recombination cen-
ters from the active region of the Qdisks-in-nanowires heterostructure. CL spectra acquisition
over an ensemble of nanowires correlates well with the μ-PL measurement. CL-STEM accu-
rately pinpointed with nanoscale accuracy the location of a separate recombination center
embedded alongside the Qdisks, referred to as the nanoclusters-related recombination center
henceforth. High-resolution point acquisition on a single nanoclusters-related recombination
center shows that at 100 K, an individual nanoclusters-related recombination center has a narrow
linewidth, in the range of ∼50 meV. We thus established a direct visualization of embedded
nanoclusters-related emission and its relation to the structure of the Qdisk nanowires. Our work
gives insight on the optical and structural properties of simultaneously coexisting nanoscale
luminescence sites within nanowires heterostructures.

2 Experimental Details

2.1 Nanowires Growth

The Qdisks-in-nanowires samples were grown catalyst-free using plasma-assisted molecular
beam epitaxy on a Si(111) substrate. Before growth, the substrate was cleaned using dilute
hydrofluoric acid to remove any native oxide and was then loaded immediately into the MBE
chamber. After loading, the substrate was heated at 600°C and 900°C to desorb the organic
material and any remaining native oxide, respectively. The structure consists of an n-type
Si-doped GaN base, an active region with eight stacks of the InGaN Qdisks and GaN barrier,
and a p-type Mg-doped GaN top layer. The n-GaN base of the nanowires was grown at
720°C, and the top p-GaN layer was grown at 640°C. Eight pairs of the InGaN Qdisks and
GaN barriers were grown at Tg ¼ 525°C for the low temperature (LT) sample and
Tg ¼ 540°C for the high temperature (HT) sample with a constant In/Ga flux ratio throughout
the growth. The typical thickness was ∼300 nm for the silicon-doped n-GaN base and ∼200 nm

for the Mg-doped p-GaN top. The thicknesses of the InGaN Qdisks and GaN barrier were ∼3
and ∼5 nm, respectively.

2.2 Material Characterization

The first low-temperature μ-PL measurements were conducted using a confocal micro-Raman
spectrometer (Horiba/Jobin Yvon Aramis) with a 325-nm He–Cd laser as the excitation source.
The samples were placed inside a cryostat cell (Linkam, THMS 600), and the temperature was
changed from 77 to 300 K with a stability of �0.1 K. To investigate the s-shape behavior of
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peak emission energy, second low-temperature μ-PL measurements were conducted using
a continuous helium flow cryostat (Janis). The system was then cooled down to 10 K, and
the temperature was raised by 10 K steps to 150 K. The sample was excited using a 405-nm
laser with a 0.5-mWexcitation power and a ∼1.2-μm spot size. The TEM samples were prepared
by physical removal of the nanowires before drop casting the nanowires onto lacey carbon
TEM grids. High-resolution HAADF STEM images and the cathodoluminescence signal were
recorded simultaneously using a Gatan HAADF detector. Cathodoluminescence measure-
ments were performed in a JEOL 2100F TEM operating at an acceleration voltage of
80 kVand probe current in the order of 200 pA in STEM mode using a Gatan Vulcan™ system.
The acceleration voltage was chosen as the lowest possible to minimize beam damage.38

A specially designed cryogenic holder includes ellipsoidal mirrors above and below the speci-
men to reflect the cathodoluminescence into optical fibers, which guide the light out of the
TEM to a light detection system. The light detection system includes fast integrated intensity
mapping using a photomultiplier tube (PMT) and, for spectral analysis, a Czerny–Turner
optical spectrometer fitted with charge-coupled device (CCD) and PMT. The read out of
the CCD can be performed synchronously with the scanning of the e-beam-enabling hyper-
spectral data acquisition. The electron probe size was on the order of 0.5 nm. Considering
the Bohr exciton radius of GaN, the upper limit of the CL-STEM is defined as 5 nm. The
spectral resolution was ∼10 nm for CL spectrum images and can be as low as 0.5 nm depend-
ing on the slit width used; the samples were cooled to ∼100 K by liquid nitrogen unless
otherwise stated.

3 Results and Discussion

SEM micrographs for the nanowires array from the LT sample are shown in Figs. 1(a) and 1(b).
The nanowires density calculated statistically is ∼7.5 × 109 cm−2. The HAADF STEM image of
a single nanowire with embedded Qdisks is shown in Fig. 1(c). The typical length of the nano-
wires is ∼600 nm, and the top lateral width is ∼100 nm. The typical thickness of the Qdisks is
∼6 nm. The nanowires grow perpendicular to the substrate with an inversely tapered morphol-
ogy. The tapering is caused by the reduction of growth temperature during InGaN Qdisk growth
to promote In incorporation, resulting in lower adatom diffusion length and preferential lateral
growth. A degree of coalescence can be observed on the top part of the nanowires, which is
caused by expansion of the diameter of the nanowires as they grow.

Fig. 1 Electron microscopy micrograph of the nanowires from LT sample. (a) Plan-view SEM
micrograph of the nanowires grown on silicon, (b) the corresponding cross-section view of the
nanowires, and (c) HAADF image of a single nanowire with eight InGaN Qdisks (as indicated).

Prabaswara et al.: Spatially resolved investigation of competing nanocluster emission. . .

Journal of Nanophotonics 026015-3 Apr–Jun 2017 • Vol. 11(2)



3.1 Microphotoluminescence Characterization

To investigate the luminescence characteristics of the nanowires, ensemble spectra were taken
using a 325-nm He–Cd laser in a backscattering configuration. Temperature-dependent μ-PL
measurements were performed between 77 and 300 K. For the LT sample, at room temperature,
only the green emission at 546 nm is observed. However, when the sample is measured at 77 K
[Fig. 2(a)], an additional blue peak emitting at 465 nm is visible. The blue emission peak is
observed to quench faster than the green emission peak as the temperature increases. From
this observation, it is possible that the blue peak is attributed to shallower recombination centers.
For comparison, a second nanowires sample with a higher active region growth temperature and
a nominally smaller In composition (the HT sample) was grown. The temperature-dependent
μ-PL result from the HT sample is shown in Fig. 2(b), where only a single dominant peak
can be observed at both 77 and 300 K.

We further investigate the behavior of these two recombination centers through a separate
temperature-dependent μ-PL measurement, using a 405-nm diode laser as the excitation source
with temperature ranging from 10 to 150 K on the LT sample. In Fig. 2(c), the peak position
versus temperature is shown, with the blue peak redshifting by 27.5 meV up to 130 K, followed
by a blueshift, and the green peak redshifting by 5.4 meV until 70 K, followed by blueshift until
140 K, and another redshift. For both the blue and green emissions, the positions of their peak

Fig. 2 μ-PL emission spectra taken at 77 and 300 K using 325 nm excitation for (a) an LT sample
(Tg ¼ 525°C) and (b) an HT sample (Tg ¼ 550°C). The full width at half maximum values are
shown within the bracket. In the LT sample, the blue peak is quenched at room temperature,
while the green peak remains stable. Additional temperature-dependent μ-PL measurement
using helium-cooled cryostat from 10 to 150 K with 405 nm excitation was done to obtain
(c) the peak shift of the LT sample versus temperature, showing the s-curve associated with
In clustering and (d) the integrated intensity versus temperature of blue and green peaks.
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intensities follow the S-shape associated with In clustering in the active region.39 The initial
redshift can be explained as carriers moving to deeper recombination centers with smaller
bandgap via carrier hopping. After reaching equilibrium, the carriers can start filling the higher
energy states, represented by the blueshifting of the peak wavelength. Finally, the redshifting can
be explained by the regular thermionic emission of the carriers. The S-shape confirms that both
peaks originate from carrier population and depopulation within the Qdisk insertions in the
active region and not from defects.40 Figure 2(d) shows the change of integrated μ-PL intensity
with temperature. By applying a two-component Arrhenius equation (inset), the activation
energies EA1 and EA2 of the blue peak are determined to be 6.2 and 25.2 meV, whereas the
activation energies of the green peak are 8.3 and 40 meV. The activation energy indicates
the energy barrier that must be overcome before carriers escape radiative recombination centers
and recombine nonradiatively. The lower activation energy of the blue peak indicates that car-
riers within the blue recombination center are more susceptible to thermal quenching due to the
activation of nonradiative recombination centers and nonradiative recombination on the surface
of the nanowires. On the other hand, the higher activation energy in the green peak shows
a deeper localized state, as evidenced by the stable green emission even when measured at
room temperature.

Despite μ-PL being a useful tool to quantify various optical parameters of the recombination
centers within the nanowires, the results obtained represent the statistical average of an ensemble
of nanowires. Furthermore, it does not give any direct correlation on how the structural
properties of the nanowires affect the recombination centers embedded inside. To investigate
the characteristics of individual nanometer-sized recombination centers, a cathodoluminescence
measurement with nanoscale excitation capability is required.

3.2 Cathodoluminescence Scanning Transmission Electron Microscopy
Characterization

Nanoscale luminescence characterization was conducted by CL-STEM. We first attempted to
use CL-STEM to verify the validity of the two distinct recombination centers observed using
low-temperature μ-PL. By scanning the beam over an entire nanowires ensemble, a spectrum
response analogous to the μ-PLmeasurement can be obtained. The CL-STEMmeasurement was
implemented both at room temperature and at 100 K for the LT sample. The ensemble spectra of
the LT sample [Figs. 3(a) and 3(b)] confirm that at room temperature, only a single peak emitting
at 518 nm can be detected, whereas two distinct peaks at 444 and 540 nm can be observed at
100 K; this result agrees well with the μ-PL measurement. The CL spectrum of the nanowires
ensemble at 100 K exhibits broader linewidth than the μ-PL measurement result at 77 K due to
phonon broadening at increased temperature. At room temperature, the CL spectrum peak line-
width is relatively narrower compared with the μ-PL spectrum and is blueshifted. The narrower
linewidth is caused by the smaller number of nanowires excited using CL compared with the
μ-PL measurement; thus, less compositional inhomogeneity is observed. Based on the nanowire
density and beam spot size, ∼750 nanowires are excited using μ-PL, whereas 100 to 150 nano-
wires are excited during ensemble CL measurement. The excited electron-hole pairs can cause
blueshifting through a combination of Coulomb screening (thus reducing the quantum-confined
Stark effect) and band-filling effect.41 In general, CL excitation generates more electron-hole
pairs compared with PL excitation,42 which results in a more pronounced blueshift compared
with the PL result.

Figures 3(c)–3(e) show an HAADF image of a single nanowire with the corresponding CL
true color map, where the color of each pixel in the hyperspectral data cube is chosen to represent
the data by comparing the measured spectrum to a standardized color chart. It is implied that the
blue emission is spatially localized within a single region of the nanowire, whereas the green
emission is relatively delocalized. Interestingly, the bright blue nanoclusters-related emission
can coexist with the Qdisk-related green emission within a single nanowire and occupy only
a localized area. Although the actual size of the localization center is only several nanometers,
carrier diffusion of the electron-beam-generated electron–hole pair makes the center appear
larger. From its spatial extent, the carrier diffusion within the recombination center is estimated
to be 30 to 40 nm before they recombine.
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A detailed point acquisition on a single segregation-related recombination center within the
LT sample was performed. The red cross in Figs. 3(c)–3(e) indicates where the CL spectrum was
acquired. The result in Fig. 3(f) shows a CL spectrum with a single peak and relatively narrow
linewidth of ∼8 nm (47 meV), compared with the broad twin peak CL spectrum from nanowires
ensemble measurement in Fig. 3(a). This result demonstrates the importance of CL-STEM for
probing the optical property of a single nanoscale-sized localization center within a nanowires
structure and correlating it with the ensemble optical properties.

Further characterization was performed by overlaying a band-pass-filtered CL spectra on
top of the HAADF image, shown in Figs. 3(g)–3(m). The InGaN alloy within the nanowire is
outlined with a red dashed line for clarity. It is shown that branching and clustering occur within
the nanowire. In Fig. 3(k), a bright and spatially localized emission at 457� 6.9 nm can be

Fig. 3 Comparison of CL-STEM measurement between a nanowires ensemble from LT sample.
CL spectra of electron beam scanned over an ensemble of nanowires for (a) low-temperature
measurement and (b) room temperature measurement. The inset shows the HAADF image of
the ensemble of nanowires. (c) HAADF image and (d) the corresponding true color CL mapping
from a single nanowire, showing a spatially localized blue emission at 100 K. (e) Bandpass-filtered
monochromatic image from the CL emission map centered at 460 nm. (f) Point acquisition CL
emission spectrum measured at the region of the blue emission. (g) HAADF image with overlaid
red dashed lines showing the outline of the nanowire and the position of Qdisks. The correspond-
ing �7-nm bandpass-filtered CL-STEM images at 100 K showing emission at (h) 406 nm,
(i) 420 nm, (j) 445 nm, (k) 457 nm, (l) 510 nm, and (m) 530 nm. A strong emission at
457� 7 nm, which spatially coincides with the branching, can be observed in (k). Although
the actual size of the localization center is only several nanometers, carrier diffusion in the
order of 30 to 40 nm makes the center appears larger.
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observed. The blue emission coincides with the location of the Qdisk branching, which suggests
that these blue-colored recombination centers appear when irregularities, such as branching and
nanoclusters, are present in the InGaN Qdisks. By contrast, the emission from other parts of
the nanowires, corresponding to Qdisk-related emission, is relatively weak and delocalized.

For comparison, we have also performed HAADF imaging and CL-STEM measurement at
100 K on the HT sample, shown in Fig. 4(a). The CL spectrum obtained from an ensemble of
nanowires shows only a single peak emitting at 470 nm, which correlates well with the μ-PL
measurement. As indicated in the true color map of a typical nanowire shown in Fig. 4(c), the
dominant blue emission comes from a weakly localized Qdisk-related recombination center.
The blue emission is uniform across the active region with no spatially localized bright emission
from the nanoclusters-related recombination center.

From what we have observed, we deduced that there are mainly two distinct recombination
centers within the LT nanowires sample, namely the nanoclusters-related recombination center,
which arises due to the formation of nanoclusters, and the Qdisk-related recombination center,
which is relatively weaker at low measurement temperatures and is delocalized. The blue emis-
sion in the LT sample revealed by μ-PL measurement originates from nanoclusters-related
recombination centers, as evidenced by the strong spatial localization seen in CL-STEM mea-
surements. As the size of the Qdisks are comparable to the electron radius inside InGaN, and
both peaks exhibit the s-shaped peak emission shift related to exciton population and depop-
ulation processes,39 we believe that both emission peaks come from bound excitonic recombi-
nation. At lower measurement temperature, some of these nanoclusters-related recombination
centers are filled with carriers. As the temperature increases, the emission from these recombi-
nation centers is redshifted and quenched, due to excitons dissociating into free carriers and
obtaining sufficient energy and escape into the surrounding InGaN Qdisk by thermionic emis-
sion, thereby depopulating the nanoclusters-related recombination centers. This process is
reflected by the low activation energy value of the blue peak. Emission from free-carrier recom-
bination typically has a longer PL decay time compared with excitonic recombination.43 Further
time-resolved PL study is required to investigate the contribution of free-carrier recombination
toward the overall emission. With the nanoclusters depopulated and most of the recombination
mechanisms happening within the Qdisks, the μ-PL spectrum is dominated by the green
Qdisk-related peak at room temperature.

To rule out Qdisk thickness variations and different In compositions as the cause of the two
separate peaks, we have performed additional numerical simulation and electron energy loss
spectroscopy (EELS) spectrum acquisition. Numerical simulation of the effect of Qdisk thick-
ness on emission wavelength was done using a commercial Nextnano3 software package.44 For
our model, we use a simple one-dimensional InGaN quantum well with variable thicknesses
between GaN barriers. The quantum-confined Stark effect is assumed to be negligible consid-
ering strain relaxation from theQdisk. The InGaN well simulated has a 35% In content, resulting
in peak emission of 2.3 eV at 6 nm, which agrees well with the measured PL emission. We
then calculate the transition energy of the electron-hole ground state. From the simulation result

Fig. 4 (a) CL spectrum of electron beam scanned over an ensemble of nanowires, for an HT
sample. The inset shows HAADF image of the nanowires ensemble. (b) HAADF image of a single
nanowire from HT sample with (c) the corresponding true color CL mapping.
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shown in Fig. 5, we can see that for InGaN wells above 5-nm thick, the transition energy is
relatively insensitive to thickness variation within the InGaN well. As the blue and green emis-
sion peak energies are separated by more than 500 meV, we can infer that thickness variation
between Qdisks is not the main cause for the blue emission.

An HAADF image of two nanowires from an LT sample aligned horizontally side by side,
referred to as nanowire 1 and nanowire 2, along with the corresponding CL true color map
and multiple linear least squares–fitted EELS spectrum image for In content are shown in
Figs. 6(a)–6(c). We detected the existence of simultaneous blue and green emissions within

Fig. 5 Calculated transition energy of the electron-hole ground state of an InGaN well inserted
between GaN barriers for different well thickness.

Fig. 6 (a) HAADF image of Qdisks region of two nanowires from the LT sample aligned horizon-
tally with the corresponding (b) true color CL map and (c) EELS spectrum image for In compo-
sition. A bright localized emission from the sidewall region of the nanowire is indicated by a red
square in (b). EELS result indicates that the In composition is relatively constant within a few
atomic percentage across single nanowire.
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nanowire 1. In addition, we have also detected a strong blueshifted emission emitting from the
sidewall region of nanowire 2, indicated by a red box in Fig. 6(b). However, even with the exist-
ence of simultaneous blue and green emission within a single nanowire and strongly localized
blueshifted emission, the In composition across the nanowire is relatively constant within a few
atomic percentage. Therefore, we can also confirm that the blueshifted emission is likely not
caused by compositional variation between Qdisks.

In contrast to the LT sample, the HT sample only has emission coming from Qdisk-related
recombination centers. Therefore, even at low measurement temperatures, only a single dom-
inant peak can be observed. The redshift observed with the peak wavelength with increasing
temperature is due to temperature-dependent bandgap shrinking common in semiconductor
materials.45

The irregularities within the Qdisks, which give rise to nanocluster-related emission, are
thought to arise due to In segregation because of lower In miscibility at a lower growth temper-
ature, leading to the formation of the nanoclusters. The nanoclusters-related emission center is
more prominent in the LT sample, where the Qdisks are grown at relatively lower temperature.
Although an individual nanocluster typically exhibits narrow emission linewidth, the blue emis-
sion is broader for both μ-PL and nanowires ensemble CL acquisition due to size and compo-
sition distribution between separate nanoclusters. By contrast, the Qdisks inside the HT sample
are grown at a higher temperature, resulting in the formation ofQdisks with better crystal quality
and reduced In clustering, indicated by the absence of spatially localized emission. By using CL-
STEM, we have observed two distinct emissions within InGaN/GaN nanowires heterostructures
with nanoscale resolution and spatially identified the origin of each recombination centers.

4 Summary

In conclusion, a detailed investigation on the origin of two distinct recombination centers within
Qdisks-in-nanowires heterostructure was performed utilizing both μ-PL and nanoscale CL-
STEM. From the μ-PL measurements, we identify the existence of two recombination centers
within the active region of the nanowires. CL-STEM from a single nanowire confirms that the
emission corresponds to concurrent spatially localized InGaN nanoclusters-related emission and
delocalized emissions from the Qdisk region. A high-resolution scan on a single nanowire
reveals that the nanoclusters-related recombination center corresponds to irregularities within
Qdisk, i.e., branching and clustering. Such irregularities are thought to arise from the low mis-
cibility of In at a lower growth temperature. In contrast, such nanoclusters-related recombination
centers are mostly absent from the HT sample. We have also ruled out the possibility of Qdisk

thickness variation and compositional variation across Qdisks as the cause of the additional
emission peak by performing numerical simulation and EELS acquisition, respectively. By
utilizing CL-STEM, it is possible to obtain a thorough understanding of the relation between
the structure of InGaN/GaN nanowires and its optical properties with nanoscale accuracy. Our
results confirm that distinct nanoclusters-related recombination centers exist simultaneously
with the Qdisk-related recombination center within the InGaN/GaN heterostructure under par-
ticular growth conditions.
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