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Abstract. The applicability of Lewin’s homogenization formula is restricted to composite ma-
terials wherein: (a) the inclusions are small relative to wavelength in the host material and the
inclusion material; (b) the real parts of the permittivities (and/or the permeabilities) of the host
and inclusion materials have the same sign, for weakly nondissipative materials; and (c) the
volume fraction of the inclusion material is less than approximately 0.3.
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1 INTRODUCTION

Homogenization formalisms, such as the well–established Maxwell Garnett formalism [1], can
provide useful estimates of the constitutive parameters of homogenized composite materials
(HCMs) [2–4]. However, the implementation of these formalisms is appropriate only in certain
circumstances.

In 1946 Lewin presented an extended version of the Maxwell Garnett homogenization for-
malism [5]. Lewin’s formula has recently attracted attention in the context of HCMs which
support negative–phase–velocity propagation of plane waves and can therefore refract nega-
tively [6–10]. The constituents of the composite material considered by Lewin are: (i) an
isotropic dielectric–magnetic host material with relative permittivity ε1 and relative permeabil-
ity µ1; and (ii) an isotropic dielectric–magnetic inclusion material with relative permittivity ε2
and relative permeability µ2. The inclusion material has the form of spherical particles, each
of radius a, arranged on a cubic lattice with f denoting the volume fraction of the inclusion
material; Lewin’s homogenization formula has also been applied to composites with randomly
distributed inclusions [9]. The dimensionless parameter

θ =
2πa

√
ε2µ2

λ
(1)

gauges the size of the inclusions relative to characteristic electromagnetic length–scales in the
inclusion material. Herein, λ is the free–space wavelength. Lewin’s estimates of the relative
permittivity and relative permeability of the HCM are [5]

κHCM = κ1

[
1 + 3f

(
κ2F (θ) + 2κ1

κ2F (θ) − ε1
− f

)−1
]
, (κ = ε, µ), (2)

respectively, wherein the function

F (θ) =
2 (sin θ − θ cos θ)

(θ2 − 1) sin θ + θ cos θ
. (3)

Alternative representations for Lewin’s estimates of εHCM and µHCM can be provided in terms of
spherical Bessel and spherical Hankel functions [7].
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Instead of the usual Mossotti–Clausius expression for the polarizability of an isotropic di-
electric sphere embedded in an isotropic dielectric host material [11, Sec. 4.5] and its analog for
the magnetizability of an isotropic magnetic sphere embedded in an isotropic magnetic host ma-
terial, Lewin [5] used expressions obtained from the first two coefficients (often designated as
a1 and b1) of the Lorenz–Mie–Debye solution for the scattering of a plane wave by an isotropic
dielectric–magnetic sphere embedded in an isotropic dielectric–magnetic host material [12, Sec
4.3]. That practice is fine, but it does not provide a license to remove the restriction on the
magnitude of θ when implementing the Maxwell Garnett and other similar formalisms.

Noting that homogenization formulas can be applicable to composite materials containing
nanosized inclusions, in this letter crucial limitations of Lewin’s formula are identified which
have not been respected in recent studies [6–10].

2 LIMITATIONS

There are three limitations on Lewin’s homogenization formula as follows.

(a) In Lewin’s analysis [5], the inclusions were taken to be small relative to wavelength in
the host material but not in the inclusion material; i.e., | a√ε1µ1 | � λ but not | θ/2π | �
1.

Homogenization of constitutive parameters is a valid concept if the spatial variations of
the electric and magnetic fields are slow everywhere in the actual composite material.
The condition | a√ε1µ1 | � λ ensures that the exciting fields are virtually uniform over
the region occupied by an inclusion. The condition | θ/2π | � 1 ensures that the fields
induced inside the inclusion are virtually uniform as well.

Van de Hulst [13, Sec. 6.4] has actually stipulated even stronger conditions: | 2πa
√

ε1µ1 |
� λ and | θ | � 1. He has pointed out that, if the condition | 2πa

√
ε1µ1 | � λ is true but

the condition | θ | � 1 is not, then resonances will arise inside the inclusion, a multipolar
(and not simply dipolar) representation of the inclusion will have to be considered, and
the spatial variations of the fields in the HCM will then be rapid in the region occupied
by an inclusion. Accordingly, suitable bounds which must be satisfied for homogeniza-
tion are | a√ε1µ1 | ≤ λ/10 and | θ/2π | ≤ 1/10. These bounds on the relative sizes
of the inclusions apply generally to homogenization formalisms, such as the Maxwell
Garnett formalism and formulas based on it (e.g., Lewin’s formula), and the Bruggeman
formalism which arises from the strong–property–fluctuation theory [14].

(b) If

Re {ε1} Re {ε2} < 0 and | Im {ε�} | � |Re {ε�} |, (� = 1, 2) (4)

and/or

Re {µ1} Re {µ2} < 0 and | Im {µ�} | � |Re {µ�} |, (� = 1, 2), (5)

then it is inappropriate to apply the Maxwell Garnett formalism—or formulas such as
Lewin’s formula which represent inclusion–size adjustments to the Maxwell Garnett for-
malism. This is because the estimated constitutive parameters of the HCM exhibit strong
resonances with respect to the volume fraction f , but those resonances are not physi-
cally plausible [15]. Indeed, this limitation applies also to the Bruggeman homogeniza-
tion formalism [15] and the Bergman–Milton bounds on the constitutive parameters of
HCMs [16]. The conditions (4) may be satisfied at optical frequencies when the inclu-
sions are made from certain noble metals, such as gold or silver, and the host material is
an insulator [17].
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(c) A major drawback of the Maxwell Garnett formalism — which also afflicts formulas
such as Lewin’s formula that are essentially based on the Maxwell Garnett formalism —
is its failure to predict a percolation threshold. In contrast, the Bruggeman homogeniza-
tion formalism — in which the inclusion material and the host material have exactly the
same footing — predicts a threshold at f = 1/3 [18, Sec. 8.3]. Accordingly, it is ap-
propriate to use the Maxwell Garnett formalism at f � 0.3 only (unlike the Bruggeman
formalism which may be applied for 0 < f < 1).

3 CONCLUDING REMARKS

While conventional homogenization formalisms are undoubtedly of great benefit to material
designers in certain circumstances, they cannot be implemented without due regard to their
limitations. This point is particularly relevant in the context of HCMs as metamaterials, which
often involve unconventional ranges of the constitutive parameters. The applicability of Lewin’s
formula is restricted to regimes where:

(a) the inclusions are small relative to wavelength in the host material and in the inclusion
material;

(b) the conditions (4) and (5) are not satisfied; and

(c) the volume fraction f � 0.3.
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