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Abstract. Spatial frequency domain imaging (SFDI) is a widefield, noncontact, and label-free imaging modality
that is currently being explored as a new tool for longitudinal tracking of cancer therapies in the preclinical setting.
We describe a two-layer look-up-table (LUT) inversion algorithm for SFDI that better accounts for the skin (top
layer) and tumor (bottom layer) tissue geometry in subcutaneous tumor models. Monte Carlo (MC) simulations
were conducted natively in the spatial frequency domain, avoiding discretization errors associated with Fourier
or Hankel transforms of conventional MC simulation results. The two-layer LUT was validated using two-layer
tissue mimicking optical phantoms, in which the optical property extractions of the bottom (tumor) layer were
determined to be within 20% and 11% of the true values for μa and μ 0

s, respectively. A sensitivity analysis was
conducted to evaluate how imperfect top layer estimates affect bottom-layer optical property extractions. Finally,
the two-layer LUT was used to reanalyze a prior longitudinal data set, which revealed larger therapy-induced
changes in optical scattering and a more hypoxic tumor environment compared to the homogeneous LUT.
The two-layer LUT described here improves the accuracy of subcutaneous tumor imaging, and the general
methodology can be applied for arbitrary multilayer SFDI applications. © 2018 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.23.7.076011]
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1 Introduction
Despite an ever growing array of treatment options for patients
with solid tumors, including chemotherapies, targeted drugs,
and immunotherapies, individual patient response remains
highly variable.1 Furthermore, most patients who die from
cancer will develop resistance to the drugs they are given.1

Surveillance of the in vivo tumor state with methods that can
detect both treatment response and resistance would provide
opportunities for physicians to dynamically adapt and person-
alize regimens to maximize overall treatment efficacy.
Unfortunately, current standard of care imaging tools (e.g.,
MRI and PET) are limited for this type of frequent longitudinal
monitoring due in part to the high expense, lack of portability,
safety concerns, and in some cases, patient discomfort during
measurements.2–4 There is an interest in exploring the use of
clinical diffuse optical imaging (DOI) to meet this need as
these techniques provide a metabolic and molecular profile of
tumors while being label-free, safe, and generally low cost.5

For example, over the last decade multiple studies have used
DOI tools to track optical changes in breast cancer patients
receiving neoadjuvant chemotherapy.6–8 These studies are
largely consistent in their findings that DOI imaging methods
reveal changes in optical absorption, scattering, as well as
hemoglobin, water, and lipid content that correlate strongly with
treatment response determined by pathology.

While encouraging, there are open questions related to how
DOI parameters manifest for different systemic therapies, drug
combinations, and dosing schedules, as well as how DOI param-
eters correlate with underlying tumor and host biology at the
cellular and molecular levels. Although there have been some
prior efforts to correlate in vivo DOI clinical measurements
with tissue samples obtained by biopsy or from surgical spec-
imens,9,10 obtaining tissue samples during treatment remains a
challenge. Alternatively, the preclinical setting provides oppor-
tunities for testing new or emerging therapeutic strategies while
simultaneously allowing better access to tissues for ex vivo
analysis, potentially providing a pathway for placing DOI met-
rics in a biological context for a variety of treatment strategies.
For example, we have shown in a previous study that spatial
frequency domain imaging (SFDI) can be used to monitor
the in vivo tumor state of a subcutaneous tumor xenograft
model grown in mouse over a period of 45 days.11 SFDI is a
widefield DOI modality, capable of tracking the same noninva-
sive and label-free metrics measured using clinical DOI modal-
ities and is well suited for preclinical oncology work given its
shallower penetration depth (typically mm).11,12

Much of the prior published works using SFDI for both small
animal and clinical research have utilized the assumption of
homogeneity in depth when extracting optical properties from
tissue.13–16 For example, in our prior preclinical monitoring
study, we modeled mouse tumor tissue as a semi-infinite
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homogeneous medium and used the results of a Monte Carlo
(MC) simulation to create a look-up-table (LUT) inversion
algorithm to recover optical property estimates from SFDI mea-
surements of diffuse reflectance.11 However, tissue geometry is
complex, and in the case of subcutaneous tumors in mice, a thin
skin layer is located above the tumor, which remains unac-
counted for in a homogeneous model. Although there are several
prior studies that have described inversion algorithms that utilize
a layered-tissue structure17–21 or utilize tomographic reconstruc-
tions with SFDI,22,23 we describe, in this work, the first use of
MC simulations conducted natively in the spatial frequency
domain to make a two-layer LUT inversion algorithm that
closely matches the true physiology and optical characteristics
of preclinical tumor models.

The organization of this manuscript is as follows: First, we
describe the MC simulation parameters and methods used to
generate a two-layer LUT. We then compare its performance
to two different homogeneous LUTs. We then validate the
two-layer LUT algorithm using experimental measurements
made on custom two-layer tissue-simulating phantoms. Next,
we conduct a sensitivity analysis to determine how sensitive
the two-layer LUT is to imperfect knowledge of the top (skin)
layer parameters, including optical properties and layer thick-
ness. Then we utilize the two-layer LUT to reanalyze an in vivo
data set from a previously published longitudinal treatment
monitoring study and compare the results to those obtained
with a homogeneous LUT.11 Finally, we conclude by discussing
the advantages and limitations of the two-layer methodology
and its potential for future applications in preclinical oncology.

2 Materials and Methods

2.1 Spatial Frequency Domain Imaging

SFDI is a widefield DOI method that provides pixel-level extrac-
tions of optical properties. SFDI instrumentation, data acquisi-
tion, processing, and analysis procedures have been described in
detail in the previous publications.11,12 Briefly, SFDI utilizes
projections of spatially modulated light onto a phantom or tissue
surface, and the remitted diffuse light is collected with a CCD
camera. Images are typically collected at multiple wavelength
bands and at least two spatial frequencies. A demodulation
algorithm is used to extract the AC tissue response from each
spatial frequency. Demodulated image data are then calibrated
to remove the instrument response using measurements from
a tissue-simulating phantom with known optical properties.
Corrections for height and angle of the object surface may
also be employed for nonflat surfaces.24 Diffuse reflectance
(Rd) maps acquired at a minimum of at least two spatial frequen-
cies (fx) are then used as inputs to an inverse model to extract
tissue absorption (μa) and reduced scattering (μ 0

s) as a function
of wavelength.12,25

In this study, the OxImager RS SFDI system (Modulated
Imaging, Inc., Irvine, California) was used for all measurements.
The system has an imaging field of view of 15 × 20 cm, and for
this study illumination wavelengths of 659, 691, 731, and
851 nm and spatial frequencies of 0 and 0.1 mm−1 were utilized.
The sample was illuminated with one-dimensional sinusoidal
spatial patterns, and each fx was projected at three offset spatial
phases (0, 120, and 240 deg). Demodulation was performed
using previously described methods, specifically Eq. (20) in
Cuccia et al.12 An MC-based two-frequency LUT inversion
algorithm was used to map Rd values to optical properties

(described in more detail in Sec. 2.2). For tissue measurements,
the four μa values extracted at the four illumination wavelengths
were used to compute tissue-level chromophore concentrations
using Beer’s Law. Oxyhemoglobin (HbO2) (μM), deoxyhemo-
globin (Hb) (μM), total hemoglobin (THb) (μM), and oxygen
saturation [StO2 (%): HbO2∕THb × 100] were extracted from
mouse tissue measurements.5,11 Scattering amplitude and scat-
tering slope were also computed by fitting the wavelength-
dependent μ 0

s values to a power law on a pixel by pixel basis.11

2.2 Monte Carlo Simulations for the Generation of
LUT-Based Inverse Models

2.2.1 Prior work and the implementation of the Gardner
method for estimating Rd in the spatial frequency
domain

Several prior publications from our group and others have uti-
lized a two-frequency LUT inversion algorithm to extract optical
properties from SFDI-derived Rd values.11,24,26,27 At the core of
this LUTalgorithm is a single conventional MC simulation for a
semi-infinite homogeneous medium. The simulation results
are postprocessed to provide Rd values for arbitrary μa and μ 0

s
combinations using the methods described in Martinelli et al.28

A discrete Hankel transform is then used to transform the
spatially resolved Rd values to the spatial frequency domain.
An LUT is constructed by scaling (i.e., postprocessing) the
MC results for a desired range and step size of μa and μ 0

s values.
In our work, a linear interpolation method is then implemented
using MATLAB’s “griddata” function, whose input is measured
Rd values and the LUT, and whose output is best fit optical
properties.

This method has several limitations. First, the scaling method
in Martinelli et al.28 is only described for homogeneous media,
thus making it currently inapplicable for modeling multilayer
tissue geometries. Additionally, the discrete Hankel transform
is sensitive to discretization errors, which may lead to inaccur-
acies and artifacts depending on the density of the spatial sam-
pling used.29

A method for obtaining multilayer MC results in the spatial
frequency domain was recently described by Gardner and
Venugopalan.29 The Gardner method obtains Rd estimates
natively in the spatial frequency domain and is, therefore, not
subject to the same discretization errors caused by taking a dis-
crete transform of spatially resolved Rd. The Gardner method
computes a frequency-dependent photon weight, as shown in
Eq. (1), for a two-layer medium and a spatially modulated
source in the x-direction

EQ-TARGET;temp:intralink-;e001;326;232Wn ¼ expð−μa;1d1;n − μa;2d2;nÞ expð−2πifxxnÞ: (1)

This expression was obtained by taking the spatial Fourier
transform of the time-independent radiative transport equation
over the transverse directions (i.e., x- and y-dimensions). It pro-
vides the final weight of the n’th detected photon originating
from a point source at xo ¼ 0 with unity initial weight. Here,
di;n stands for the total photon path length in the i’th layer,
and subscripts 1 and 2 refer to the top and bottom layers, respec-
tively, of the two-layer tissue model. In addition to the effect of
absorption (first exponential term), as in the case of a conven-
tional continuous absorption-weighted MC simulation, the
photon weight exhibits the effect of spatial modulation as a
frequency-dependent phase accumulation (second exponential
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term), which is sensitive only to the net lateral displacement (xn)
of the photon’s exit location relative to the source. Equation (2)
can then be used to compute Rd as a function of fx, where N is
the total number of photons simulated

EQ-TARGET;temp:intralink-;e002;63;708RdðfxÞ ¼
1

N

XN

n¼1

Wn: (2)

Provided that d1;n, d2;n, and xn are stored, it is possible to
compute Rd for various spatial frequencies and μa values
from a single MC simulation. This method of scaling for μa
is more accurate than applying Beer’s law to Rd.

28,30 A separate
MC simulation must be run to obtain results for each μ 0

s value of
interest.

In this work, we compare Rd and optical property extractions
from LUT inverse models based on both the conventional MC
simulations scaled with the methods described in Martinelli
et al., as well as MC simulations conducted with the methods
described in Gardner et al. For convenience, we will refer to the
MC methods used to generate LUTs as either the “Martinelli
method” or “Gardner method.” Similarly, the different LUTs
used to produce Rd and optical property extraction will be
referred to as “Martinelli homogeneous,” “Gardner homo-
geneous,” and “Gardner two-layer.”

2.2.2 Monte Carlo simulation parameters for generating
homogeneous and two-layer LUTs

The Martinelli method was used to construct a homogeneous
LUT, and the Gardner method was used to construct both a
homogeneous LUT and a two-layer LUT. The geometries of
the MC simulations used to produce these LUTs are shown
in Figs. 1(a) and 1(b). Both models were constructed for the
purpose of extracting optical properties from a subcutaneously
implanted tumor on the mouse flank. For the homogeneous
case, the tumor was modeled as a semi-infinite geometry, and
the effects of the superficial skin layer were ignored. For the
two-layer case, the top layer represents the skin layer, with
fixed (i.e., known) μa, μ 0

s, and thickness (d), and the bottom
layer represents a semi-infinite tumor layer. For all LUTs, the
tumor optical properties are the free parameters of the inversion
algorithm. We describe the properties of each layer in more
detail below.

Skin layer: Optical properties of the upper (skin) layer of
the MC simulations were adapted from Sabino et al.,31 who
recently reported μa and μ 0

s of skin from BALB/c male mice
using a Kubelka–Munk model of photon transport and

spectrophotometric measurements for the wavelength range
of 400 to 1400 nm. The authors used skin from the mouse
dorsal region and shaved any excess hair before measurements.
We utilized the average μa and μ 0

s values of the reported
skin properties calculated over the four SFDI wavelengths
(659, 691, 731, and 851 nm) for the upper layer properties
in our two-layer MC simulations: μa ¼ 0.096 mm−1 (SD:
0.0075 mm−1) and μ 0

s ¼ 0.78 mm−1 (SD: 0.12 mm−1).
The thickness of the skin layer was estimated using caliper

measurements of eight excised tumor skin samples from
C57BL/6N female mice. The average skin thickness, which
included the epidermis, dermis, and hypodermis, was 312.5 μm.
H&E staining of representative tumor skin cross sections was
conducted to validate the skin thicknesses (agreement was
within 3.1% for n ¼ 2 samples). The C57BL/6N mouse strain
was used to estimate thickness since it is commonly used for
mouse tumor imaging,32 and we plan to utilize this strain in
future studies of mammary carcinoma. Our thickness measure-
ments were similar to past reports of C57BL/6N skin thickness,
where female mice were found to have a skin thickness of 371,33

300,34 and 364 μm.31 We note that data collected from male
severe combined immunodeficient (SCID) mice are used in
Sec. 3.5 of this work as well as in our prior study.11 The thick-
ness of male SCID mouse skin was determined by measuring 18
skin samples taken prior to treatment (n ¼ 6), during treatment
with either DC101 or cyclophosphamide (CPA) (n ¼ 6), and
after treatment (n ¼ 6) using brightfield microscopy of frozen
tissue sections. The average skin thickness was found to be
326.9 μm, which is within 5% of the thickness used in the
two-layer model (312.5 μm). The difference between the thick-
ness of samples taken before and during or after treatment was
within 11%. These results suggest that the two-layer model is
appropriate for subcutaneous tumor models in both female
C57BL/6N and male SCID mice. Other mouse strains have
somewhat similar skin thickness, including the commonly
used BALB/c mouse strain (336 μm for female and 393 μm
for male),31 immunocompetent albino mice (441 μm),35 immu-
nocompromised athymic nude mice (420 μm),34 and female
SCID mice (220 μm).36

Tumor layer: In all three LUTs, the bottom (tumor) layer
contains 400 μa values, ranging from 0.0005 to 0.2 mm−1

(Δμa ¼ 0.0005 mm−1) and 192 μ 0
s values ranging from 0.1 to

3.58 mm−1 (Δμ 0
s ¼ 0.018 mm−1). A separate MC simulation

was run for each μ 0
s value for both the homogeneous and

two-layer Gardner LUTs. The tumor layer depth in all
simulations was set to be at least 20 times the maximum
l� [¼1∕ðμa þ μ 0

sÞ] to mimic a semi-infinite tissue geometry,

Fig. 1 (a) Schematic of tissue model for the homogeneous case, (b) schematic of the tissue model for
the two-layer case, and (c) an example of a custom-made two-layer silicone phantom used to validate
the accuracy of the resulting two-layer inverse algorithm.
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where l� was determined using the lowest μa value
(0.0005 mm−1). Based on this criterion, a tumor layer thickness
of 100 mm was used for all MC simulations except for the
lowest 16 μ 0

s values (0.1 to 0.37 mm−1), for which the thickness
was increased to 200 mm.

2.2.3 Monte Carlo simulations at Boston University
shared computer cluster

All MC simulations were conducted at the Boston University
shared computer cluster located in Holyoke, Massachusetts.
Previously developed command-line implementation of the
Gardner method was used for the MC simulations (software
developed by and implemented with the assistance of the
Virtual Photonics Technology Initiative at the Beckman Laser
Institute, University of California, Irvine, California). In all
simulations and for both layers, the index of refraction and
anisotropy factor (g) was set to 1.4 (Ref. 37) and 0.9
(Ref. 38), respectively, except for simulations performed in
Sec. 3.1, in which the index of refraction and g for both layers
were set to 1.33 and 0.71, respectively, to match those used in
Cuccia et al.12 We launched 1 × 107 photons for each
simulation.12 A total of 192 MC simulations were conducted
to generate the Gardner LUTs, one for each μ 0

s value of the
tumor layer. In these 192 simulations, μa was set to a value
of 0.0005 mm−1 for the tumor layer. The 192 simulations
were divided into 12 groups, each with 16 simulations,
which were run in parallel. Each MC simulation required 2
CPUs, and runtime was dependent on optical properties and
ranged from 2.5 to 4 days. The total photon path length in
each layer and the photon exit position were stored for each sim-
ulation. The results from each simulation were postprocessed
using Beer’s law [as in Eq. (1)] to achieve results for all values
of μa. Postprocessing runtime was 2 to 3 days, depending on
the specific optical properties.

2.3 Two-Layer Tissue-Simulating Optical Phantoms

A set of two-layer solid silicone phantoms was fabricated to
optically simulate subcutaneous tumors in a mouse with a
range of optical properties. These phantoms were used to test
the accuracy of the Gardner LUT inversion algorithms. The
phantoms consisted of a thin skin layer above a tumor layer.
The top layer thickness and optical properties were fabricated
to closely match the parameters described for MC simulations
in Sec. 2.2.2. Four different two-layer phantoms were fabri-
cated, all of which used the same skin layer. In all phantoms,
silicone was used as the base solvent, nigrosin as the absorber,
and titanium dioxide as the scatterer. The optical properties of
the phantoms were adjusted by varying the amount of absorber
and scatterer during fabrication as previously described.39

The thin upper layer phantom was made by adapting a pre-
viously described technique.40 First, an aluminum phantom
mold was fabricated by machining a well that was 330 μm in
depth and 1.5 00 × 1.5 00 in the lateral dimensions using a
computer-controlled milling machine (SV-2414S-M, Sharp
Industries). After the phantom ingredients were mixed together,
the liquid mixture was poured into the aluminum mold.
A microtome blade was used to draw and spread the mixture
evenly across the well, and the edges of the blade remained
in contact with the top surface of the mold at all times. The phan-
tom was then left to cure, uncovered, overnight. During curing,
the silicone layer was observed to shrink in the center of the

well. Once cured, the thin silicone layer was removed from
the mold and cut to the size of 1 00 × 1 00 to remove the uneven
and thicker edge. The thickness of the phantom was confirmed
using caliper measurements by confining the thin layer between
two microscope slide coverslips for stability and consistency.
Because the top layer phantom was too thin for accurate optical
property measurements with diffuse imaging techniques, a
much larger, 2.5-cm thick homogeneous phantom was made
from the same batch of material and SFDI was used to extract
the optical properties.

Similarly, for the bottom (tumor) layer, four homogeneous
phantoms were fabricated in collaboration with Dr. Muldoon’s
group41 and measured with SFDI. The thickness of each phan-
tom was 2.5 cm, and the μa and μ 0

s values of each phantom were
targeted to span known mouse tumor optical properties. The
skin layer and tumor layer phantoms were stacked to create
the two-layer phantoms. First, the thin skin layer phantom
was cleaned using an alcohol wipe. Then a small amount of
ethanol was poured on a thick tumor layer phantom, and the
thin layer was directly placed on top of the tumor layer, making
sure that no visible air bubbles remained. The two-layer phan-
tom was left under the chemical hood overnight to allow the
ethanol to evaporate without leaving any air pockets between
the layers. An example of one of the two-layer phantoms is
shown in Fig. 1(c). The procedure was repeated 4 times to
generate the four two-layer phantoms.

2.4 Longitudinal Monitoring of a Mouse Tumor
Xenograft During Cancer Treatment

In our prior work, we conducted SFDI longitudinal monitoring
of the PC3/2G7 prostate tumor xenograft model during treat-
ment with anticancer agents.11,42 We have reprocessed a portion
(n ¼ 2 mice) of this longitudinal data using the LUT inversion
algorithms presented in this work in order to visualize the effect
of using the multilayer model in a relevant physiologic system.
Key details of the longitudinal study are presented here: SCID
hairless outbred mice (SHO Mouse, Crl:SHOPrkdcscidHrhr),
age 5 to 6 weeks old (21 to 23 grams), were purchased from
Charles River Laboratories. When the average tumor volume
reached ∼500 mm3, mice were treated with either the cytotoxic
anticancer drug CPA (every 6 days for 3 cycles) or the antian-
giogenic agent DC101 (every 3 days for 6 cycles), both given
with intraperitoneal injections. During SFDI measurements,
mice were anesthetized using isoflurane by inhalation. Mice
were monitored longitudinally with SFDI for a total of 45
days. SFDI measurements were taken 5 times during 17 days
of tumor growth, every day during 18 days of treatment, and
every 2 days following the treatment period. Additional details
including methods for tumor cell preparation, tumor cell inoc-
ulation, animal handling and care, SFDI measurement repeat-
ability, angle and height corrections, etc., are described in
Tabassum et al.25 All animal procedures and measurements
were conducted under an institutionally approved protocol.

3 Results

3.1 Comparison between MC Simulation Results
and LUT Inversion Algorithms: Diffuse
Reflectance

We first compared the results of the three different MC simu-
lations methods (i.e., Martinelli homogeneous, Gardner
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homogeneous, and Gardner two-layer) and then compared
how the LUT inversion algorithms based on these simulations
differently map Rd values to optical property values.

Figure 2 shows an illustrative example of the differences and
similarities in the MC simulation results. Rd is shown as a func-
tion of fx for varying l� values at a constant ratio of μ 0

s∕μa ¼ 100.
The optical properties corresponding to each l� value are as fol-
lows: for l� ¼ 0.5 mm: μa ¼ 0.0198 mm−1, μ 0

s ¼ 1.98 mm−1;
l� ¼ 1 mm: μa ¼ 0.0099 mm−1, μ 0

s ¼ 0.99 mm−1; l� ¼ 2 mm:
μa ¼ 0.005 mm−1, μ 0

s ¼ 0.5 mm−1; and l� ¼ 4 mm: μa ¼
0.0025 mm−1, μ 0

s ¼ 0.25 mm−1. For the two-layer simulations,
the skin layer properties were as previously described
(μa ¼ 0.096 mm−1, μ 0

s ¼ 0.78 mm−1, d ¼ 312.5 μm). From
Fig. 2, it is evident that there is very little difference in MC
simulation results between the Martinelli homogeneous and the
Gardner homogeneous methods. However, the incorporation of
the skin layer introduces a significant alteration in these results,
as expected. Note that the effect of the skin layer is to sometimes
shift Rd values higher than the homogeneous results and to
sometimes shift them lower. This effect is dependent on spatial
frequency as well as the specific optical properties of the tumor
and skin layers. Because the Martinelli and Gardner homo-
geneous results are nearly identical, the remainder of the analysis
will focus on the Gardner homogeneous and Gardner two-layer

Fig. 2 Comparison of MC simulation results from the Martinelli
homogeneous, the Gardner homogeneous, and the Gardner two-
layer methods. Diffuse reflectance (Rd ) is shown as a function of
spatial frequency (f x ) for varying values of l� at a constant ratio of
μ 0
s∕μa ¼ 100. The Martinelli homogeneous and Gardner homo-

geneous results are nearly identical, while the introduction of the
top (skin) layer introduces significant shifts in Rd that are dependent
on f x and the l� of the bottom (tumor) layer.

Fig. 3 Comparison of LUT inversion algorithms based on Gardner homogeneous and Gardner two-layer
methods. Rd values are shown both in the color dimension and as labeled isolines for the entire range of
simulated μa and μ 0

s values. (a) and (b) Optical properties versus DC Rd for the homogeneous and two-
layer LUTs, respectively. (c) and (d) Optical properties versus ACRd for the homogeneous and two-layer
LUTs, respectively.
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MC results and the LUT inversion algorithms based on these
results.

Figure 3 shows differences between the Gardner homo-
geneous and Gardner two-layer LUT inversion algorithms for
two spatial frequencies: fx ¼ 0 mm−1 (DC Rd) and 0.1 mm−1

(AC Rd). Here, the x-axis displays μa, the y-axis displays μ 0
s, and

the color axis displays Rd. Isolines of constant Rd are displayed
as an aid to visual comparisons between the subplots. As in
Fig. 2, these plots visually show the substantial impact that
the skin layer has on the mapping between diffuse reflectance
and optical properties.

3.2 Comparison between LUT Inversion Algorithms:
Optical Property Extraction

In practice, the LUT inversion algorithms accept experimentally
measured Rd values as inputs and provide optical property
extractions as outputs. We investigated the extent to which
the LUTs provide different optical property extractions for
the same input measurements (i.e., Rd values). To do this, we
first choose 30 DC Rd values evenly spaced between 0.0419
and 0.749, and 30 AC Rd values, evenly spaced between
0.0289 and 0.4514. This range of Rd values was chosen as
they are present in both the homogeneous and two-layer
LUTs. For all combinations of the chosen DC and AC Rd values,
μa and μ 0

s were extracted using both LUTs, and the difference in
μa and μ 0

s extractions was computed. Absolute differences in
optical properties between the LUTs are shown in Figs. 4(a)
and 4(c) for μa and μ 0

s, respectively, and the percent differences

(relative to the homogeneous LUT values) are shown in
Figs. 4(b) and 4(d). For some DC and AC Rd combinations,
the differences in optical property extractions are substantial.
For example, from Fig. 4(b), we see that percent differences
for μa are larger (∼60% to 80%) at higher DC Rd values. In
Fig. 4(d), larger differences in μ 0

s extractions occur at higher
AC Rd values. This analysis shows that the two LUTs differently
map optical properties from Rd inputs. In the following section,
we demonstrate that the two-layer LUT improves the accuracy
of tumor layer extractions.

3.3 Two-Layer LUT Improves the Accuracy of
Tumor Layer Optical Property Extractions
Using SFDI

Experimental measurements were conducted to determine if the
Gardner two-layer LUT inversion algorithm improves the accu-
racy of tumor layer optical property extractions compared to the
Gardner homogeneous LUT. This accuracy test utilized the four
two-layer phantoms described in Sec. 2.3. Each of the two-layer
phantoms used the same top (skin) layer. The measured thick-
ness of the skin layer was 310 μm at its center, which is within
0.8% of the skin layer thickness defined in the MC simulations
used to generate the Gardner two-layer LUT. Absorption of
the skin layer was 0.0936 mm−1 at 659 nm, which is within
2.52% of the MC absorption parameter, and the μ 0

s value was
0.780 mm−1 at 659 nm, which is within 0.063% of the MC
value. For the tumor layer, four different pairs of optical proper-
ties were utilized, spanning a range of optical properties

Fig. 4 The impact on optical property extractions of the Gardner two-layer LUT inversion algorithm
shown as absolute and % differences compared to the Gardner homogeneous case. (a) Absolute
and (b) percent differences in μa extractions. (c) Absolute and (d) percent difference in μ 0

s extractions.
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observed in our prior work, in which we monitored PC3/2G7
mouse xenografts over 45 days using SFDI.11 These pairs are
labeled as tumor 1 through tumor 4 in Fig. 5. The optical
property pairs, reported at 659 nm, are as follows: for
tumor 1: μa ¼ 0.0244 mm−1 and μ 0

s ¼ 2.054 mm−1; tumor 2:
μa ¼ 0.002 mm−1 and μ 0

s ¼ 2.314 mm−1; tumor 3: μa ¼
0.0039 mm−1 and μ 0

s ¼ 0.714 mm−1; and tumor 4: μa ¼
0.0301 mm−1 and μ 0

s ¼ 0.676 mm−1.
Each two-layer phantom was measured with SFDI, and the

bottom (tumor) layer optical properties were extracted using
both the Gardner homogeneous and Gardner two-layer LUTs.
Since these phantoms have flat surfaces, no corrections for
height or angle were implemented. The absolute differences
between the measured and true μa for the tumor layer are
shown in Figs. 5(a) and 5(b). The absolute differences between
the measured and true μ 0

s for the tumor layer are shown in
Figs. 5(c) and 5(d). In both cases, Figs. 5(b) and 5(d) recapit-
ulates the data in Figs. 5(a) and 5(c) but with a zoomed-in
y-axis to allow visualization of the small error values obtained
for some phantoms. Table 1 shows the percent error in tumor
layer optical property extractions for both the homogeneous
and two-layer LUTs. In the worst-case, the μa and μ 0

s extraction
errors were 20.33% and 10.87% for the two-layer LUT.

In all cases, the error in tumor layer optical property extrac-
tion is substantially lower for the two-layer LUT versus the
homogeneous LUT. This effect is not as pronounced in μ 0

s
for tumors 3 and 4, as μ 0

s values in these tumors are very similar
to that of the skin layer (μ 0

s ¼ 0.78 mm−1). Note that the
decrease in error by the two-layer LUT is between 7 and 256
times for μa and between 2 and 24 times for μ 0

s. Taken together,

these results confirm that the two-layer LUT provides a better
estimate of the true tumor layer optical properties than the
homogeneous LUT.

3.4 Sensitivity Analysis of the Two-Layer LUT

We conducted a sensitivity analysis to characterize how mis-
matches in the skin layer optical properties and thickness affect
the results of the Gardner two-layer LUT. Stated another way,
the sensitivity analysis provides an indication of how well one
must know the true skin layer properties in order to obtain accu-
rate tumor layer optical property extractions.

Fig. 5 Comparisons in bottom (tumor) layer optical property extraction errors for the Gardner homo-
geneous and Gardner two-layer LUT inversion algorithms. Diffuse reflectance measurements of four
two-layer tissue-simulating optical phantoms were made with SFDI, and both inversion models were
used to extract the bottom (tumor) layer optical properties (labeled as tumors 1 to 4). (a) The absolute
extraction error compared with the known tumor layer μa. (b) The same data but with a zoomed-in y -axis
so that small extraction errors can be visualized. (c) Absolute errors in tumor layer μ 0

s extractions and
(d) the same data with a zoomed-in y -axis. Optical properties were measured at 659 nm.

Table 1 Accuracy of optical property extractions in four two-layer
tissue-simulating optical phantoms. Each two-layer phantom is des-
ignated as tumors 1 to 4.

% error

μa μ 0
s

Homogeneous Two-layer Homogeneous Two-layer

Tumor 1 35.45 2.46 16.77 10.87

Tumor 2 277.03 20.33 23.98 7.62

Tumor 3 97.72 13.88 4.05 0.17

Tumor 4 21.65 0.08 0.03 0.02
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Additional MC simulations were conducted of a two-layer
medium, in which the properties of the skin layer (μa, μ 0

s,
and d) were varied to introduce a mismatch to those used to
generate the Gardner two-layer LUT. The skin layer μa value
was varied by up to �40% of the original Gardner two-layer

value, μ 0
s was varied by up to �40%, and d was varied from

−40% to þ80%. Unlike optical properties, d was varied by
up to þ80% in order to simulate large skin thickness values,
such as d ¼ 530 μm, reported previously in athymic nude
mouse.34 For this analysis, four tumor layer optical property

Fig. 6 Results from a sensitivity analysis for the two-layer Gardner LUT inversion algorithm. Errors in
tumor layer μa and μ 0

s extractions are shown for various skin layer property mismatches (a)–(f).
In (f), the inset image has a zoomed-in y -axis. Optical properties were measured at 659 nm.
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pairs were chosen to span a physiologically relevant range,
and extraction errors are reported for each pair. The tumor
layer optical property pairs at 659 nm are listed here:
For tumor 1: μa ¼ 0.031 mm−1 and μ 0

s ¼ 2.025 mm−1;
tumor 2: μa ¼ 0.004 mm−1 and μ 0

s ¼ 2.2 mm−1; tumor 3:
μa ¼ 0.005 mm−1 and μ 0

s ¼ 0.676 mm−1; and tumor 4: μa ¼
0.033 mm−1 and μ 0

s ¼ 0.645 mm−1.
In order to compute extraction errors induced by the mis-

matched skin layer, the Rd values at the DC and AC spatial
frequencies produced from each of the new MC simulations
(which each had mismatched skin layer properties) were fed
to the original Gardner two-layer LUT and resulting optical
property extractions were recorded. The error was then com-
puted, defined as the difference between the known tumor
layer optical properties and the recorded optical property extrac-
tions. These errors are shown in Figs. 6(a) and 6(f). As expected,
the errors in μa and μ 0

s extractions increase as the mismatch in
skin layer properties increases. For example, as described in
Sec. 2.2.2, Dodig et al.36 reported that female SCID mice
had a skin thickness of ∼220 μm. This is an approximately
−30% mismatch with the skin thickness used for our model
(312.5 μm). As shown in Figs. 6(e) and 6(f), assuming the
skin optical properties match, this −30% mismatch in skin
layer thickness may induce an error in μa of as much as

−0.0023 mm−1 and a μ 0
s error of as much as 0.29 mm−1

(these are the worst-case errors observed from this analysis,
substantially smaller errors were observed for some tumor
optical property combinations).

Additional MC simulations were conducted, in which the
properties of the skin layer (μa, μ 0

s, and d) were varied
simultaneously to explore the effect of combining these
mismatches. The maximum errors observed when all three
parameters were mismatched in the negative direction (i.e., all
three parameters decreased by 40%) was −0.0078 mm−1 for μa
and 0.44 mm−1 for μ 0

s. The maximum errors observed when
all three parameters were mismatched in the positive direction
(i.e., μa and μ 0

s increased by 40%, d increased by 80%) was
0.021 mm−1 for μa and −0.51 mm−1 for μ 0

s. Whether errors of
this magnitude are tolerable depending on the specific applica-
tion and biological questions posed.

3.5 Gardner Two-Layer LUT Reveals Larger
Therapy-Induced Optical Scattering Dynamics
and a More Hypoxic Tumor Environment During
Longitudinal Monitoring of Tumor Xenografts

The homogeneous and two-layer LUT inversion algorithms
were used to reanalyze a prior data set, in which SFDI was

Fig. 7 An example of the Gardner homogeneous and the Gardner two-layer LUT inversion algorithms
applied to SFDI data collected during a longitudinal treatment monitoring study of PC3/2G7 prostate
tumor xenografts. (a) μ 0

s extractions from both LUTs are shown during and after DC101 treatment.
(b) μ 0

s colormaps overlaid on DC101-treated planar mouse images at day 0 and day 30. (c) StO2 values
determined using four wavelength optical property extractions from both LUTs for a CPA-treated tumor.
(d) StO2 colormaps overlaid on CPA-treated planar mouse images at day 0 and day 30.
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used to monitor mice longitudinally during the course of anti-
cancer therapy.11 The details of the data acquisition and analysis,
including the methods for region of interest (ROI) selection, are
described in detail in Tabassum et al.11 Briefly, each SFDI meas-
urement was repeated thrice and averaged to minimize breathing
artifacts. The demodulated images were corrected for height and
angle.24 Two-by-two binning of the CCD was applied to
improve the SNR. Mice were monitored longitudinally for a
total of 45 days. Rd data acquired with SFDI were analyzed
with both the Gardner homogeneous and Gardner two-layer
LUT inversion algorithms for comparison.

Figure 7(a) shows changes in tumor μ 0
s at 659 nm from

a DC101-treated tumor over the course of 45 days. Injection
dates are indicated by vertical dashed lines. The mean and stan-
dard deviation of μ 0

s values extracted over a manually chosen
ROI are shown. The two-layer LUT reveals higher μ 0

s values
throughout the study compared to the homogeneous LUT,
and the changes in μ 0

s over time are also larger. Figure 7(b)
shows tumor μ 0

s colormaps overlaid on a planar mouse image
at day 0 and day 30 for both LUTs. The increase in μ 0

s is
apparent throughout the tumor region at these time points.

Figure 7(c) shows changes in tumor StO2 from a CPA-treated
tumor on a metronomic schedule, followed by a rebound period.
Mean and standard deviation of StO2 values extracted over a
manually chosen ROI are shown. The two-layer LUT reveals
lower StO2 values over the entire study period compared to
the homogeneous LUT; the values decrease by roughly the
same extent throughout the study. Figure 7(d) shows tumor
StO2 colormaps overlaid on planar mouse images at day 0
and day 30 for both LUTs. A decrease in StO2 is apparent
throughout the tumor region at these time points.

4 Discussion and Conclusions
In this work, a two-layer LUT inversion algorithm was intro-
duced to more accurately account for the tumor and skin layered
physiology in a small animal oncology model when imaging
with SFDI. The LUT was constructed using MC simulation
results conducted natively in the spatial frequency domain
with the recently developed method by Gardner et al., which
avoids the discretization errors associated with Fourier or
Hankel transforming conventional spatially resolved MC
results.29 The two-layer tissue LUT was superior in its ability
to extract both μa and μ 0

s from the tumor layer, decreasing
errors by as much as a factor of 256 for μa compared to a homo-
geneous LUT. The magnitude of the improvement was highly
dependent on both the optical properties of the tumor layer
and spatial frequencies considered. When applied to a longi-
tudinal data set, the two-layer LUT revealed larger antitumor
therapy-induced changes in tumors and a more hypoxic tumor
environment.

One important characteristic of the two-layer model devel-
oped here is that the top (skin) layer optical properties and thick-
ness (μa, μ 0

s, and d) were fixed rather than free parameters.
Estimates for these parameters were based on a prior report
of male BALB/c albino mice skin optical properties and our
own mouse skin thickness measurements.31 Unfortunately,
there are limited reports of mouse skin optical properties in
the literature, and skin thickness reports vary by mouse strain
and gender.31,34 A sensitivity analysis was conducted to evaluate
the impact of imperfect top layer assumptions on the extraction
of bottom (tumor) layer optical properties. This analysis is use-
ful for understanding the impact of using this two-layer LUT

for mouse strains and genders with different optical properties
or thicknesses, or for measurements in different wavelength
regions. Care should be taken when this model is applied to
other mouse strains and genders, as each application will have
a different threshold for acceptable error.

The utility of the two-layer LUT was demonstrated by rean-
alyzing a prior longitudinal data set with the new model and
comparing the results to a homogeneous LUT. The two-layer
LUT revealed substantial differences compared to the homo-
geneous LUT during treatment with two anticancer therapies:
DC101, a targeted antiangiogenic, and CPA, a cytotoxic agent.
For example, larger increases in μ 0

s (up to 2.75×) were observed
in the DC101-treated tumor when analyzed with the two-layer
LUT, and the optical contrast between pre- and posttreatment
time points was enhanced significantly. In the CPA-treated
tumor, the two-layer LUT revealed lower tumor StO2 through-
out this study, including before baseline, during treatment,
and during a rebound period. In both of these scenarios, the
differences between the two-layer and homogeneous results
are presumably due to the fact that the two-layer LUT is better
able to isolate the tumor layer optical properties, whereas the
homogeneous LUT convolves the changes in the tumor layer
with the skin layer. It is of note that in some cases the two-
layer LUT provides better agreement with other reported tumor
values compared with the homogeneous LUT. For example,
the baseline StO2 in the CPA-treated tumor was 60.2% with
the homogeneous LUT and 53.9% with the two-layer LUT.
In this case, the two-layer LUT StO2 value better matches
the StO2 values of 40% to 55% reported for K1735 malignant
mouse melanoma subcutaneous tumors measured using diffuse
reflectance spectroscopy.43

There have been other reports of multilayer inversion models
for SFDI, but they have largely focused on clinical applications
in human skin, in which layer thicknesses, chromophores, and
optical properties may be substantially different than those for
mice. For example, Weber et al.17 developed an analytic two-
layer model based on photon diffusion theory in the spatial fre-
quency domain. The model had five fit parameters (i.e., top and
bottom layers μa, μ 0

s, and top layer thickness), and provided bot-
tom layer μa extractions with an accuracy of 25% when the top
layer thickness was constrained to within 25% of the true value.
This model was tested for top layer thicknesses of 2 to 4 mm,
which are substantially larger than the 312.5 μm top layer thick-
ness used in this work. Saager et al.20,21 utilized Hankel-trans-
formed conventional (i.e., spatially resolved) MC simulations to
develop a two-layer model of human epidermis (containing
melanin) and dermis (containing melanin and hemoglobin).
This model also provides estimates for top layer thickness
constrained within a range of 80 to 300 μm. Yudovsky et al.18,19

also utilized Hankel-transformed conventional MC to create
a two-layer model of human skin, with special attention to
skin pigmentation and epidermal thickness. They used the MC
results to train an artificial neural network in order to develop
their inversion algorithm. The work presented here differs from
these prior works in that the model parameters were specific to
small animal tumor models, and the MC simulations used to
generate the LUT-based inversion model were conducted
natively in the spatial frequency domain.

While our work has demonstrated that a two-layer LUT
model improves the optical property extraction accuracy of
the bottom (tumor) layer for a mouse tumor model, there are
some limitations that the reader should bear in mind. For
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example, it is currently unknown to what extent skin optical
properties or thickness changes during treatment in different
mouse tumor models, which could affect the ability to accurately
extract tumor optical properties. Additionally, as previously dis-
cussed, this model assumed a fixed set of upper layer optical
properties and thickness. This limits the applicability of the
two-layer LUT to substantially different mouse models and dif-
ferent wavelength ranges. It is of note that the general method-
ology described here can be utilized to construct multilayer
LUTs for other SFDI applications, including for different
mouse models or clinical applications with different layer thick-
nesses and optical property ranges, but this requires additional
MC simulations and data postprocessing. An additional limita-
tion is that the two-layer model only accounted for skin as a
single layer, whereas a more complex model might include sep-
arate epidermis, dermis, and hypodermis layers in addition to the
tumor layer. It is conceivable that a more complex layered model
would improve optical property extraction accuracy, but there
are challenges associated with isolating and measuring the opti-
cal properties of each of these layers for use as fixed model
parameters. It is possible to allow upper layer thickness and opti-
cal properties to be free parameters in the inverse model, but this
substantially increases the solution space and may reduce the
ability to accurately extract bottom-layer optical properties.17

It can also lead to underdetermined problems.18 Finally, we
reported results only for spatial frequencies of DC and
0.1 mm−1. While the MC results can be postprocessed for
arbitrary spatial frequencies, the choice to use this frequency
pair was made based on our recent work utilizing Cramér-
Rao lower bounds to determine optical property uncertainty
estimates for SFDI.26 This analysis revealed DC and 0.1 mm−1

as excellent choices to reduce optical property extraction uncer-
tainty for similar optical property ranges.

In conclusion, the two-layer LUT model presented was
shown to substantially improve the ability of SFDI to extract
bottom (tumor) layer optical properties, and this revealed larger
treatment changes in tumor optical properties and a more
hypoxic tumor environment in a mouse tumor model. Since
therapy-induced optical changes may be subtle for some
drugs and tumor models, the ability of the two-layer LUT to
provide more accurate and enhanced pre- and posttreatment
tumor contrasts may substantially increase the utility of SFDI
as a preclinical imaging tool for monitoring cancer treatments.
In the future, the use of SFDI to accurately monitor therapies in
small animal tumor models may provide an efficient platform
to test new drugs and combination regimens prior to clinical
translation. This could then inform the use of clinical DOI
technologies and help establish these techniques as important
feedback methods during cancer treatment.
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