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ABSTRACT. Significance: Hyperspectral microscopy grants the ability to characterize unique
properties of tissues based on their spectral fingerprint. The ability to label and
measure multiple molecular probes simultaneously provides pathologists and
oncologists with a powerful tool to enhance accurate diagnostic and prognostic
decisions. As the pathological workload grows, having an objective tool that pro-
vides companion diagnostics is of immense importance. Therefore, fast whole-slide
spectral imaging systems are of immense importance for automated cancer
prognostics that meet current and future needs.

Aim: We aim to develop a fast and accurate hyperspectral microscopy system that
can be easily integrated with existing microscopes and provide flexibility for optimiz-
ing measurement time versus spectral resolution.

Approach: The method employs compressive sensing (CS) and a spectrally
encoded illumination device integrated into the illumination path of a standard micro-
scope. The spectral encoding is obtained using a compact liquid crystal cell that is
operated in a fast mode. It provides time-efficient measurements of the spectral
information, is modular and versatile, and can also be used for other applications
that require rapid acquisition of hyperspectral images.

Results: Wedemonstrated the acquisition of breast cancer biopsies hyperspectral data
of the whole camera area within ∼1 s. This means that a typical 1 × 1 cm2 biopsy can
bemeasured in∼10 min. The hyperspectral images with 250 spectral bands are recon-
structed from 47 spectrally encoded images in the spectral range of 450 to 700 nm.

Conclusions: CS hyperspectral microscopy was successfully demonstrated on a
common labmicroscope for measuring biopsies stainedwith themost common stains,
such as hematoxylin and eosin. The high spectral resolution demonstrated here in a
rather short time indicates the ability to use it further for coping with the highly demand-
ing needs of pathological diagnostics, both for cancer diagnostics and prognostics.
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1 Introduction

1.1 Cancer Digital Diagnostics by Spectral Imaging
Digital pathology has evolved during the last decade to meet the growing demand for cancer
diagnostics. The standard pathological analysis is performed by eye-balling through a brightfield
or fluorescence optical microscope. Whole slide imaging systems that scan biopsies were devel-
oped that provide pathologists with high-quality images that can be diagnosed on the computer
screen. These systems are based on measuring three intensities for each pixel of the image, which
includes information in the red, green, and blue (RGB) spectral channels.1 Although multiple
publications demonstrate high-quality images, its computer-based analysis is still not in use for
medical purposes.2,3

One direction that can address this deficiency is to increase the amount of information gath-
ered from the biopsies by measuring spectral images that provide the light spectrum at each pixel
of biopsies.4,5 Measuring spectral information from cancer biopsies was tested before by different
methods, but most of the works concentrated on measurements at the tissue level and not on the
sub-cellular features.6,7 Furthermore, most spectral imaging systems have a long acquisition time
that limits their usage for biopsies that require capturing very large images (e.g., on the order of
40;000 × 40;000 pixels and more). Lately, a new method for spectral imaging has been intro-
duced and demonstrated its applicability for cancer detection.8 Nevertheless, there is still a need
for further improvements to confront the broad range of pathological stains, the variability of
samples, and their complexity.

1.2 Spectral Microscopy
Measuring spectral images is not trivial, as the final data are three-dimensional, namely Iðx; y; λÞ,
while cameras, such as CCD or CMOS, only provide array detection (i.e., two-dimensional).
Accordingly, different methods were developed that vary from the measurement of only a few
spectral bands in the required spectral range to the measurements of high spectral resolution by
measuring one line of the image at a time, a procedure that takes a very long time. The conven-
tional methods for spectral imaging use a series of narrowband filters that are switched one at a
time during the measurement of each field of view, a procedure that takes much time. There are
also electronically variable filters, such as liquid crystal tunable filter (LCTF) or acousto-optic
tunable filter, that still necessitate switching the filter through many spectral bands for every field
of view. Although these filters can be fast enough, the acoustooptic one is bulky and requires
power of at least 1 W, while the LCTF usually has lower light throughput. Biological applications
of LCTFs and other liquid crystal (LC) devices for skin cancer and pathology applications were
discussed before.9–12 Another set of methods is based on Fourier spectroscopy,13 which provides
a rather rapid measurement, and there are even methods for one-shot spectral imaging, although
of a rather small region of interest from the sample.14 For a comprehensive discussion on different
methods for spectral imaging, see Ref. 4.

1.3 Compressive Sensing
The design of our system and the reconstruction algorithms follow the compressive sensing (CS)
framework.15–18 The CS theory prescribes a framework to capture and recover sparse signals
from fewer measurements than required by traditional systems that have been designed to com-
ply with the Shannon–Nyquist sampling theorem. In our context, we design a spectral sensing
process described mathematically as

EQ-TARGET;temp:intralink-;e001;114;188g ¼ Φf; (1)

where f ∈ RN denotes the spectral vector to be measured, Φ ∈ RM×N is the sensing matrix
modeling the sensing operator, and g ∈ RM is the vector of the spectrally multiplexed measured
signal, which is compressed, i.e., M < N. The inversion of Eq. (1) is possible, i.e., the spectrum
can be numerically reconstructed from fewer measurements if the spectrum has a sparse repre-
sentation, meaning, f ¼ Ψα, where α is a K-sparse vector (that is, contains K ≪ N non-zero
elements) andΨ is the sparsifying operator. The sparsifying operator is in general a mathematical
basis (discrete cosine transform, wavelet, curvelets, etc.) or a learned dictionary.19 In order to
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solve Eq. (1), that is, to reconstruct the original spectral signal f from the measurement vector g,
numerous CS algorithms are available.20

The recovery process requires specifying the sensing operator Φ that maps the original spec-
tral signal onto the measured spectrally multiplexed signal. In our system, the sensing matrix is
physically realized by utilizing an LC variable retarder, which is specified by measuring its spec-
tral transmission between two polarizers for different voltages (see Sec. 2.2.).

2 Compressive Spectral Imaging Microscope Design

2.1 CS Spectral Microscope Design
In the last few years, we presented several compressive hyperspectral (HS) systems21–25 that use
various modified spectral modulators designed to capture compressed spectral data. One such
system is the compressive sensing miniature ultraspectral imaging (CS-MUSI) system,21–24

which performs spectral multiplexing of the captured image by applying various voltages on
a thick LC cell (LCC). Each voltage determines one row in the sensing matrix Φ in Eq. (1).
The CS-MUSI was designed for remote sensing applications and has been demonstrated to cap-
ture ultraspectral images with an optical compression ratio of up to 40:1. The compressive spec-
tral imaging microscopy presented in the current paper uses a working principle similar to that of
the CS-MUSI, but with an essentially different system design; instead of spectrally encoding
the light propagating from the object to the sensor, we spectrally encode the illumination of the
sample. By this, we realize the same CS sensing model described in Eq. (1) but retain the well-
designed imaging optics of the microscope. Another improvement of the system presented here is
the LC design and its voltage control, which allowed us to reduce the acquisition time of M
compressive measurements to <1 s (Sec. 2.2).

Figure 1 depicts a schematic drawing of our system compressive hyperspectral microscopy
(COHSM) system. The sample is illuminated sequentially by spectrally modulated patterns gen-
erated by a specially designed LCC. The LCC design is described in Sec. 2.2. A total of M
spectrally modulated images are taken following the CS framework (Sec. 1.3). As a result, the
spectrum at each pixel in the image is compressively sensed. Then the whole spectrum containing
N spectral bands is reconstructed by applying a CS reconstruction algorithm for each pixel.

We have demonstrated the COHSM principle on an Olympus IX81 inverted microscope
[Fig. 2(a)]. The main hardware components of our method consist of our special illumination
unit [Fig. 2(b)] and its driver. A laptop computer is used for the acquisition control and the image
reconstruction. The illumination unit and the microscope camera are controlled by a LabView

Fig. 1 COHSM schematic drawing. The sample is illuminated sequentially by M spectrally modu-
lated patterns. For each spectrally encoded illumination pattern, the grayscale image is collected
with a conventional microscope.
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program code. The reconstruction of the spectral images is performed by a CS algorithm realized
in MATLAB.

Notice that the only hardware change in the Olympus microscope is the extra unit in the
illumination arm; therefore, we preserve the high spatial imaging capabilities of the commercial
microscope. This property is verified and confirmed experimentally in Sec. 3.1.

The illumination module generates a set ofM spectrally encoded patterns. The complete set
of patterns is generated within <1 s owing to the unique LC design and its operation described in
Sec. 2.2. Thus the acquisition of the compressed spectral image can be made at a rate of one
spectral frame per second. From the captured data, we have been able to reconstruct spectral
images with 710 spectral bands with full spatial resolution. In our experiments, we limited the
spectral range to 400 to 750 nm.

2.2 LC Design
Our spectral encoding module includes two anti-parallel aligned E7 LCCs with 50 and 25 μm LC
thicknesses, instead of using a single LCC with 75 μm thickness. Replacing a thick LCC with
two thinner LCCs reduces the response time by a factor of 2.2. Also placing the two cells in a
configuration such as one is a mirror image of the other improves the cell viewing angle.26,27

Figure 3(a) shows the schematic structure of the anti-parallel aligned LCC. By applying an elec-
trical field along the z axis, the tilt angle (ϑ) profile of the LC molecules changes.28 As a result,
the LC birefringence (Δn) profile also changes, which provides the LCC total retardation tun-
ability. When the LCCs are oriented at 45 deg between crossed polarizers, the transmission of the
spectral encoding module along the z axis is

EQ-TARGET;temp:intralink-;e002;114;207T ¼ sin2ðΓtotal∕2Þ; (2)

where Γtotal represents the total retardation of the stock, which equals the summation of the retar-
dation of the two LCCs. Higher applied voltages lead to larger molecule’s tilt angle and lower
birefringence and hence retardation. As a result, the number of fringes in the spectral modulation
(SM) reduces also. Figure 3(b) shows the SM assembly positioned on the condenser of a com-
mercial Olympus BX53 microscope using a specially designed mount and prepared using a 3D
printer.

A square wave AC voltage is applied on both LCCs between 0 and 10 V to operate the
spectral encoding module. The electrooptic response of the spectral encoding module has been
tested at 635 nm while the results appear in Figs. 4 and 5. As the first step, the applied voltage
turns on from 0 to 10 V, as Fig. 4 shows, which leads to maximum LC molecules reorientation or

Fig. 2 The spectral imaging system. It is based on a commercial Olympus IX81 microscope
(a) where we plugged in a SM into the illumination arm (b).
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Fig. 4 The electrooptic response of the SM at 635 nm (blue) in respons to applied 1 kHz AC
square wave voltage. Red represents the amplitude of the applied voltage. The black line repre-
sents the 1 s window after switching off the voltage during which all the image acquisitions are
accomplished.

Fig. 5 The electrooptic response of the SM at 635 nm (blue) in response to applied 1 kHz AC
square wave voltage. The red line represents the amplitude of the applied voltage, the black line
represents the 1 s window after switching off the voltage during which all the image acquisitions are
accomplished. The green line represents the point where the electrooptic response gets stabilized.

Fig. 3 (a) Schematic structure of the SM composed of two anti-parallel aligned LCCs (one is a
mirror image of the other) between crossed polarizers. P and A represent the crossed polarizer
and analyzer, whereas OA1, OA2 represent the LCCs optical axis that is oriented 45 deg to the
polarizer. (b) The SM is fixed on the condenser of a commercial Olympus BX53 microscope using
a mount M .
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reaches the low number of fringes in the SMs in ∼310 ms rise time. The SMs were captured
during the first 1 s window after turning off the voltage. Although the decay time is >1 s, the
modulation change after 1 s is small and slower. As a result, it is sufficient to capture the modu-
lation in equal intervals during the first 1 s. At each such interval, the voltage falling on the LC is
different. For our purposes of the computational algorithm, there is no need to know the exact
absolute value of the voltage falling on the LC. This methodology was first used by Hegyi and
Martini26 to perform Fourier transform spectroscopy using LCC. By replacing the 25 μm LCC
with a thicker one, more SMs can be achieved in the 1 s window without affecting the system
speed. If we turn on the voltage to 10 V immediately after the 1 s window, the device’s electro-
optic response stabilizes after ∼160 ms, as Fig. 5 shows, leading to faster measurement. In other
words, multiple scans or video capture can be achieved with 1.16 s per frame.

The measured transmission map and sensing matrix Φ of the system are presented in Fig. 6.
The transmission map presents all the transmission vector that we measured in the calibration
step during 1 s window.

3 Optical Performances
As already mentioned, our spectral imaging method is designed to provide a spatial image quality
similar to that of the commercial microscope employed. This owes to the fact that we do not
change the well-designed imaging objective of the commercial microscope, while only applying
a spatially uniform, spectrally encoded illumination. Owing to the CS design, the spectral res-
olution is on the nanometer scale, and owing to the multiplexed measurements, the optical
throughput is two orders of magnitude larger than that of band-selective-based spectrometers.
In this section, we verify quantitatively and explain these properties.

3.1 Spatial Resolution
To evaluate the spatial performance of our method, we took an image of a resolution test target
(Thorlabs Negative 1951 USAF Resolution Test Target) with our system. We then compared it
with that obtained by the native microscope (i.e., without the LCC in the illumination arm). As
shown in Fig. 7, the two images look similar, and there is no observable difference between the
images. Both images’ resolution is similar, as demonstrated by the modulation transfer function
(MTF) plots shown in Fig. 7(c). The MTFs were calculated using the edge response method
evaluated on various regions in the field of view. Briefly, with this method, the average edge
spread function (ESF) is evaluated from the edge of the bars marked in red. The derivative
of the ESF yields the line spread function, from which a Fourier transform obtains the optical

Fig. 6 (a) Measured transmission map and (b) map of the sensing matrix.
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transfer function (OTF). Finally, the absolute value of the OTF gives the MTF. Figure 7(c)
presents a comparison of the MTF plots for both cases, without and with LCC, and different
edges in the taken image (marked by red rectangles). It can be seen that the average MTF
of the system with the LCC included in the illumination arm is almost identical to that of the
native microscope. Also no changes in the spatial resolution over the image field can be noticed.

3.2 Spectral Resolution
To test the spectral resolution, we captured with our system the light passing spectral filters with
known spectral transmission. Then we compared the reconstructed spectrum to the ground truth.
First, we placed a red narrowband filter (632.8 nm CWL, 1 nm FWHM Edmund Optics) on the
microscope stage and performed a compressed measurement. From 47 multiplexed captured
measurements, g ∈ R47, we reconstructed an HS data cube with N ¼ 200 spectral bands in the
range of 500 to 700 nm. For the reconstruction, we used the TwIST solver.29 The choice of N ¼
200 spectral bands implies a resolution of 1 nm, which is also the FWHM of the measured filter.
It also complies with the resolution of the CS-MUSI.21,24 The reconstructed spectrum is shown in
Fig. 8(a). As it can be seen, the spectral reconstruction exhibits a peak at 636 nm, which is the

Fig. 7 (a) Spatial resolution of COHSM. USAF resolution test target image taken (a) without and
(b) with the SM module placed in the illumination arm of a commercial Olympus IX81 microscope.
(c) Comparison of the MTFs from (a) and (b). It can be seen that the inclusion of the SM does not
deteriorate the MTF of the microscope.

Fig. 8 (a) Comparison of reconstructed spectra to ground truth. Spectral reconstructions of known
spectral sources. Reconstruction of a narrow red filter (a) and broadband filters with a central
wavelength peak at (b) 550 nm and (c) 600 nm, respectively.
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exact spectral location of the red filter peak that was measured with a commercial grating spec-
trometer. In addition to the narrow band filter measurement, we also performed compressed mea-
surements of two different broadband filters with a central wavelength peak at 550 nm (Thorlabs
FB550-10-Ø1″ bandpass filter, CWL ¼ 550� 2 nm, and FWHM ¼ 10� 2 nm) and 600 nm
(Thorlabs FB600-10-Ø1″ bandpass filter, CWL ¼ 600� 2 nm, and FWHM ¼ 10� 2 nm).
In these examples, we also used 47 multiplexed measurements to reconstruct 200 spectral bands
with the help of the TwIST solver, with a learned dictionary19 as the sparsifying operator. In
Figs. 8(b) and 8(c), we present the reconstructed spectra at arbitrary pixels in the images obtained
with the different spectral filters, compared to the spectra of the filters that were measured with a
standard grating-based spectrometer (FLAME-S Ocean Optics). The reconstruction peak-signal-
to-noise ratio is 29.9, 29.6, and 32.2 dB for the red narrow, 550 and 600 nm filters, respectively.

3.3 Optical Throughput
An important property of our system is its high optical throughput. The high optical throughput is
due to Fellgett’s multiplex advantage, initially demonstrated for Fourier transform spectrome-
ters,30 but known to be generic for multiplex techniques (see for example, Refs. 31–33), such as
our COHSM. Figure 9 shows the optical throughput at each exposure, calculated as the area
under the measured spectral transmission graph (rows in the spectral transmission map from
Fig. 6) for each exposure. The average optical throughput for capturing 250 spectral bands
in our system is 25%, which is two orders of magnitudes higher than the throughput of
1/250 that a perfect 250-band filter would exhibit.

4 Histopathology Tests

4.1 Samples Preparation Descriptions
To demonstrate the validity of the optical system for pathological analysis, we used lymph
node biopsies stained with Hematoxylin & Eosin (H&E). Normal and cancer cells were iden-
tified by a pathologist using a brightfield microscope and they were measured by a simple
color (RGB) camera. The two types of cells were marked on the image and acted as a refer-
ence. Images from the same area were then measured with our COHSM for obtaining the
spectral images.

Figure 10 demonstrates an example of hyperspectral tissue data obtained with the COHSM
system (Fig. 1). Figure 10(a) shows the spatial distribution obtained by integrating all spectral
components for each pixel. Figure 10(b) demonstrates the reconstructed spectral distribution at
the marked pixel. The hyperspectral image was reconstructed from 47 spectrally encoded images,
which were captured in only 1 s. From the captured data, we reconstructed an HS datacube with
250 spectral bands in the range of 450 to 700 nm, thus yielding a compression ratio of about 5:1.
The reconstruction process was done with the help of the OMP solver.34 The sparsifying operator
that was used for reconstructing the spectral information is a learned dictionary.19

Fig. 9 Optical throughput (∼25%) and number of measurements of our system compared to a
conventional system that has an optical throughput of ∼0.5%.
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Figure 11 compares histopathology imaging results of normal and cancerous cells. The
images were taken with the COHSM system (Fig. 1) using an objective 20× and sample trans-
mission mode.

Figures 11(a) and 11(b) show one of the captured images representing a single grayscale
frame from the compressed dataset of a normal and cancerous cell’s area, respectively.

Fig. 10 (a) Spatial marginal of a reconstructed hyperspectral image and (b) spectral distribution of
the red-marked pixel in (a).

Fig. 11 (a) Normal and (b) cancerous cells images. (c) Difference between the spectral distribution
of normal and cancerous cells. The bold lines represent the mean spectra per each class, whereas
the shadowed regions around the lines represent the measured variance. (d) Simulation results of
the spectra in (c) as would be obtained with a multispctral imager that captures eight spectral
bands.
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Figure 11(c) shows the spectral distribution of an ensemble of healthy and cancerous cells.
The average (continuous lines) and standard deviation (shaded area) of 20 healthy and can-
cerous pixels from Figs. 11(a) and 11(b) images are plotted. Figure 11(c) shows that the
bounds of the reconstructed spectra of the healthy cells are clearly distinguished from that
of cancerous cells. It is evident that it is easy to distinguish between healthy and cancerous
cells visually or by means of machine learning algorithms. Machine learning algorithms can
be used to classify the reconstructed spectra or applied directly to the compressed data.8,35

The validity of spectral imaging for various pathological and biological studies was previ-
ously demonstrated, including the identification of cell type in bladder cancer36 and the
genetic analysis of chromosomal aberrations for both cancer and other genetic disorders
identification.37

Figure 11(d) shows the importance of the number of spectral bands for distinguishing
between normal and cancerous cells. Figure 11(d) shows the simulation of the spectra shown
in Fig. 11(c) as would be obtained with a conventional multispectral imager that captures only
8 spectral bands. It can be seen that in the 8-band spectra, there is a significant overlap between
the cancerous and normal spectra, which obviously may lead to high false negative rates and
insufficient accuracy.

5 Discussion and Conclusions
We introduced COHSM—a highly efficient method for hyperspectral microscopy. COHSM
spectrally encodes conventional microscopes’ illumination path to generate a set of compressive
samples. By virtue of manipulating only the illumination path of the microscope, the high
performance of commercial microscopes is unimpaired. The spectral encoding is realized with
an LC introduced in the illumination arm and operated in a fast mode allowing full-field HS
image acquisition at a rate of nearly 1 frame per s.

COSHM exhibits unique spectral imaging performance in terms of resolution, acquisition
speed, and optical throughput. The method is versatile and can be easily adapted to any micro-
scope. In the experiments, we demonstrated that the spatial resolution of our Olympus BX53 is
fully maintained in the reconstructed HS images. The acquisition of HS data within ∼1 s was
demonstrated, from which the HS images were reconstructed with 250 spectral bands. The sys-
tem was used for histopathology testing of breast cancer biopsies showing that cancerous cells
can be clearly distinguished from benign cells based on the spectral data captured with the
COSHM system.

Disclosures
The authors declare no competing interests.

Code, Data, and Materials Availability
The data that support the findings of this study are available from the corresponding author
upon reasonable request.

Acknowledgments
This project was partially funded from the European Union’s Horizon 2020 research and innovation
programme under ATRACT award 777222.

References
1. S. Mukhopadhyay et al., “Whole slide imaging versus microscopy for primary diagnosis in surgical pathol-

ogy: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study),” Am. J. Surg.
Pathol. 42(1), 39–52 (2018).

2. A. B. Farris et al., “Whole slide imaging for analytical anatomic pathology and telepathology: practical
applications today, promises, and perils,” Arch. Pathol. Lab. Med. 141(4), 542–550 (2017).

3. A. Kleppe et al., “Designing deep learning studies in cancer diagnostics,” Nat. Rev. Cancer 21(3),
199–211 (2021).

Oiknine et al.: Compressive hyperspectral microscopy for cancer detection

Journal of Biomedical Optics 096502-10 September 2023 • Vol. 28(9)

https://doi.org/10.1097/PAS.0000000000000948
https://doi.org/10.1097/PAS.0000000000000948
https://doi.org/10.5858/arpa.2016-0265-SA
https://doi.org/10.1038/s41568-020-00327-9


4. Y. Garini and E. Tauber, Spectral Imaging: Methods, Design, and Applications, Springer, pp. 111–161
(2013).

5. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,”
Cytometry Part A 69A(8), 748–758 (2006).

6. R. Pourreza-Shahri et al., “Classification of ex-vivo breast cancer positive margins measured by hyperspec-
tral imaging,” in IEEE Int. Conf. Image Process., IEEE, pp. 1408–1412 (2013).

7. K. Liu et al., “Hyperspectral microscopy combined with DAPI staining for the identification of hepatic car-
cinoma cells,” Biomed. Opt. Express 12(1), 173 (2021).

8. E. Brozgol et al., “Cancer detection from stained biopsies using high-speed spectral imaging,” Biomed. Opt.
Express 13(4), 2503 (2022).

9. A. Safrani et al., “Skin biomedical optical imaging system using dual-wavelength polarimetric control with
liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).

10. I. Abdulhalim, “Non-display bio-optic applications of liquid crystals,” Liquid Cryst. Today 20(2), 44–60
(2011).

11. O. Aharon et al., “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices
for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).

12. L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric
images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).

13. M. Lindner, Z. Shotan, and Y. Garini, “Rapid microscopy measurement of very large spectral images,”
Opt. Express 24(9), 9511 (2016).

14. C. E. Volin et al., “High-speed spectral imager for imaging transient fluorescence phenomena,” Appl. Opt.
37(34), 8112 (1998).

15. A. Stern, Ed., Optical Compressive Imaging, CRC Press (2016).
16. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly

incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
17. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
18. Y. C. Eldar and G. Kutyniok, Eds., Compressed Sensing: Theory and Applications, Cambridge University

Press (2012).
19. Y. Oiknine et al., “Dictionary based Hyperspectral Image Reconstruction Captured with CS-MUSI,” in

9th Workshop on Hyperspectral Image and Signal Process.: Evol. in Remote Sens., IEEE, pp. 1–5
(2018).

20. Z. Zhang et al., “A survey of sparse representation: algorithms and applications,” IEEE Access 3, 490–530
(2015).

21. Y. Oiknine et al., “Compressive sensing hyperspectral imaging by spectral multiplexing with liquid crystal,”
J. Imaging 5(1), 3 (2018).

22. Y. Oiknine et al., “NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator,”
J. Opt. 20(4), 044011 (2018).

23. Y. Oiknine, I. August, and A. Stern, “Multi-aperture snapshot compressive hyperspectral camera,” Opt. Lett.
43(20), 5042 (2018).

24. I. August et al., “Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase
retarder,” Sci. Rep. 6, 23524 (2016).

25. Y. Oiknine, I. August, and A. Stern, “Along-track scanning using a liquid crystal compressive hyperspectral
imager,” Opt. Express 24(8), 8446 (2016).

26. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,”
Opt. Express 23(22), 28742 (2015).

27. M. J. Abuleil and I. Abdulhalim, “Broadband ellipso-polarimetric camera utilizing tunable liquid crystal
achromatic waveplate with improved field of view,” Opt. Express 27(9), 12011 (2019).

28. M. J. Abuleil and I. Abdulhalim, “Tunable achromatic liquid crystal waveplates,” Opt. Lett. 39(19), 5487
(2014).

29. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding
algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).

30. P. Fellgett, The Multiplex Advantage, Cambridge University (1951).
31. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging

spectrometer,” Appl. Opt. 44(9), 1614 (2005).
32. E. D. Nelson and M. L. Fredman, “Hadamard spectroscopy,” J. Opt. Soc. Am. 60(12), 1664 (1970).
33. M. E. Gehm et al., “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,”

Appl. Opt. 45(13), 2965 (2006).
34. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching

pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
35. N. Cohen et al., “Deep neural network classification in the compressively sensed spectral image domain,”

J. Electron. Imaging 30(4), 041406 (2021).

Oiknine et al.: Compressive hyperspectral microscopy for cancer detection

Journal of Biomedical Optics 096502-11 September 2023 • Vol. 28(9)

https://doi.org/10.1002/cyto.a.20319
https://doi.org/10.1109/ICIP.2013.6738289
https://doi.org/10.1364/BOE.412158
https://doi.org/10.1364/BOE.445782
https://doi.org/10.1364/BOE.445782
https://doi.org/10.1117/1.3394338
https://doi.org/10.1080/1358314X.2011.563975
https://doi.org/10.1117/1.3609003
https://doi.org/10.1117/1.JBO.18.11.111403
https://doi.org/10.1364/OE.24.009511
https://doi.org/10.1364/AO.37.008112
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/ACCESS.2015.2430359
https://doi.org/10.3390/jimaging5010003
https://doi.org/10.1088/2040-8986/aab3b8
https://doi.org/10.1364/OL.43.005042
https://doi.org/10.1038/srep23524
https://doi.org/10.1364/OE.24.008446
https://doi.org/10.1364/OE.23.028742
https://doi.org/10.1364/OE.27.012011
https://doi.org/10.1364/OL.39.005487
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1364/AO.44.001614
https://doi.org/10.1364/JOSA.60.001664
https://doi.org/10.1364/AO.45.002965
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1117/1.JEI.30.4.041406


36. M. V. Macville et al., “Spectral imaging of multi-color chromogenic dyes in pathological specimens,”
Anal. Cell. Pathol. 22, 133–142 (2001).

37. Y. Garini et al., “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).

Isaac Y. August is a senior lecturer at the Department of Electrical Engineering and Physics at
Shamoon College of Engineering, Israel. He is the head of the Center for Advanced Research in
Computational Optics. His current research interests include computational optics, deep learning
for spectroscopy and hyperspectral imaging with the link to advance nanophotonics devices and
electro-optical systems.

Yuval Garini is a professor at the Biomedical Engineering Faculty, Technion, Israel. He is a
biophysicist working on both applications and fundamental questions such as the organization of
the chromatin in the nucleus. Applicative projects include cancer diagnostics based on novel
optical methods and drug delivery using nanotechnology and DNA origami. His lab uses optical
microscopy and spectroscopy, single molecule detection and biophysical concepts. He published
more than 100 papers and active in national and international scientific communities.

Adrian Stern is a professor at the School of Electrical and Computer Engineering at Ben-Gurion
University in Israel, where he serves as department head School Deputy Head for Research. He
held visiting positions at UConn and MIT. His current research interests include computational
and learned imaging, deep learning for optics, and 3D imaging. He served as an associate editor
for several journals and one book. He is a fellow of SPIE and Optica.

Biographies of the other authors are not available.

Oiknine et al.: Compressive hyperspectral microscopy for cancer detection

Journal of Biomedical Optics 096502-12 September 2023 • Vol. 28(9)

https://doi.org/10.1155/2001/740909

