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Abstract. A topological insulator is classically modeled as an isotropic material with a mag-
netoelectric pseudoscalar Ψ existing in its bulk while its surface is charge free and current free.
An alternative model is obtained by setting Ψ ≡ 0 and incorporating surface charge and current
densities characterized by an admittance γ. Analysis of planewave reflection and refraction due
to a topological-insulator half space reveals that the parameters Ψ and γ arise identically in the
reflection and transmission coefficients, implying that the two classical models cannot be dis-
tinguished on the basis of any scattering scenario. However, as Ψ disappears from the Maxwell
equations applicable to any region occupied by the topological insulator, and because surface
states exist on topological insulators as protected conducting states, the alternative model must
be chosen. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JNP.10.033004]
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1 Introduction

The discovery of topological insulators1 has prompted researchers in classical optics2–4 to exam-
ine electromagnetic scattering due to bound objects made of these materials, exemplified by
chalcogenides such as Bi2Se3, Bi2Te3, and Sb2Te3. As a topological insulator is considered
to be an isotropic material, its frequency-domain constitutive relations are formulated to contain
a magnetoelectric pseudoscalar (denoted by Ψ here) in addition to the permittivity scalar ε and
the permeability scalar μ. The surface of the topological insulator is assumed to be charge
free and current free, and the scattering problem can then be solved by following textbook
techniques.5

Yet, according to condensed-matter theory, surface states exist on topological insulators as
protected conducting states,2 and the characteristic electromagnetic responses of these materials
are due to those surface states. Should then a topological insulator’s optical response be modeled
as due solely to either

I. the bulk constitutive parameter Ψ with the surface of the topological insulator being
charge free and current free, or

II. a surface parameter (denoted by γ here) that quantifies the charge density and current
density on the surface of the topological insulator?

The topological insulator possesses the permittivity ε and permeability μ in both models. Both Ψ
and γ are admittances, and whereas the magnetoelectric constitutive parameter Ψ mediates
between D and B as well as between H and E throughout the topological insulator, γ is mean-
ingful only on the surface of that material.
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This communication is devoted to a comparison of models I and II, through the fundamental
boundary-value problem of reflection and refraction of a plane wave. This problem is described
and solved in Sec. 2 for both models. Section 3 contains a comparative discussion of the two
models. Vectors are underlined. An expð−iωtÞ dependence on time t is implicit, with ω as the
angular frequency and i ¼ ffiffiffiffiffiffi

−1
p

.

2 Fundamental Boundary-Value Problem

Suppose that all space is divided into two mutually disjoint half spaces Vout ¼ fðx; y; zÞ∶z < 0g
and Vin ¼ fðx; y; zÞ∶z > 0g separated by the surface S ¼ fðx; y; zÞ∶z ¼ 0g. We need to solve
the frequency-domain macroscopic Maxwell equations:

EQ-TARGET;temp:intralink-;e001;116;597

∇ · Bðr;ωÞ ¼ 0

∇ × Eðr;ωÞ − iωBðr;ωÞ ¼ 0
∇ · Dðr;ωÞ ¼ 0

∇ ×Hðr;ωÞ þ iωDðr;ωÞ ¼ 0

9>>>=
>>>;

(1)

in Vout and V in separately, and impose boundary conditions on S. It is possible to do so for
models I and II together.

Let the half space Vout be vacuous so that the constitutive equations

EQ-TARGET;temp:intralink-;e002;116;486Dðr;ωÞ ¼ ε0Eðr;ωÞ; Hðr;ωÞ ¼ μ−10 Bðr;ωÞ; r ∈ Vout; (2)

hold, ε0 being the permittivity and μ0 being the permeability of free space. Equation (1) can then
be written as

EQ-TARGET;temp:intralink-;e003;116;430

∇ · Bðr;ωÞ ¼ 0

∇ × Eðr;ωÞ − iωBðr;ωÞ ¼ 0
∇ · Eðr;ωÞ ¼ 0

∇ × Bðr;ωÞ þ iωμ0ε0Eðr;ωÞ ¼ 0

9>>>=
>>>;
; r ∈ Vout (3)

in terms of the primitive field phasors Eðr;ωÞ and Bðr;ωÞ.
The frequency-domain constitutive relations of the material occupying Vin are

EQ-TARGET;temp:intralink-;e004;116;332

Dðr;ωÞ ¼ εðωÞEðr;ωÞ þ ΨðωÞBðr;ωÞ
Hðr;ωÞ ¼ μ−1ðωÞBðr;ωÞ − ΨðωÞEðr;ωÞ

�
; r ∈ Vin; (4)

where ε, μ, and Ψ are functions of ω. Equation (4) allows us to accommodate model I. After
substituting Eq. (4) into Eq. (1), we get

EQ-TARGET;temp:intralink-;e005;116;263

∇ · Bðr;ωÞ ¼ 0

∇ × Eðr;ωÞ − iωBðr;ωÞ ¼ 0
∇ · Eðr;ωÞ ¼ 0

∇ × Bðr;ωÞ þ iωμðωÞεðωÞEðr;ωÞ ¼ 0

9>>>=
>>>;
; r ∈ Vin: (5)

Let us note that Ψ does not appear in the Maxwell equations applied to Vin after the convenient
but inessential induction field phasors Dðr;ωÞ and Hðr;ωÞ have been translated into essential
primitive field phasors Eðr;ωÞ and Bðr;ωÞ.

When solving an electromagnetic boundary-value problem, it is common to use the boundary
conditions:

EQ-TARGET;temp:intralink-;e006;116;129

n̂ðrSÞ · ½BoutðrS;ωÞ − BinðrS;ωÞ� ¼ 0

n̂ðrSÞ × ½EoutðrS;ωÞ − EinðrS;ωÞ� ¼ 0
n̂ðrSÞ · ½DoutðrS;ωÞ − DinðrS;ωÞ� ¼ ρsðrS;ωÞ
n̂ðrSÞ × ½HoutðrS;ωÞ −HinðrS;ωÞ� ¼ JsðrS;ωÞ

9>>>=
>>>;
; rS ∈ S; (6)
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with the unit normal vector n̂ðrSÞ at rS ∈ S pointing into Vout. The subscripts “in” and “out”
indicate that the fields in Vin and Vout, respectively, are being evaluated on S. The quantities ρs
and Js are the surface charge density and the surface current density, respectively. In order to
accommodate model II, we set

EQ-TARGET;temp:intralink-;e007;116;687

ρsðrS;ωÞ ¼ γðωÞn̂ðrSÞ · BinðrS;ωÞ
JsðrS;ωÞ ¼ −γðωÞn̂ðrSÞ × EinðrS;ωÞ

�
; rS ∈ S; (7)

where γ describes the surface states.
Let an arbitrarily polarized plane wave in Vout be incident on S. Then the primitive field

phasors in Vout can be written as

EQ-TARGET;temp:intralink-;e008;116;607

Eðr;ωÞ ¼ f½asûy þ apð−ûxτ0 þ ûzκÞ∕k0� expðiτ0zÞ
þ ½rsûy þ rpðûxτ0 þ ûzκÞ∕k0� expð−iτ0zÞg expðiκxÞ

Bðr;ωÞ ¼ k0
ω f½−apûy þ asð−ûxτ0 þ ûzκÞ∕k0� expðiτ0zÞ
þ ½−rpûy þ rsðûxτ0 þ ûzκÞ∕k0� expð−iτ0zÞg expðiκxÞ

9>>>=
>>>;
; r ∈ Vout; (8)

where k0 ¼ ω
ffiffiffiffiffiffiffiffiffi
μ0ε0

p
, τ0 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − κ2

p
, and the dependences on ω are implicit. Representing

the incident plane wave, the coefficients as and ap are presumed to be known. Representing
the plane wave reflected into Vout, the coefficients rs and rp are unknown. Equation (8) satisfies
Eq. (3).

The primitive field phasors in Vin are given as

EQ-TARGET;temp:intralink-;e009;116;472

Eðr;ωÞ ¼ ½tsûy þ tpð−ûxτ þ ûzκÞ∕k� expðiτzÞ expðiκxÞ
Bðr;ωÞ ¼ k

ω ½−tpûy þ tsð−ûxτ þ ûzκÞ∕k� expðiτzÞ expðiκxÞ
�
; r ∈ Vin; (9)

where k ¼ ω
ffiffiffiffiffi
με

p
, τ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − κ2

p
, and the coefficients ts and tp are unknown. Representing

the plane wave refracted into V in, these expressions satisfy Eq. (5).
The foregoing expressions were substituted into Eqs. (2)2, (4)2, (6)2,4 and (7)2 to determine rs,

rp, ts, and tp in terms of as and ap. Thus,

EQ-TARGET;temp:intralink-;e010;116;380rs ¼
½ðηr − δrÞð1þ ηrδrÞ − ðGη0Þ2η2rδr�as þ 2 Gη0η2rδrap

ðηr þ δrÞð1þ ηrδrÞ þ ðGη0Þ2η2rδr
; (10)

EQ-TARGET;temp:intralink-;e011;116;334rp ¼ ½ðηr þ δrÞð1 − ηrδrÞ þ ðGη0Þ2η2rδr�ap þ 2 Gη0η2rδras
ðηr þ δrÞð1þ ηrδrÞ þ ðGη0Þ2η2rδr

; (11)

EQ-TARGET;temp:intralink-;e012;116;293ts ¼
2ηrð1þ ηrδrÞas þ 2 Gη0η2rδrap
ðηr þ δrÞð1þ ηrδrÞ þ ðGη0Þ2η2rδr

; (12)

EQ-TARGET;temp:intralink-;e013;116;251tp ¼ 2ηrðηr þ δrÞap − 2 Gη0η2ras
ðηr þ δrÞð1þ ηrδrÞ þ ðGη0Þ2η2rδr

; (13)

where

EQ-TARGET;temp:intralink-;e014;116;198G ¼ Ψþ γ; η0 ¼
ffiffiffiffiffi
μ0
ε0

r
; δr ¼

τ∕k
τ0∕k0

; ηr ¼
ffiffiffiffiffiffiffi
ε0μ

εμ0

r
: (14)

We have verified that Eqs. (10) through (13) satisfy Eqs. (6)1,3 and (7)1. Moreover, Eqs. (10)
through (13) simplify to the standard results:6,7

EQ-TARGET;temp:intralink-;e015;116;133

rs ¼ as
ηr−δr
ηrþδr

; rp ¼ ap
1−ηrδr
1þηrδr

ts ¼ as
2ηr

ηrþδr
; tp ¼ ap

2ηr
1þηrδr

9=
; (15)

for Ψ ¼ γ ¼ 0.
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3 Discussion and Conclusion

Equations (10) through (13) can be recast in matrix form as

EQ-TARGET;temp:intralink-;e016;116;704

�
rs
rp

�
¼

�
rss rsp
rps rpp

��
as
ap

�
;

�
ts
tp

�
¼

�
tss tsp
tps tpp

��
as
ap

�
: (16)

The elements of the 2 × 2 matrices have either both subscripts identical or two different sub-
scripts. The elements with both subscripts identical indicate copolarized reflection or refraction,
with the remaining elements indicating cross polarization. Both cross-polarized reflection and
refraction in Eqs. (10) through (13) are due to G.

Equations (10) through (13) do not containΨ and γ separately, but their sumG instead. Thus,
measurements of the reflection coefficients rs and rp (or the transmission coefficients ts and tp, if
at all possible) cannot be used to discriminate between models I (γ ¼ 0) and II (Ψ ¼ 0).
Equations (6)4 and (7)2 together make it clear that measurements of the reflection and transmis-
sion coefficients of a slab made of a topological insulator cannot be used to discriminate between
the two models; not only that, the solution of every scattering problem will depend on G, not on
Ψ alone or γ alone.

This impasse can be resolved by realizing that surface states exist on topological insulators as
protected conducting states, and the characteristic behavior of these materials is due to those
surface states. Furthermore, Ψ vanishes from the Maxwell equations (5) applicable to Vin occu-
pied by the topological insulator; indeed, Ψ would vanish even if the topological insulator were
bianisotropic.8 For both of these reasons, we must choose model II, which also satisfies the Post
constraint Ψ ≡ 0.9

As the material occupying Vin is isotropic and achiral, cross-polarized reflection in this prob-
lem has been taken to arise from the Lorentz nonreciprocity inherent in Eq. (4).10 But now we see
that surface states described by Eq. (7) by themselves are capable of yielding cross-polarized
reflection, which is, therefore, not an indication of Lorentz nonreciprocity.

Acknowledgments

A.L. is grateful to the Charles Godfrey Binder Endowment at Penn State for ongoing support of
his research. T.G.M. acknowledges the support of EPSRC grant EP/M018075/1.

References

1. M. Z. Hasan and C. L. Kane, “Topological insulators,” Rev. Modern Phys. 82(4), 3045–
3067 (2010).

2. M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B
80(11), 113304 (2009).

3. F. Liu et al., “Goos–Hänchen and Imbert–Fedorov shifts at the interface of ordinary dielec-
tric and topological insulator,” J. Opt. Soc. Am. B 30(5), 735–741 (2013).

4. F. Liu, J. Xu, and Y. Yang, “Polarization conversion of reflected electromagnetic wave from
topological insulator,” J. Opt. Soc. Am. B 31(4), 735–741 (2014).

5. J. G. Van Bladel, Electromagnetic Fields, 2nd ed., IEEE Press, Piscataway, New Jersey
(2007).

6. A. Lakhtakia, “On pathological conditions and Fresnel coefficients,” Int. J. Infrared
Millimeter Waves 11(12), 1407–1413 (1990).

7. M. F. Iskander, Electromagnetic Fields and Waves, 2nd ed., Waveland Press, Long Grove,
Illinois (2013).

8. A. Lakhtakia and T. G. Mackay, “Axions, surface states, and the Post constraint in electro-
magnetics,” Proc. SPIE 9558, 95580C (2015).

9. E. J. Post, Formal Structure of Electromagnetics, North Holland, Amsterdam, The
Netherlands (1962).

10. C. M. Krowne, “Electromagnetic theorems for complex anisotropic media,” IEEE Trans.
Antennas Propag. 32(11), 1224–1230 (1984).

Lakhtakia and Mackay: Classical electromagnetic model of surface states in topological insulators

Journal of Nanophotonics 033004-4 Jul–Sep 2016 • Vol. 10(3)

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.80.113304
http://dx.doi.org/10.1364/JOSAB.31.000735
http://dx.doi.org/10.1364/JOSAB.31.000735
http://dx.doi.org/10.1007/BF01013424
http://dx.doi.org/10.1007/BF01013424
http://dx.doi.org/10.1117/12.2190105
http://dx.doi.org/10.1109/TAP.1984.1143233
http://dx.doi.org/10.1109/TAP.1984.1143233


Akhlesh Lakhtakia received his degrees from the Banaras Hindu University and the University
of Utah. He is the Charles Godfrey Binder Professor of engineering science and mechanics at the
Pennsylvania State University. His current research interests include nanotechnology, biorepli-
cation, forensic science, solar-energy harvesting, surface multiplasmonics, metamaterials, mim-
umes, and sculptured thin films. He is a fellow of OSA, SPIE, IoP, AAAS, APS, and IEEE. He
received the 2010 SPIE Technical Achievement Award.

Tom G. Mackay is a reader in applied mathematics at the University of Edinburgh and an
adjunct professor in the Department of Engineering Science and Mechanics at the
Pennsylvania State University. He is a graduate of the Universities of Edinburgh, Glasgow,
and Strathclyde, and a fellow of the Institute of Physics (UK) and SPIE. His research interests
include the electromagnetic theory of novel and complex materials, including homogenized
composite materials.

Lakhtakia and Mackay: Classical electromagnetic model of surface states in topological insulators

Journal of Nanophotonics 033004-5 Jul–Sep 2016 • Vol. 10(3)


