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Abstract

Significance: The ability of diffuse correlation spectroscopy (DCS) to measure cerebral blood
flow (CBF) in humans is hindered by the low signal-to-noise ratio (SNR) of the method. This
limits the high acquisition rates needed to resolve dynamic flow changes and to optimally filter
out large pulsatile oscillations and prevents the use of large source-detector separations (≥3 cm),
which are needed to achieve adequate brain sensitivity in most adult subjects.

Aim: To substantially improve SNR, we have built a DCS device that operates at 1064 nm and
uses superconducting nanowire single-photon detectors (SNSPD).

Approach: We compared the performances of the SNSPD-DCS in humans with respect to a
typical DCS system operating at 850 nm and using silicon single-photon avalanche diode
detectors.

Results: At a 25-mm separation, we detected 13� 6 times more photons and achieved an SNR
gain of 16� 8 on the forehead of 11 subjects using the SNSPD-DCS as compared to typical
DCS. At this separation, the SNSPD-DCS is able to detect a clean pulsatile flow signal at 20 Hz
in all subjects. With the SNSPD-DCS, we also performed measurements at 35 mm, showing
a lower scalp sensitivity of 31� 6% with respect to the 48� 8% scalp sensitivity at 25 mm
for both the 850 and 1064 nm systems. Furthermore, we demonstrated blood flow responses
to breath holding and hyperventilation tasks.

Conclusions: While current commercial SNSPDs are expensive, bulky, and loud, they may
allow for more robust measures of non-invasive cerebral perfusion in an intensive care setting.
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1 Introduction

Diffuse correlation spectroscopy (DCS) is a non-invasive optical method for the measurement of
blood flow (BF).1 In DCS, the tissue is illuminated by a long coherence length near-infrared
laser, and the speckle pattern formed by moving scatterers, mostly red blood cells, modulates
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the detected light. The decay of the measured temporal intensity autocorrelation function ½g2ðτÞ�
originated by the speckle fluctuations provides an index of blood flow (BFi),

2 with units cm2∕s.
To maximize the contrast of the measured speckle, single-mode fibers are used, greatly limiting
potential photon throughput. Current DCS devices employing single-photon avalanche photo-
diodes (SPAD) detectors and laser sources at 700 to 850 nm typically operate at a source-detector
(SD) separation of 25 mm and an acquisition rate of 1 Hz.3 Larger SD separations are desirable
for improving brain sensitivity and reducing scalp signal contamination, especially in the adult
population. Faster acquisition rates are needed to detect fast BF dynamics and effectively remove
the large pulsatile systemic component from the cerebral signals. Unfortunately, the low signal-
to-noise ratio (SNR) of current devices limits the acquisition rates and prevents the use of SD
separations >2.5 cm.

To improve upon the single speckle limitations of conventional DCS measurements, multiple
colocalized detectors are used to increase SNR4,5 and as a proof of principle, at a short separation
(11 mm), Sie et al.6 have recently reported a g2ð4 μsÞ SNR gain of 32 (

ffiffiffiffiffiffiffiffiffiffi
1024

p
) using a 32 ×

32 pixel SPAD camera to enable multi-speckle detection. As an alternative, DCS measurements
with heterodyne detection have been proposed to improve the SNR through amplification of the
signal via a reference arm. Using a fiber Mach–Zehnder interferometer and conventional silicon
SPAD detectors, we have shown an increase in the SNR of the autocorrelation curve by a factor
of ∼2 and a reduction of 80% in the coefficient of variation of the fitted BFi at long source-
detector separations (>30 mm).7 Further, by increasing the magnitude of the intensity fluctua-
tions, conventional camera sensors can be used, enabling a greater increase in SNR mediated by
multi-speckle detection.8,9

In addition to acting at the detection side, we have recently proposed to use wavelengths
above 1 μm to increase DCS SNR.10 Larger photon availability and slower autocorrelation func-
tion decay contribute to a substantial increase in SNR when using wavelengths around 1050 to
1100 nm with respect to the wavelengths traditionally used for near-infrared spectroscopy. The
problem of operating at these longer wavelengths is that silicon (Si) SPADs and Si cameras have
very low photon efficiencies, indium gallium arsenide (InGaAs) SPADs have a strong afterpuls-
ing probability right where the g2 starts to decay (1 to 10 μs), and InGaAs cameras are not fast
enough to detect the initial autocorrelation decay.

Here, we propose to use superconducting nanowire single-photon detectors (SNSPDs) to
operate DCS at 1064 nm and overcome other detectors limitations.

SNSPDs were demonstrated 20 years ago,11 following an observation that the superconduc-
tivity of a lead film can be disrupted by a laser beam.12 SNSPDs operate below the boiling point
of liquid helium, <4.2 K, and consist of a thin film of superconducting material patterned in a
compact geometry to create a large pixel with high detection efficiency and a high single-photon
sensitivity due to the nanoscale cross-section. When a photon reaches the nanowire, supercon-
ductivity is locally broken and the impedance is increased, creating a voltage pulse. After the
photon is absorbed, superconductivity quickly recovers and the SNSPD is ready to detect the
next photon.

SNSPDs have several advantages over SPADs, such as recovery time (<50 ns), timing
precision (<80 ps), photon efficiency (>80%), and broad wavelength sensitivity (600 to
1550 nm).13 SNSPDs are also superior to InGaAs SPADs with respect to dark count rate
(∼1 CPS versus <10 KCPS) 14 and, more importantly, do not have afterpulsing issues. In the
following Table 1, we report the key metrics of the detectors used here [single-photon avalanche
diode detectors (Si-SPAD) SPCM-NIR-14-FC, Excelitas and SNSPD Opus One, Quantum
Opus] and the one of a commercially available InGaAs SPAD (PDM-IR, micro photon
detectors).

SNSPDs are used in optical quantum information, telecommunication, and space
communication.15 SNSPDs have also recently been used in fluorescence lifetime imaging
microscopy16 but never before in biomedical applications. To our knowledge, this is the first
application of SNSPDs in humans to improve DCS performance.

In this work, we propose a new DCS system that includes a laser emitting at 1064 nm and
two SNSPD detectors. To demonstrate the advantages of the SNSPD-DCS system at 1064 nm
with respect to standard DCS, we performed simultaneous measurements on the forehead of
11 subjects with the SNSPD-DCS and an Si-SPAD-based DCS system operating at 850 nm.
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2 Materials and Methods

2.1 Subject Recruitment

For this study, we enrolled 11 healthy subjects (five males, six females, mean age 29� 9 years,
all right-handed, and non-smokers) between August 2020 and September 2020. The study
was reviewed and approved by the Mass General Brigham Human Research Committee
(IRB #2019P003074).

2.2 SNSPD-DCS System at 1064 nm

The SNSPD-DCS system consists of a long coherence length laser at 1064 nm (CL1064-300-
SO, CrystaLaser). At this wavelength, we can illuminate the skin with 100 mWof power. In fact,
following the American National Standards Institute for Safe Use of Lasers ANSI Z136.1 2007
Tables 7, 8a, and 8b, pages 77–79, the maximum permitted radiant exposure for continuous skin
illumination at 1064 nm is 1 W∕cm2, and for an illumination spot larger than a 1-mm diameter, a
3.5-mm spot size can be considered, which leads to 100 mWof light power. This power is more
than double the allowable power at 850 nm (38 mW when estimated for the same illumination
geometry). In the study, light was delivered to the tissue via a 200-μm multimode fiber termi-
nated with a 3.5-mm prism to direct the light perpendicular to the fiber. A holographic diffuser
located between the fiber and the prism expanded the beam spot at the skin to about 3-mm
OD diameter. The backscattered photons were collected at 5, 25, and 35 mm separations from
the source by single-mode fibers (5-μm core diameter, 780HP, Thorlabs) terminated with 1-mm
prisms (Fig. 1). The 25- and 35-mm separation fibers were connected to two SNSPDs (Quantum
Opus, Opus One) operating at 3.1°K and with direct current of 7 μA. These SNSPDs include a
cryostat, which needs to be on for about 3 h to reach the operating low temperature. After that
point, the cryostat can be turned off for up to 20 min at a time whenever the device needs to be
moved without the need to restart the cooling procedure. The two SNSPD detectors were
optimized for 1064-nm illumination by the manufacturer by tuning the detector’s cavity at this
wavelength, which led to a photon efficiency of about 88%. For the 5-mm SD separation, we
used an Si-SPAD that was part of the conventional DCS system described below since at that
distance we had more than enough photons to overcome the very low photon efficiency (<3%) of
the Si-SPAD at 1064 nm. The arrival times of the photons were collected by a custom FPGA-
based multichannel time-tagger, transmitted to a laptop for real-time display at 1 Hz, and later
processed for faster acquisition rates.

2.3 Conventional Si-SPAD Based DCS at 850 nm

A conventional DCS system operating at 850 nm was used to compare performances with the
SNSPD-DCS system. This custom DCS device included a long coherence length laser (DL852-
100-SO, CrystaLaser) attenuated to provide 38 mW at the skin, and four Si-SPAD detectors
(SPCM-NIR-14, Excelitas) providing ∼58% photon detection efficiency at 850 nm. An optical
probe symmetrical to the one used for the SNSPD-DCS hosted a multimode fiber for the source
and single-mode fibers for the detectors, one at 5 mm and two at 25 mm from the source (Fig. 1).
The fourth SPAD was connected to the short separation fiber of the 1064 probe.

Table 1 Typical key specifications of three single-photon counting detectors used for DCS.

Dead
time

Dark
count rate

Timing
resolution

(ps)

PDE
850 nm
(%)

PDE
1064 nm

(%)
Operating
temperature

Si-SPAD (excelitas) <25 ns < 1500 CPS 350 up to 58 <3 278 to 343 K

InGaAs SPAD (MPD) >10 μsa < 10,000 CPS <130 <5 ∼32 228 to 243 K

SNSPD (quantumOpus) <50 ns 1 CPS <80 >80 >80 2 to 3.1 K

aRequired to achieve acceptable afterpulsing probability.
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2.4 Measurement Protocols

After a phone screening, on the day of the measurement the subject signed the consent form and
was further instructed about the experimental procedures. The subject sat in a testing room adja-
cent to the control room that housed experimental devices. Both optical probes were channeled
through an opening between the rooms and secured to the subject’s forehead as close as possible
to the hairline. A pulse oximeter was used to monitor peripheral oxygen saturation (SpO2)
and heart rate (HR). The pulse oximeter and the DCS data were synchronized via computer
time-stamps. During the tasks, room lights were dimmed, and due to COVID-19 precautions,
the study staff was only in the same room as the subject during the tourniquet task. Subjects
wore a surgical mask during all procedures. A glass window between the two rooms allowed
us to observe the subject and communication was done via an intercom. The entire session
lasted <1 h.

Each subject had one probe on each side of the forehead for the experiments. To account for
potential regional differences between the left and right hemispheres, we alternated which side
each optical probe was on between subjects. We secured the probes with black tape, which also
served to minimize ambient light.

2.4.1 Pressure modulation task

To assess the brain sensitivity of the 1064-nm SNSPD-DCS system, we conducted a pressure
modulation task using a medical-grade tourniquet.17 The tourniquet was positioned between
the eyebrow and the sensors and loosely wrapped around the head. The tourniquet was tightened
for 60 s to decrease the blood flow to the scalp by compressing the superficial temporal, the
supratrochlear, and the supraorbital arteries. The pressure did not to cause any discomfort
to the subjects, and compression was repeated three times, with each trial being preceded and
followed by a 1-min baseline.

Fig. 1 Schematic diagram of the experimental setup. Two long coherence length lasers, one at
1064 nm and one at 850 nm, were used to simultaneously illuminate two locations on the forehead
of a subject via multimode optical fibers hosted in two symmetrical optical probes (one shown in
details in the low left insert). The probes also included single-mode detector fibers at 5, 25, and
35 mm from the source. For the 850-nm probe we did not use the 35-mm fiber but used two colo-
calized fibers at 25 mm connected to 2 Si-SPAD detectors to increase SNR. The 5-mm fiber in the
1064-nm probe was connected to a Si-SPAD detector, whereas the 25 and 35 mm separation
fibers were connected to two SNSPD detectors. The signals from all detectors was sent to a
custom-made FPGA correlator board to digitize the photons arrival times and to a computer to
process in real time the temporal autocorrelation function of each detectors and save the data.
The figure also shows a graphical rendering of the laser light’s interaction with a SNSPD detector.
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2.4.2 Breathing task

In this set of measurements, subjects engage in two breathing exercises, breath-holding and
hyperventilation. The task consisted of a 1-min baseline, breath-holding for as long the subject
was able to but no more than 1 min, a 2-min recovery, 1-min hyperventilation, and a 2-min
recovery. For breath-holding, subjects were instructed to begin breathing out 5 s leading up
to the task since breath-holding after expiration leads to a more rapid increase in CBF, allowing
for shorter breath-holding observation periods.18 For hyperventilation, subjects were instructed
to attempt to fully exhale and inhale rapidly to maximize the respiratory exchange ratio. The task
was repeated three times. Pulse oximeter changes in SpO2 and HR were used to assess subject’s
compliance.

2.5 Data Analysis

For each subject and each trial, at each distance and each wavelength, we computed the temporal
autocorrelation functions ½g2ðτÞ� at 1 Hz to fit for slow blood flow changes, and at 10, 20, and
50 Hz to extract pulsatile blood flow and to estimate its contrast-to noise ratio (CNR). To cal-
culate BFi, each g2 was fitted to the semi-infinite correlation diffusion equation19 using fixed
optical properties corresponding to the ones of the brain layer, reported in Table 2.20 The pulsatile
CNR was estimated as the contrast between the FFT amplitude at the pulsation frequency and
the noise floor, and a clear signal was defined using a threshold of CNR > 4.

For the pressure modulation and breathing task comparisons, we considered relative blood
flow (rBFi), obtained in each subject and in each trial by normalizing BFi by the mean value
calculated between 10 and 50 s of the baseline period.

We calculated BFi% reductions with pressure as ð1 − rBFi pressureÞ � 100. Since the two DCS
optical sensors were not colocalized, we considered only trials for which the difference between
the left and right forehead’s reductions at the short separations was small (<10% difference) for
a period of at least 20 s during the compression.

To assess subject compliance with the breathing tasks, we examined the pulse oximetry
responses. For the breath-holding task, we divided the trials in two groups based on SpO2

decreases lower or >5%. For the hyperventilation trials, we excluded subjects where we did
not observe an increase in hearth rate of at least 10 beats per minute. Each trial was normalized
with respect to a 30 s baseline before breath-holding and hyperventilation.

In addition to BFi, average photon counts at both wavelengths and all separations were quan-
tified. Gains at the same SD separations were defined as the ratio between the value at 1064 and
the value at 850 nm.

To verify the tabulated difference in scattering between 850 and 1064 nm matched the exper-
imental results we assumed the same blood flow and a fixed absorption coefficient (μa) at each
wavelength. Specifically, we first imposed a constant reduced scattering coefficient (μs 0) of
9.25 cm−1 to fit the 850 nm autocorrelation curve and extracted the 850 nm BFi. Then, we fit
the g2 curve at 1064 nm with scattering values ranging from 6.5 to 10.5 cm−1 and found which
μs

0 provided the minimum difference between BFi at 1064 nm and BFi found at 850 nm.

Table 2 Reduced scattering coefficients, absorption coefficients and BFi in four tissue layers
derived from Refs. 20, 30, and 31 and used in the Monte Carlo simulations. For the SNR evalu-
ation, we used the brain optical properties.

Optical properties
tissue layer

μs
0 (cm−1) μa (cm−1)

1064 nm 850 nm 1064 nm 850 nm BFi (cm2∕s)

Scalp 8.38 9.25 0.11 0.091 1 × 10−8

Skull 8.38 9.25 0.13 0.11 0

CSF 0.09 0.10 0.12 0.043 0

Brain 8.38 9.25 0.17 0.20 6 × 10−8
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To evaluate the SNR of the two DCS devices in the most realistic situation, we decided to use
human data. For this SNR evaluation, we used the three 1-min baseline periods acquired at the
beginning of the pressure modulation tasks. To eliminate physiological noise, we only consid-
ered g2 values at the diastolic points of the cardiac cycle. The diastolic points were identified
from the 10 Hz BFi time trace at both 850- and 1064-nm short separations, and at 25 mm at
1064 nm since in these cases the pulsatile CNR was>4. The identified diastolic timepoints were
used in all BFi traces, including the 25 mm at 850 nm and of 35 mm at 1064 nm where the higher
noise made the diastolic points unidentifiable. The mean½g2ðτÞ� and the standard deviation of
½g2ðτÞ� were calculated at a correlation lag time τ ¼ 4 μs by averaging 50 dyastolic g2 acquired
at 10 Hz. Finally, the SNR was calculated using the following expression:

EQ-TARGET;temp:intralink-;sec2.5;116;616SNRjg2ðτÞj ¼ mean½g2ðτÞ − 1�∕STD½g2ðτÞ�:

We also compared the experimental SNR with the theoretical SNR as described in the noise
model in Refs. 21 and 22. Based on this model, the theoretical standard deviation ½σðτÞ� at each
time delay τ is given by

EQ-TARGET;temp:intralink-;sec2.5;116;548σðτÞ ¼
ffiffiffiffi
T
t

r �
β2

ð1þ e−2ΓTÞð1þ e−2ΓτÞ þ 2mð1 − e−2ΓTÞe−2Γτ
ð1 − e−2ΓTÞ þ 2hni−1βð1þ e−2ΓτÞ

þ hni−2ð1þ βe−ΓτÞ
�
1∕2

;

where t is the integration time; T is the bin width; Γ is the exponential decay rate of g1ðτÞ, which
depends on BFi; hni is the average number of recorded photons multiplied by the bin width T;
m is the is auto-correlation lag bin index; and β is the coherence factor. Actual photon counts
and average β and BFi were inputs to the model, and the same brain optical properties used for
the experimental calculations were used for the noise model.

Moreover, we evaluated the expected brain sensitivity with Monte Carlo simulations. The
MCX software package23 was used to simulate photon transport and momentum transfer in a
realistic brain geometry.24 For this forward model, we used a four-layer MRI-derived volumetric
geometry segmented into scalp, skull, cerebrospinal fluid (CSF), gray, and white matter (brain),
with 1 mm × 1 mm × 1 mm spatial resolution. For each of the four tissue types, we used the
optical properties and BFi reported in Table 2. The probe consisted of a collinear arrangement of
a source and seven detectors at distances ðrÞ ¼ 5, 10, 15, 20, 25, 30, 35, and 40 mm from the
source and was placed in a location in the head with extracerebral thickness of about 14 mm.
Auto-correlation curves obtained from MC simulations were post-processed to add statistical
noise using the same noise model mentioned in the previous section,21 then fit with the same
semi-infinite correlation diffusion model as the experimental data.

For the photon counts, we used the experimental values averaged across all subjects: 114,000
counts per second (CPS) at 25 mm for 1064 nm, 11,000 CPS at 25 mm 850 nm, and 12,000 CPS
at 35 mm at 1064 nm. To estimate brain sensitivity, we increased the BFi in the brain layer by
20% to 7.2 × 10−9 cm2∕s (BFi perturb) while keeping scalp, skull and CSF BFi constant and quan-
tified the increase in apparent BFi fit with a semi-infinite model. To estimate BFi reduction due to
scalp contamination at different SD separations, we simulated a scalp BF reduction of 85% (as
found in our pressure modulation experiments) and quantified the decrease in apparent BFi fit
with the same semi-infinite model. To determine the brain contrast-to-noise ratio at each SD
separation (r) and wavelength (λ), we used the perturbation and baseline estimated BFi from
fitting and estimated the standard deviation of fitted BFi over 120 noise realizations assuming
a 1-s integration time. The brain CNR was estimated for each experimental SD separation and
wavelength as

EQ-TARGET;temp:intralink-;sec2.5;116;133CNRðr; λÞ ¼ BFi perturbðr; λÞ − BFi baselineðr; λÞ
σBFiðr; λÞ

:
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3 Results

3.1 SNR Comparison

As described in Sec. 2.5, to assess the SNR of the SNSPD-DCS with respect to conventional
DCS, we considered the baseline periods of the pressure modulation trials and averaged 50 g2
curves acquired at 10 Hz at the diastolic point of the arterial pulsation cycle. Figure 2(a) shows
the resulting autocorrelation curves at 25 mm for the 1064 nm and the 850 nm DCS systems in
a representative subject. As expected, the autocorrelation curve at 1064 nm has a slower decay
than the g2 at 850 nm due to the lower scattering and longer wavelength. By fixing μs 0 at 850 nm
to 9.25 cm−1, we obtained an average BFi of 1.3� 0.5 × 10−8 cm2∕s and a reduced scattering
coefficient at 1064 nm of 8.39� 1.40 cm−1, very close to the one reported in Table 2. Since the
measurements were not colocalized in each subject, some differences between the two wave-
lengths are expected. Figures 2(b) and 2(c) report the average CPS and g2ð4 μsÞ SNR in each
subject at the large SD separations for the two DCS systems. Figure 2(d) reports the theoretical
and experimental g2ð4 μsÞ SNRs, showing high correlations between theoretical and experimen-
tal SNR at all wavelengths and SD separations (R2 ¼ 0.92 for 850 nm at 25 mm, R2 ¼ 0.9 for
1064 nm at 35 mm, and R2 ¼ 0.95 for 1064 nm at 25 mm). Finally, Figs. 2(e) and 2(f) show the
CPS and g2ð4 μsÞ SNR gain of 1064 nm with respect to 850 nm at a 25 mm SD separation. At the
same separation, SNSPD-DCS collected an order of magnitude more photons than conventional
DCS (average gain 13� 6) and for τ ¼ 4 μs we achieved an SNR gain of 16� 8. For τ ranging
between 1 and 10 μs the average SNR gain was 18� 10. Moreover, with SNSPD-DCS, we were
able to perform measurements at 35-mm separation while achieving a similar CPS and SNR as
conventional DCS at 25 mm. It is worth noting that in female subjects (#2, 3, 6, 9, 10, and 11),
we collect an average of 1.8� 0.2 times more photons and achieve 1.8� 0.4 times higher SNR
than in male subjects, with the highest CPS and SNR gain at 1064 at 35 mm.

The increased g2 SNR allowed us to acquire data at 25 mm at faster rates and recover clean
arterial pulsation signals at 20 Hz in all subjects (FFT pulsatile component CNR > 4). At 35 mm

Fig. 2 (a) Autocorrelation curves acquired at 50 Hz and averaged over 50 diastolic points at 850
and 1064 nm, both at a 25-mm SD separation, in a representative subject (#6). The g2 at 1064 nm
is much less noisy and shows a slower decay, which further improves the SNR. (b) and (c) CPS
and g2ð4 μsÞ SNR in the 11 subjects at the three large separations. (d) Experimental versus
theoretical g2ð4 μsÞ SNR for all subjects. (e) and (f) CPS gain and g2ð4 μsÞ SNR gain at 1064 nm
25 mm with respect to 850 nm at 25 mm. In all bar-graphs each value represents the average and
each errorbar represent the standard deviations across the three trials. In all panels, orange
correspond to 850 nm at 25 mm, blue correspond to 1064 nm at 35 mm, and green correspond
to 1064 nm at 25 mm.
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and 1064 nm and at 25 mm and 850 nm, we achieved pulsatile CNR > 4 in only four subjects
(36%) and only at 10 Hz acquisition rate. In these subjects, the CNR at 850 nm was 5.6� 1.3,
lower than the CNR at 1064 nm (10� 3.8) at the same SD separation, 25 mm. Figure 3 shows
examples of g2 autocorrelation curves acquired at 10, 30, and 50 Hz, and pulse waveforms at
25 and 35 mm with the SNSPD-DCS system.

3.2 Sensitivity Estimates via Monte Carlo Simulation

The Monte Carlo simulations on a 3D segmented head structure, as expected, showed increased
sensitivity to the brain with increasing SD separations. As shown in Figs. 4(a) and 4(b), there is
no substantial difference between cerebral blood flow (CBF) sensitivity at 850 and 1064 nm for
the chosen optical properties (Table 2) when noise effects are not taken into account. Cerebral
BFi sensitivity increases substantially at 35 mm with respect to the 25-mm SD separation with an
increase of 21.65% for a brain perturbation (20% increase in CBFi) and a decrease of 15% for
a scalp BFi perturbation (85% scalp BFi reduction) at 1064nm. This is in agreement with our
experimental results where for averaged data (acquisition rate 0.1 Hz) we did not observe sig-
nificant differences in BFi changes at 25 mm at the two wavelengths, but we observed significant
improvements at 35-mm SD separation, only achievable at 1064 nm (SNR at 850 nm is too low
at this separation even when acquiring at 0.1 Hz or less). We then add noise to the simulations
based on the CPS obtained experimentally at 25- and 35-mm SD separations, and compute the
expected contrast-to-noise-ratio of CBF measurement. As shown in Fig. 4(c) (CNR normalized
by the maximum value) the improvement in the performance of the SNSPD-DCS at 1064 nm
with respect to the Si-SPAD-based DCS at 850 nm are clear. As separation increases, noise rises
much faster than intrinsic sensitivity, leading to an optimal separation range for each wavelength.
This optimal SD separation at 850 nm is 25 mm, whereas for the SNSPD-DCS at 1064 nm,

Fig. 3 (a) Example of an autocorrelation function acquired with the SNSPD-DCS at 25 mm, esti-
mated at three different frequencies, 10 Hz (100 ms integration time), 30 Hz (33 ms), and 50 Hz
(20 ms), on subject #6. While the noise increases with frequency, the decay rate and the resulting
BFi fit are consistent at all acquisition rates. (b) For the same subject as panel (a), we show 5 s of
the BFi traces sampled at 50 Hz and 25 mm and at 10 Hz and 35 mm SD separations. (c) Example
of BFi acquired at 50 Hz and 25 mm in subject # 5 (SNR ¼ 9). A Butterworth bandpass filter of
0.1 to 5 Hz was applied to the data.
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the optimal SD separation is 35 mm, which allows for a 31.6% relative increase in brain blood
flow sensitivity.

3.3 Pressure Modulation Results

Subjects #1 and #6 and trials 2.1, 4.1, 4.2, 7.1, 8.1, 9.1, and 9.2 were excluded based on the
criteria defined in Sec. 2.5 (a>10% difference in the reduction of the two short separation wave-
lengths). No statistical difference was found on the remaining trials between the short separations
at 1064 and 850 nm, with an average reduction at the 5 mm SD separations of 89.4� 4.5 at
850 nm and of 93.4� 3.7 at 1064 nm (p ¼ 0.08). Figure 5(a) shows an example of rBFi versus
time during a trial (subject #5 trial #3). Figure 5(b) and 5(c) report the average reductions for
each trial and the grand averages across all trials. While we did not find statistically significant
differences between the reductions at 25 mm for either wavelength (48.1� 7.7 and 48.0� 8.4,
p ¼ 0.99), we consistently observed a lower reduction for the 35 mm at 1064 nm measurements,
equal to 30.7� 6.4, with p ¼ 3.6 × 10−4 for the comparison with 25 mm at 850 nm, and
p ¼ 1.52 × 10−4 for the comparison with 25 mm at 1064 nm. The experimental result is in
good agreement with the Monte Carlo simulations [Fig. 4(b)]. At 25-mm SD separation, the
experimental BFi reduction of 48% and 48.1%, at 850 and 1064 nm, respectively, match the
simulation reductions (48.1% and 51.5%, at 850 and 1064 nm, respectively). At 35 mm and
1064 nm, the experimental reduction of 30.7% is also similar to the simulation BFi reduction
(36.5%).

As shown in Fig. 5, the main advantage of SNSPD-DCS is that we are able to perform mea-
surements at larger SD separations and increase the sensitivity to cerebral changes in all subjects.

In addition to a reduction in BFi, the compression also drastically reduced the pulsatile wave-
form at the short separations. Conversely, the amplitude of the pulsatile blood flow at the larger
separations remains substantial, with an average reduction of 35.5� 29% at 25 and 1064 nm.
An example is reported in Fig. 6. This suggests that a large component of the pulsatile BFi signal
originates below the scalp and skull.

3.4 Breathing Tasks Results

These experiments were conducted to induce and measure differences in cerebral versus periph-
eral responses to systemic perturbations. Subjects 4 and 8 (except 8.3 breath-holding) were
excluded because of large oscillations of the BFi at short separations. Subject 9 did not perform
the first hyperventilation trial. For breath-holding, we divided the trials in two groups. In the first
group, we measured an SpO2 decrease in response to breath-holding of ≥5% (1.1, 1.2, 1.3, 2.2,
3.1, 5.2, 6.1, 6.2, 6.3, 8.3, 11.1, 11.2, 11.3; 13 trials). The second group had trials for whom
SpO2 responses <5% (2.1, 2.3, 3.2, 3.3, 5.1, 5.3, 7.1, 7.2, 7.3, 9.1, 9.2, 9.3, 10.1, 10.2, 10.3;
15 trials). For the hyperventilation results, we excluded trials 2.3 and 9.3 because the HR
changed <10 bpm as a consequence of the fast breathing, leaving us with 24 trials.

Fig. 4 CBF index sensitivity as a function of SD separation at 850 and 1064 nm for (a) a brain
perturbation (20% increase in CBFi) and (b) a scalp perturbation (85% increase in scalp BFi).
(c) Brain contrast-to-noise ratio (normalized by the maximum value) as a function of SD separation
at 850 and 1064 nm at 1 Hz acquisition rate.
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Fig. 6 rBFi during a pressure modulation trial on a representative subject (#11.1) acquired at
10 Hz. Results at 5- and 25-mm SD separations at 1064 nm are reported in figures. The large
fluctuation on the signal is not noise but the pulsatile blood flow oscillations. Panels (a) and
(b) give an expanded view of two 3-s periods during baseline and pressure.

Fig. 5 (a) An example of a pressure modulation trial (subject #5, trial #3), reporting rBFi at 1 Hz for
all SD separations of the two DCS systems. The gray shaded area represents the period during
which the tourniquet was tightened. (b) Percent reduction in rBFi during pressure with respect to
initial baseline at all SD separations averaged across all trials and subjects. Error bars represent
standard errors across all subjects. (c) Percent reduction in rBFi during pressure with respect to
initial baseline at the large SD separations for each included trial. Error bars represent standard
deviations during the compression periods.
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Figure 7 reports the relative BFi changes for the different groups and tasks measured with
the SNSPD-DCS system at 1064 nm, with Figs. 7(a) and 7(b) reporting the rBFi responses to
the breath-holding task in groups 1 (SpO2 drop ≥ 5%) and 2 (SpO2 drop <5%) and Fig. 7(c)
reporting rBFi changes with hyperventilation. As expected, blood flow increases during the
first 30 s in response to breath-holding due to transient hypercapnic hypoxia and slowly returns
to baseline during the second phase of breath-holding due to a high concentration of CO2 in the
blood stream and a deficiency of O2 in the tissues. Larger changes were observed in the group
with larger SpO2 drops (69� 19.3% in group 1 versus 38� 9.6% in group 2). In both panels a
and b, we can see faster responses at larger separations, due to the faster reactivity of the brain
than the scalp.25 Statistically significant differences between rBFi at 35 and 5 mm SD sepa-
rations were found at times 63 to 88 s and 108 to 118 s (p < 0.05), Statistically significant
differences between rBFi at 25 and 5 mm were found at times 63 to 84 s and 108 to 109 s
(p < 0.05). No statistically significant differences were found between responses at 35 and
25 mm.

The hyperventilation task causes hypocapnia, and while the scalp blood flow increases due to
the large increase in HR during fast paced breathing, the CBF decreases due to vasoconstriction.
As shown in Fig. 7(c), we clearly observed this differential behavior between scalp and brain in
the rBFi responses at 5 and 35 mm, with responses at 25 mm in between the two, because of the
lower sensitivity to brain at this SD separation. Specifically, rBFi at 5 mm showed an increase of
31.9� 13.8% and rBFi at 35 mm showed a decrease of 18.5� 2.3%. Statistically significant
differences between rBFi at 35 and 5 mm SD separations were found at times 0 to 78 s
(p < 0.05). Statistically significant differences between rBFi at 25 and 5 mm between 0 and
72 s. Statically significant differences between rBFi at 25- and 35 mm-SD separations were
found at times 24 to 85 s (p < 0.05).

Breath-holding and hyperventilation responses at 850 nm had similar trends, with within and
across subject’s differences due to the different measurement locations at the two wavelengths
(not shown). We quantified the rBFi changes at 850 nm and 1064 nm (at the same SD separation,
25 mm) during the breathing tasks via Bland–Altman analysis. For the maximum rBFi changes
in the breath-holding groups I and II and in the hyper-ventilation (24 trials), 94.23% (49 out of
52) of the data points (i.e., relative changes at 1064 and 850 nm) fall within �1.96 STD of the
mean difference, due to the similar trends between the two wavelengths.

4 Discussion and Conclusions

This is the first report demonstrating a high signal-to-noise ratio with homodyne DCS at an SD
separation of 35 mm in-vivo on a substantial number of subjects. As described in Sec. 2, the
advantages of the presented method were achieved by using a single channel SNSPD and

Fig. 7 Breathing tasks BFi results. (a) BFi changes during breath-holding task averaged across
group 1 trials (SpO2 reduction ≥5%). (b) BFi changes during breath holding task for group 2 (SpO2

reduction <5%). (c) BFi changes during hyperventilation average across all included trials. Time
zero correspond to the start of breath-holding or hyperventilation. While all subjects performed a
breath-holding of at least 25 s, only few were able to maintain it for 60 s (shown as a gray gradient
shaded period in the figures). For hyperventilation, all subjects performed it for 60 s. Shaded areas
represent standard errors across subject.
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1064 nm illumination. The major contribution to the SNR improvement with respect to conven-
tional DCS is given by the 7 to 8 times more photons available at the detector at 1064 than at
850 nm, as reported in Ref. 10. An additional contribution to the total photon gain at 1064 with
respect to 850 nm is given by the 1.5 times higher photon detection efficiency (PDE) of the
SNSPD used here (∼88% at 1064 nm) and the extremely low dark count rate (1 CPS) with
respect to the Si-SPAD PDE (∼58% at 850 nm) and dark count rate (1500 CPS). Together, these
two factors provide an overall experimental averaged gain of 13 in photon count at 25-mm SD
separation and, by also considering the slower decay of the autocorrelation function at the longer
wavelength, an averaged g2ð4 μsÞ SNR gain of 16. It is worth noting that g2 SNR increases in
direct proportionality to the instantaneous count rate, whereas it only increases with the square
root of the acquisition time or multi-channel averaging. Thus, for standard DCS, to achieve the
same g2 SNR gain achieved here one would need to increase the integration times or the number
of channels by a factor of 256 (∼16 ¼ ffiffiffiffiffiffiffiffi

256
p

).
By using SNSPD also at 850 nm the photon budget improvement at 1064 nm versus 850 nm

would have been 1.5 time smaller than what measured using Si-SPADs at 850 and SNSPD at
1064 nm. Using Si-SPAD at 1064 nm would have drastically reduced the 1064 photon budget
since the PDE of the Si-SPAD at 1064 is <3%.

The increased SNR of the SNSPD-DCS at 1064 nm allowed us to resolve clear arterial pul-
sation at 20 Hz at a 25 mm SD separation in all subjects. Moreover, as previously observed by
Wang et al.,26 we found the pulsatile blood flow component at this SD separation is less affected
by scalp interference than the average blood flow signal as shown during the pressure modu-
lation experiment. In fact, during compression at 25 and 1064 nm we observed a BFi reduction of
48.1% and an attenuation of pulsatile flow of 35%. Being able to acquire pulsatile blood flow at
high frequency with low SNR at separations of 25 mm or more, is important in applications
where pulsatile blood flow is used to estimate intracranial pressure non-invasively.17,27

In agreement with the Monte Carlo simulations, we observed improved brain sensitivity in
our experiments by increasing SD separation. The pressure modulation results show a smaller
reduction in rBFi at 35 mm separation with respect to 25 mm (both 850 and 1064 nm) and the
breathing tasks shows more consistent statistically significant differences in rBFi between 5 and
35 mm. rBFi increases of 69% during breath-holding and decreases of 18.5% during hyperven-
tilation are in agreement with MRI and PET studies.25,28,29

While in some subjects we obtain similar responses at 25 and 35 mm, the use of 35 mm
allows recovery of CBF changes more consistently across subjects. This is needed to provide
better accuracy and consistent efficacy when moving to adult clinical applications.
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