The direct injection type laser cladding system using combined multi lasers, which supplies a clad powder from a center nozzle, was developed for realize of low dilution area and micro cladding. A fiber coupled diode laser was employed. The six-diode lasers were guided to focusing head with every optical fiber, which core diameter is 100 μm. Beam profile at focal point of the combined six lasers was set a spot diameter of 300 μm by CCD camera. Here, A cobalt-chromium alloy (CoCr-alloy) called by Stellite, which has excellent properties such as wear resistance, corrosion resistance and resistance to environment, was used as a cladding material. The focusing head has a function to supply a CoCr-alloy powder at a focal point from a center nozzle. When the laser irradiation and powder supply are simultaneously performed toward to a stainless steel 304 substrate, the CoCr-alloy powder was melted and solidified on the substrate to form a cladding layer. The melting and solidification process for CoCr-alloy was observed in real time using synchrotron radiation imaging technique at BL22XU in SPring-8. From results, it was clarified that the CoCralloy melt-solidification phenomenon greatly differs for laser output power. At the output power of 60W, it was found that a minimum amount of molten pool was formed and then solidified to form the cladding layer.
|