Presentation + Paper
16 March 2020 Bone suppression on chest radiographs with adversarial learning
Jia Liang, Yu-Xing Tang, You-Bao Tang, Jing Xiao, Ronald M. Summers
Author Affiliations +
Abstract
Dual-energy (DE) chest radiography provides the capability of selectively imaging two clinically relevant materials, namely soft tissues, and osseous structures, to better characterize a wide variety of thoracic pathology and potentially improve diagnosis in posteroanterior (PA) chest radiographs. However, DE imaging requires specialized hardware and a higher radiation dose than conventional radiography, and motion artifacts some- times happen due to involuntary patient motion. In this work, we learn the mapping between conventional radiographs and bone suppressed radiographs. Specifically, we propose to utilize two variations of generative adversarial networks (GANs) for image-to-image translation between conventional and bone suppressed radio- graphs obtained by DE imaging technique. We compare the effectiveness of training with patient-wisely paired and unpaired radiographs. Experiments show both training strategies yield radio-realistic" radiographs with suppressed bony structures and few motion artifacts on a hold-out test set. While training with paired images yields slightly better performance than that of unpaired images when measuring with two objective image quality metrics, namely Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), training with unpaired images demonstrates better generalization ability on unseen anteroposterior (AP) radiographs than paired training.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jia Liang, Yu-Xing Tang, You-Bao Tang, Jing Xiao, and Ronald M. Summers "Bone suppression on chest radiographs with adversarial learning", Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 1131409 (16 March 2020); https://doi.org/10.1117/12.2550868
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Chest imaging

Bone

Radiography

Image quality standards

Data modeling

Chest

Tissues

Back to Top