Paper
16 March 2020 Automated classification of brain tissue: comparison between hyperspectral imaging and diffuse reflectance spectroscopy
Author Affiliations +
Abstract
In neurosurgery, technical solutions for visualizing the border between healthy brain and tumor tissue is of great value, since they enable the surgeon to achieve gross total resection while minimizing the risk of damage to eloquent areas. By using real-time non-ionizing imaging techniques, such as hyperspectral imaging (HSI), the spectral signature of the tissue is analyzed allowing tissue classification, thereby improving tumor boundary discrimination during surgery. More particularly, since infrared penetrates deeper in the tissue than visible light, the use of an imaging sensor sensitive to the near-infrared wavelength range would also allow the visualization of structures slightly beneath the tissue surface. This enables the visualization of tumors and vessel boundaries prior to surgery, thereby preventing the damaging of tissue structures. In this study, we investigate the use of Diffuse Reflectance Spectroscopy (DRS) and HSI for brain tissue classification, by extracting spectral features from the near infra-red range. The applied method for classification is the linear Support Vector Machine (SVM). The study is conducted on ex-vivo porcine brain tissue, which is analyzed and classified as either white or gray matter. The DRS combined with the proposed classification reaches a sensitivity and specificity of 96%, while HSI reaches a sensitivity of 95% and specificity of 93%. This feasibility study shows the potential of DRS and HSI for automated tissue classification, and serves as a fjrst step towards clinical use for tumor detection deeper inside the tissue.
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marco Lai, Simon Skyrman, Caifeng Shan, Elvira Paulussen, Francesca Manni, Akash Swamy, Drazenko Babic, Erik Edstrom, Oscar Persson, Gustav Burstrom, Adrian Elmi-Terander, Benno H. W. Hendriks, and Peter H. N. de With "Automated classification of brain tissue: comparison between hyperspectral imaging and diffuse reflectance spectroscopy", Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 113151X (16 March 2020); https://doi.org/10.1117/12.2548754
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Brain

Tissues

Hyperspectral imaging

Tissue optics

Neuroimaging

Sensors

Tumors

Back to Top