Ovarian cancer is the deadliest gynecological cancer, with most cases of high-grade serous ovarian carcinoma originating as serous tubal intraepithelial carcinoma (STIC) lesions in the fallopian tube epithelium. The Cell-Acquiring Fallopian Endoscope (CAFE) was designed to optically detect these STIC lesions and collect cells from the suspicious site for further analysis. While approximately 0.93 mm in diameter, the CAFE is able to perform multispectral fluorescence imaging (MFI), white light imaging for navigation, and cell collection. Each of these modalities is useful to locating potentially pathological areas. To find these regions, the CAFE looks for alterations of the autofluorescence of the tissue. Upon identification of a potential STIC lesion, a scrape biopsy collects cells from the region of interest. The prototype CAFE achieved an imaging resolution of 88 μm at a 5 mm distance, and 45° full field of view in air. When tested on ex vivo porcine tissue, hemocytometry counts determined that on the order of 105 cells per scrape biopsy could be collected. Current progress on the CAFE includes cell collection testing on ex vivo porcine and human tissue, and improvements in the imaging resolution.
|