Paper
13 January 2023 Housing price forecast based on XGBoost algorithm house price: advanced regression techniques
Chutong Xu
Author Affiliations +
Proceedings Volume 12510, International Conference on Statistics, Data Science, and Computational Intelligence (CSDSCI 2022); 1251017 (2023) https://doi.org/10.1117/12.2656904
Event: International Conference on Statistics, Data Science, and Computational Intelligence (CSDSCI 2022), 2022, Qingdao, China
Abstract
House prices have always been a major concern in people's daily lives, not only for individuals, but also for the stability of society as a whole. Accurate prediction of house prices can help people to buy houses with a great degree of reference and help the state and society to control the overall consumer prices. With the development of machine learning, we are able to make greater use of machine learning tools to obtain accurate forecasting of house prices in recent years, in order to attempt to predict the house price, this article utilize the machine learning algorithms. The house price problem is a typical regression problem in machine learning. In this paper, we obtain data from Kaggle, look at the data and find that there are many factors affecting house prices. By pre-processing the original data, engineering and standardizing the features, finally, machine learning algorithm XGBoost is selected to establish a prediction model for housing price prediction. We selected the root mean square error (RMSE) ranging from the logarithm of the expected value to the logarithm of the real selling price as the final result of the forecast. The final results we obtained can help one to judge the accuracy of the housing price forecast.
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chutong Xu "Housing price forecast based on XGBoost algorithm house price: advanced regression techniques", Proc. SPIE 12510, International Conference on Statistics, Data Science, and Computational Intelligence (CSDSCI 2022), 1251017 (13 January 2023); https://doi.org/10.1117/12.2656904
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Data modeling

Machine learning

Statistical analysis

Data processing

Particle swarm optimization

Roads

Error analysis

Back to Top