In the last few years, the interest in storing volume holograms in photopolymers has increased enormously due to their applications in industry, the medical field, security, or renewal energy among others. The production of environmentally compatible photopolymers is one of the main focuses of Holography research. In this work, we have studied how to increase the diffraction efficiency of reflection holograms stored in a low-toxicity PVA-based photopolymer called Biophotopol. The holographic material has been doped with different types of nanoparticles (NPs) to achieve an increase in the refractive index modulation during the recording stage. Metallic NPs, obtained by physical and electrochemical methods have been used. The results obtained with all of them have been compared as a function of the concentration used, the size of the NPs, and the stabilization method used for their synthesis. A considerable increase in diffraction efficiency has been achieved by using NPs in the low-toxicity material. By using high refractive index NPs, the average refractive index of the holographic material increases and consequently the diffraction efficiency.
|