The semiconductor industry is an unbelievable fast-growing field with an exponential growth in the space optimization. But also, other large industrial field are getting smaller in the structure size, for example the field of optics. On the other hand, the customer demands get more and more complex and individual. This leads to an enormous growth potential for micro- and nanofabrication with direct laser writing. Under this circumstance the idea for a micro- and nanostructuring possibility with high precision on large areas was born. A setup was developed to combine a nanopositioning and nanomeasuring machine (NMM-1) with an extremely high precision and a two-photon based illumination system to realize a high-precision direct laser writing system. Besides its high positioning resolution of 0.1 nm and its metrological traceability based on an interferometrical measurement setup, the NMM-1 offers a positioning range of 25 mm x 25 mm x 5 mm. The aim is to design a direct laser writing setup, which enables a trans-scale fabrication without any stitching or combination of different positioning systems necessary. In order to benefit from this high positional accuracy, studies have been made to investigated the two photon absoption process and reduce line widths. The presented research shows investigations, which were made with the developed laser writing setup, to invested illumination dose and the voxel position of the writing laser, in order to improve microstructuring and to reduce structure widths.
|