Local amplitude aberrations caused by scintillation can impact the reconstruction process of a wavefront sensor (WFS) by inducing a spatially non-uniform intensity at the pupil plane. This effect is especially relevant for the commonly-used Shack-Hartmann WFS (SHWFS), which can lose slope information for portions of the beam where the signal is faint, leading to reduced reconstruction performance and eventually total failure as the level of scintillation increases. An alternative WFS is needed for such conditions. The nonlinear curvature wavefront sensor (nlCWFS) has been shown to achieve better sensitivity compared to the SHWFS under low light levels. Additionally, the nlCWFS has demonstrated the ability to maintain its sensitivity in the presence of scintillation, using amplitude aberrations to help inform the reconstruction process, rather than hinder. Experiments to date have thus far only shown reconstruction results for a single scintillation value. Building upon previous simulations and laboratory experiments, we have built a testbed to quantify the effects of varying scintillation strength on the wavefront reconstruction performance of the nlCWFS compared to an equivalent SHWFS. In this paper, we present results showing the difference in performance between the nlCWFS and SHWFS as a function of relative flux and scintillation strength.
|