The synthetic aperture radar (SAR) offset tracking method is extensively employed to accurately measure significant surface displacements resulting from phenomena such as glacier melting, volcanic eruptions, and earthquakes, particularly when the interferometric phase lacks coherence. However, a trade-off exists between the resolution and accuracy of SAR offset tracking, determined by the selected kernel sizes. Hence, choosing optimal kernel sizes is crucial in the application of this method. In this study, we applied SAR offset tracking with a coarse-to-fine strategy, applying the kernel sizes coarsely and then fine. This approach allows for improved observational precision while maintaining resolution compared to general single-kernel offset tracking results. Applying this technique to SAR imagery from KOMPSAT-5, a South Korean X-band SAR satellite, enabled the precise observation of surface displacements caused by the melting of the Campbell Glacier in the East Antarctic and the 2023 Turkey-Syria earthquake. This marks the first instance of large-scale surface displacement observations using KOMPSAT-5 SAR imagery, affirming the effectiveness of the SAR offset tracking technique for precise land surface displacement observations with KOMPSAT-5 SAR imagery.
|