Paper
17 September 2013 Context and task-aware knowledge-enhanced compressive imaging
Author Affiliations +
Abstract
We describe a foveated compressive sensing approach for image analysis applications that utilizes knowledge of the task to be performed to reduce the number of required measurements compared to conventional Nyquist sampling and compressive sensing based approaches. Our Compressive Optical Foveated Architecture (COFA) adapts the dictionary and compressive measurements to structure and sparsity in the signal, task, and scene by reducing measurement and dictionary mutual coherence and increasing sparsity using principles of actionable information and foveated compressive sensing. Actionable information is used to extract task-relevant regions of interest (ROIs) from a low-resolution scene analysis by eliminating the effects of nuisances for occlusion and anomalous motion detection. From the extracted ROIs, preferential measurements are taken using foveation as part of the compressive sensing adaptation process. The task-specific measurement matrix is optimized by using a novel saliency-weighted coherence minimization with respect to the learned signal dictionary. This incorporates the relative usage of the atoms in the dictionary. Therefore, the measurement matrix is not random, as in conventional compressive sensing, but is based on the dictionary structure and atom distributions. We utilize a patch-based method to learn the signal priors. A treestructured dictionary of image patches using KSVD is learned which can sparsely represent any given image patch with the tree-structure. We have implemented COFA in an end-to-end simulation of a vehicle fingerprinting task for aerial surveillance using foveated compressive measurements adapted to hierarchical ROIs consisting of background, roads, and vehicles. Our results show 113x reduction in measurements over conventional sensing and 28x reduction over compressive sensing using random measurements.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shankar Rao, Kang-Yu Ni, and Yuri Owechko "Context and task-aware knowledge-enhanced compressive imaging", Proc. SPIE 8877, Unconventional Imaging and Wavefront Sensing 2013, 88770E (17 September 2013); https://doi.org/10.1117/12.2024594
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Associative arrays

Compressed sensing

Signal to noise ratio

Chemical species

Image resolution

Roads

Sensors

RELATED CONTENT

Low light performance of digital still cameras
Proceedings of SPIE (March 07 2013)
Human assisted robotic exploration
Proceedings of SPIE (May 25 2016)
Real time 3D video utilizing a compressed sensing time of...
Proceedings of SPIE (September 16 2016)
How To Select Cameras For Machine Vision
Proceedings of SPIE (March 07 1989)
Active range imaging via random gating
Proceedings of SPIE (November 19 2012)

Back to Top