Paper
15 October 2015 A study of selected textural features usefulness for impervious surface coverage estimation using Landsat images
Katarzyna Bernat, Wojciech Drzewiecki
Author Affiliations +
Abstract
The aim of our research was to evaluate the applicability of textural measures for sub-pixel impervious surfaces estimation using Landsat TM images based on machine learning algorithms. We put the particular focus on determining usefulness of five textural features groups in respect to pixel- and sub-pixel level. However, the two-stage approach to impervious surfaces coverage estimation was also tested. We compared the accuracy of impervious surfaces estimation using spectral bands only with results of imperviousness index estimation based on extended classification features sets (spectral band values supplemented with measures derived from various textural characteristics groups).

Impervious surfaces coverage estimation was done using decision and regression trees based on C5.0 and Cubist algorithms. At the stage of classification the research area was divided into two categories: i) completely permeable (imperviousness index less than 1%) and ii) fully or partially impervious areas. At the stage of sub-pixel classification evaluation of percentage impervious surfaces coverage within single pixel was done. Based on the results of cross-validation, we selected the approaches guaranteeing the lowest means errors in terms of training set. Accuracy of the imperviousness index estimation was checked based on validation data set. The average error of hard classification using spectral features only was 6.5% and about 4.4% for spectral features combining with absolute gradient-based characteristics. The root mean square error (RMSE) of determination of the percentage impervious surfaces coverage within a single pixel was equal to 9.46% for the best tested classification features sets. The two-stage procedure was utilized for the primary approach involving spectral bands as the classification features set and for the approach guaranteeing the best accuracy for classification and regression stage.

The results have shown that inclusion of textural measures into classification features can improve the estimation of imperviousness based on Landsat imagery. However, it seems that in our study this is mainly due higher accuracy of hard classification used for masking out the completely permeable pixels.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Katarzyna Bernat and Wojciech Drzewiecki "A study of selected textural features usefulness for impervious surface coverage estimation using Landsat images", Proc. SPIE 9643, Image and Signal Processing for Remote Sensing XXI, 964327 (15 October 2015); https://doi.org/10.1117/12.2194820
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Earth observing sensors

Landsat

Data modeling

Error analysis

Image classification

Binary data

Analytical research

Back to Top