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Preface

This book aims to provide scientists and engineers, and those interested in
scientific issues, with a concise account of how the nature of scientific
knowledge evolved from antiquity to a seemingly final form in the Twentieth
Century that now strongly limits the knowledge that people would like to gain in
the Twenty-first Century. Some might think that such issues are only of interest
to specialists in epistemology (the theory of knowledge); however, today’s major
scientific and engineering problems—in biology, medicine, environmental
science, etc.—involve enormous complexity, and it is precisely this complexity
that runs up against the limits of what is scientifically knowable.

To understand the issue, one must appreciate the radical break with antiquity
that occurred with the birth of modern science in the Seventeenth Century, the
problems of knowledge and truth engendered by modern science, and the
evolution of scientific thinking through the Twentieth Century.

While originally aimed at practicing scientists and engineers, it is my hope
that this book can provide a generally educated person with a basic understanding
of how our perspective on scientific knowledge has evolved over the centuries to
escape pre-Galilean commonsense thinking. Such an appreciation is not only
beneficial for one’s general education, but is important for non-scientists who
must teach young students or make policy decisions in government or business.
Physicist and historian Gerald Holton states the dilemma faced by many:

By having let the intellectuals remain in terrified ignorance of modern
science, we have forced them into a position of tragic impotence; they
are, as it were, blindfolded in a maze through which they feel they cannot
traverse. They are caught between their irrepressible desire to understand
the universe and, on the other hand, their clearly recognized inability to
make any sense out of modern science. [Holton, 1996]

Perhaps this small book can help some make sense of modern science and the
crisis of complexity that will bedevil the Twenty-first Century. Except for the last
chapter, mathematics has been avoided, and even in that chapter it has been kept
minimal, the only exception being in Section 7.6, which requires some details of
the Wiener filter, which are provided. Biological networks are used to illustrate
complexity issues, but these are kept mainly at the descriptive level.

Xiii



Xiv Preface

Beyond the general issues that have interested me since first encountering
them in my genomic research, the immediate motivation behind the book comes
from three sources.

First, for several years I have been giving lectures on the “Foundations of
Translational Science,” which as the name suggests concerns the translation of
scientific knowledge into practice. It is a terminology popularly used in
medicine. More generally, it refers to modern engineering. The lectures place the
problems of computational biomedicine into the framework of classical scientific
knowledge and consider the problems of large-scale modeling in medicine. The
audience has consisted of Ph.D. students, post-doctoral candidates, and faculty. I
have successively added more historical development of scientific epistemology
because the audience always asks for more. This book provides it.

Second, in 2011, my colleague Michael Bittner and I published the book
Epistemology of the Cell: A Systems Perspective on Biological Knowledge,
which discusses epistemological problems relating to cellular biology, with
emphasis on biomarkers and network models in genomic medicine [Dougherty
and Bittner, 2011]. The book has some historical and philosophic background,
but, as it has turned out, not a sufficient amount for the large number of
contemporary students who have virtually no background in the philosophy of
science. The current book rectifies that problem, is focused on science and
engineering more generally than cellular biology, includes an extensive
discussion of the emerging complexity problems, and puts forward ideas on how
one might begin to address these problems in translational science.

Third, in the summer of 2015 I attended a small workshop in Hanover,
Germany, entitled How to Build Trust in Computer Simulations—Towards a
General Epistemology of Validation. The workshop brought together researchers
from different fields who were interested in the emerging crisis of scientific
knowledge. It was apparent that the issues that I had been grappling with were
ubiquitous across science, economics, engineering, and social science. The
discussions in Germany stimulated my thinking. This was accentuated because,
upon giving a lecture at the University of Munich, I was asked to contribute a
chapter to a forthcoming book on epistemology with the idea of speculating on
how to deal with model complexity from the perspective of validation and data in
the context of translational science [Dougherty, 2016]. Those speculations, which
have developed since last summer and have reached a plateau, are discussed in
the last chapter of the book, with applications to biomedicine, pattern
recognition, and signal processing.

The book is short, a little over one hundred pages. This is intentional because
the goal is to succinctly and cohesively hit the necessary points for one to grasp
the meaning and structure of scientific thinking, and then engage the current
crisis of validation. These are exciting times for a scientist (or anyone) who is
interested in fundamental problems of complex systems. Just as physicists in the
first half of the Twentieth Century had to squarely confront the unintelligibility
of Nature, today’s scientist must confront the virtual impossibility of reconciling
the desire to model big systems with small data within the context of existing
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scientific epistemology. The profound question for scientists in the Twenty-first
Century: Is it possible to weaken scientific epistemology and broaden the domain
of science without destroying it?

Edward R. Dougherty
College Station, Texas
October 2016






Introduction

Challenging Times

Evolution of Galilean—Newtonian Scientific Thinking

Some people are sufficiently fortunate to have their most creative years coincide
with great mysteries in human knowledge. One thinks of the magnificent
Seventeenth Century. It began with Francis Bacon moving the study of Nature
from haphazard experience to designed experiments, and Galileo placing
scientific knowledge within the frame of mathematics, not requiring explanation
in terms of human physical categories. It ended with Isaac Newton grounding
scientific knowledge on mathematical laws applicable to a wide variety of
phenomena. The human condition, that is, man’s place in the world, changed
radically in 1687 with Newton’s publication of Philosophice Naturalis Principia
Mathematica.

There was a profound enigma lurking in the thinking of Galileo and Newton.
It was genius to declare that knowledge of Nature is constituted within
mathematics, not within human categories of understanding; yet, as long as the
mathematical laws were consistent with human cognition, the full implication of
this thinking lay hidden. The advent of quantum mechanics in the first part of the
Twentieth Century brought it to light: a theory may be preposterous from the
perspective of human intelligibility but lead to predictions that agree with
empirical observation—and therefore be scientifically valid. Man can possess
knowledge beyond the limits of his physical understanding. There was
excitement in the air. The human condition was changing again, and young
scientists dove headlong into the maelstrom.

Today, slightly more than a century since Niels Bohr hypothesized that an
electron can jump to a different level without continuously passing through
space, and almost a century since Louis de Broglie argued that particles of matter
exhibit wave—particle duality, once again science faces an epistemological
conundrum, but this time it appears that the resolution does not lie implicitly
within Newton’s thinking.

Toward the end of the Twentieth Century, the emergence of high-
performance computing allowed scientists to construct huge models consisting of
thousands of variables and parameters. The complexity of these models prevents
them from fulfilling the most basic requirement of science: validation by the
successful prediction of future events. System complexity has resulted in data
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2 Introduction: Challenging Times

requirements that cannot be met. Model parameters cannot be accurately
estimated, thereby resulting in model uncertainty. On the other hand, model
simplification means that there can be many models aiming to describe the same
complex phenomena, all being inherently partial and hence yielding different
predictions. The desire to obtain scientific knowledge of complex systems runs
up against the requirements for scientific knowledge. In addition to complexity,
there is also an aspiration for systems covering large time scales, so that
validating data cannot be obtained. The inability to validate theory via
observations constitutes an existential crisis for science.

The first part of this book, comprising Chapters 1 through 5, tells perhaps the
greatest saga of the human mind: the evolution of scientific knowledge from
explanations of natural phenomena in terms of everyday physical understanding
to mathematical models that possess no such understanding and require
mathematical formulation of their experimental relation to Nature. The chapters
are populated by many of history’s greatest scientists and philosophers. Their
struggle involves a most perplexing problem: How does mind characterize what
mind can know? It is a story that should be known not only to every scientist and
engineer, but also to every scholar and educator, for in a world so influenced by
science, no discipline can be taken seriously if it does not account for itself in
relation to science.

A Radical Shift in the Narrative

A radical shift in the narrative begins with Chapter 6. A chronicle that seemed to
be complete runs abruptly into the quandary of complex systems. The issues are
essentially mathematical and statistical. Thus, the presentation takes on a more
mathematical tone. Many of the specifics are set in the context of biology, which
some have proclaimed to be the key science of the Twenty-first Century. In fact,
the underlying problems of system complexity and data paucity span the range of
scientific investigation, from biology to economics to social science. While our
computational ability continues to grow, thereby fueling the demand for
modeling complex phenomena, limitations on human conceptualization and data
appear to preclude the formation of valid scientific theory in many domains—at
least insofar as scientific epistemology has thus far evolved. We are in the midst
of a new epistemological crisis. What could be more exhilarating for a scientist,
engineer, or philosopher? Yes, we are confused, but confusion is the norm when
one is on the frontier—and where else would one want to be?

The last chapter of the book considers the impact of scientific uncertainty on
the translation of scientific knowledge into means to alter the course of Nature—
that is, the effect of uncertainty in engineering. It proposes a course of action
based on integrating existing partial knowledge with limited data to arrive at an
optimal operation on some system, where optimality is conditioned on the
uncertainty regarding the system. It explains the classical paradigm of optimal
operator design based on a scientific model, a class of potential operations, and a
quantitative measure of performance, all of which presupposes a system
description whose predictions are concordant with observations. It then
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postulates an alternative optimization paradigm grounded in a Bayesian
framework to take advantage of existing partial knowledge pertaining to the
physical system of interest. The ultimate scientific problem of model validation is
not solved; rather, the thinking here is that of an engineer: find an optimization
framework in which pragmatic goals can be achieved. As for a new scientific
epistemology in which valid knowledge can be defined, that awaits the bold
efforts of fertile minds enriched with the mathematical, scientific, and
philosophic education required for such a quest.






Chapter 1
Why Epistemology?

1.1 The Desire to Know

The opening line of Aristotle’s Metaphysics states, “All men by nature desire to
know.” But what does it mean to know? While one might wish for a universal
answer to this question, none as yet has been forthcoming. As we understand the
question, what it means to have knowledge depends on one’s standpoint. Moral
knowledge is of a different kind than scientific knowledge. Even in science, the
domain of scientific knowledge and what is accepted as authentic knowledge,
meaning that it is accepted as “true,” has changed dramatically over time.

The domain of scientific knowledge for Aristotle was much smaller than it is
today. He could not make observations of the atom or of distant galaxies. He
could not observe the genes and proteins in a cell, nor could he measure electrical
impulses in the brain. His concept of truth was limited by his ability to observe
and measure, but it was also limited by the mathematical systems he had
available to represent the behavior he viewed. It is naive to think that our concept
of knowledge in today’s world of quantum physics and microbiology would be
the same as it was for Aristotle in 340 BC, what it was for Newton in 1687, or
what it will be in 2500.

Scientific knowledge relates to the manner in which the mind formulates and
operates on ideas concerning Nature. These must ultimately be related to our
senses that provide the data from which the neural system formulates ideas. My
idea of a rock is not outside my mind. Something is out there that results in
sensations, that in turn results in the idea of a rock. Such ideas are the raw
material of theories that describe the interaction of the ideas—and if a theory is
valid it should produce consequences that can be checked against future
sensations. The fundamental point is that theoretical operations in the mind
correspond to physical operations in Nature that are not directly experienced, but
whose activity is reflected in new sensations resulting in new ideas concordant
with outcomes the original operations predicted. This very general description of
scientific knowledge has been developed over many centuries and is not
Aristotle’s view.

The first aim of this book is to trace this development up to and including the
turbulent effects of quantum mechanics in the Twentieth Century. The second
aim, which cannot be accomplished absent an appreciation of the subtle relations

5



6 Chapter 1

between reason, science, and metaphysics, including their historical evolution, is
to scrutinize the new and rapidly accelerating crisis of scientific knowledge that
has accompanied the desire to model extremely complex systems such as those
arising in biology, environmental science, economics, and social science.

1.2 What is Epistemology?

Implicit in these aims is that it is possible to characterize a specific kind of
knowledge to be called “scientific.” This characterization lies outside of science
and must be constructed prior to the organization of experience within scientific
categories. Such characterization amounts to having a theory of scientific
knowledge. Epistemology is defined as the theory of knowledge, so a scientific
epistemology is required. What would it entail?

Wilhelm Windelband (1848-1914) defines epistemology in the following
way: “The problems, finally, which arise from the questions concerning the range
and limit of man’s knowing faculty and its relation to the reality to be known
form the subject-matter of epistemology or theory of knowledge.” [Windelband,
1958] Taking the word “range” to refer to the kind, or nature, of the knowledge
under consideration, the nature of scientific knowledge is determined by its
manner of representation and its criteria for truth; its limitations are determined
by the limits of its form of representation and the degree to which its criteria of
truth can be applied; and its relation to reality is determined by the manner in
which its representation is connected to physical phenomena and the relation
between scientific truth and physical phenomena.

Many researchers appear to believe that epistemological issues are too arcane
and irrelevant to their everyday efforts. One just has to get on with gathering
data, building models, and justifying the models. But how should one gather data,
what kind of models should be constructed, and, most importantly, what
constitutes genuine validation? These questions relate to Windelband’s definition
of epistemology. Absent some understanding of their answers, one might spend
years wandering about aimlessly, producing meaningless results, simply because
a bona fide theory must conform to the epistemological requirements of science.

José Ortega y Gasset (1883—1944) phrases the matter this way: “Whoever
wishes to have ideas must first prepare himself to desire truth and to accept the
rules of the game imposed by it. It is no use speaking of ideas when there is no
acceptance of a higher authority to regulate them, a series of standards to which it
is possible to appeal in a discussion.” [Ortega y Gasset, 1994]

The foundations of a discipline are inseparable from the rules of its game,
without which there is no discipline, just idle talk. The foundations of science
reside in its epistemology, meaning that they lie in the mathematical formulation
of knowledge, structured experimentation, and statistical characterization of
validity. Rules impose limitations. These may be unpleasant, but they arise from
the need to link ideas in the mind to natural phenomena. The mature scientist
must overcome the desire for intuitive understanding and certainty, and must live
with stringent limitations and radical uncertainty.
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Inattention to epistemology results in research that appears scientific but fails
to have depth, or even worse, is scientifically unsound. Albert Einstein (1879—
1955) writes, “The reciprocal relationship of epistemology and science is of a
noteworthy kind. They are dependent upon each other. Epistemology without
contact with science becomes an empty scheme. Science without epistemology
is—insofar as it is thinkable at all—primitive and muddled.” [Einstein, 1949]

Only through deep reflection on epistemology can one come to grasp what it
means to possess scientific knowledge of Nature and therefore be in a position to
effectively seek such knowledge. Significant effort must be spent escaping a
naive realism that would attempt to force one’s conceptualizations of Nature to
conform to ordinary everyday understanding.

In a letter, Einstein wrote the following:

I fully agree with you about the significance and educational value of
methodology as well as history and philosophy of science. So many
people today—and even professional scientists—seem to me like
somebody who has seen thousands of trees but has never seen a forest. A
knowledge of the historic and philosophical background gives that kind
of independence from prejudices of his generation from which most
scientists are suffering. This independence created by philosophical
insight is—in my opinion—the mark of distinction between a mere
artisan or specialist and a real seeker after truth. [Einstein, 1944a]
“Independence from the prejudices of his generation!” Only in this way can one
break free of the run-of-the-mill grind that never gets to the heart of the matter.

1.3 Modern Science

Starting in the early part of the Seventeenth Century, a radical new understanding
of natural science took shape. On the one hand, Francis Bacon proposed ordered
observations in the context of experimental design; on the other, Galileo
contended that scientific knowledge must be constituted within mathematics and
not be bound by the need to explain matters in ordinary language. Isaac Newton
manifested Galileo’s conception with his laws of motion, which he proclaimed
free of non-empirical, metaphysical notions such as substance and causality. This
was indeed a “new science.” What is gravity? Who knows? All that matters is
that science provides mathematical descriptions of behavior. It would no longer
be required to satisfy the human desire for explanations in a deeper reality.

Mathematics was not new to science; Archimedes, the greatest scientist of
antiquity, was a great mathematician and this was reflected in his scientific
thinking. Now, however, instead of supporting a theory whose status as authentic
knowledge was rooted in causality, mathematics was the theory. Knowledge was
constituted within it, and its validity depended solely on its ability to make
predictions confirmed by observation. The birth of modern science was the
greatest revolution in human history. It radically changed the human condition
because it altered man’s perspective on himself and Nature.
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The full extent of the change did not become apparent until the arrival of
quantum mechanics in the Twentieth Century. Only then did the unintelligibility
of Nature become forcefully apparent with the uncertainty principle and strange
notions like wave-particle duality. The theory was mathematically sound and
agreed with predictions, but defied human understanding.

Hannah Arendt (1906—1975) frames the dilemma brought about by science in
the early Twentieth Century: “To understand physical reality seems to demand
not only the renunciation of an anthropocentric or geocentric world view, but
also a radical elimination of all anthropomorphic elements and principles, as they
arise either from the world given to the five senses or from the categories
inherent in the human mind.” [Arendt, 1977a]

It is not just that the senses cannot be trusted; neither can the categories of
our understanding, which form the womb in which modern science was
conceived. Indeed, Nature is not even thinkable. Arendt writes, “The trouble, in
other words, is not that the modern physical universe cannot be visualized, for
this is a matter of course under the assumption that Nature does not reveal itself
to the human senses; the uneasiness begins when Nature turns out to be
inconceivable, that is, unthinkable in terms of pure reasoning as well.” [Arendt,
1977b]

A vast number of scientists have not even taken Newton to heart, let alone
come to terms with the strangeness of Nature to which Arendt is referring. Many
appear to hope that a light will go on, Nature will become transparent, and simple
explanations will emerge. Engaging the subtleties of epistemology will quickly
rid one of such a puerile outlook. Indeed, as technology provides more detailed
observation, Nature is becoming more unfathomable.

1.4 The Crisis of Complexity

With the advent of the Twenty-first Century, it has become apparent that the
epistemology that began with Galileo, took shape with Isaac Newton, and came
to fruition in the first half of the Twentieth Century with Niels Bohr, Hans
Reichenbach, and others cannot support the desire to model complex systems.
Across disciplines, scientists and engineers want to gain knowledge of large-
scale systems composed of thousands of variables interacting nonlinearly and
stochastically, often over long time periods. This massive complexity makes the
standard modes of discovery and validation impossible.

The unverifiable character of many proposed systems is most troubling
because the proliferation of such systems compromises the notion of scientific
truth and threatens to erode the credibility of science. Consider medicine, which
confronts huge complexity in physiological systems. In 2011, Janet Woodcock,
Director of the Center for Drug Evaluation and Research at the FDA, estimated
that as much as 75% of published biomarker associations are not replicable. She
went on to comment, “This poses a huge challenge for industry in biomarker
identification and diagnostics development.” [Ray, 2011] This dismal record
could only have been produced by a widespread lack of attention to legitimate
scientific method. A large number of studies involving immense complexity or
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dimensionality have been undertaken in which there is no possibility of obtaining
scientifically meaningful conclusions.

If, as Aristotle says, all men desire to know, and in the Twenty-first Century
the desire is for knowledge of complex systems, then, in Windelband’s words,
scientists must address “the questions concerning the range and limit of man’s
knowing faculty,” as these pertain to systems involving high dimensionality,
complexity, and uncertainty.






Chapter 2
Pre-Galilean Science

2.1 Deep Roots

The roots of science are within the roots of philosophy because until relatively
recently science was not distinguished from philosophy; it was considered to be
natural philosophy. This lack of separation is reflected throughout Greek science.
Proceeding historically from ancient Greece into the Eighteenth Century there is
a continuing, although not necessarily progressive, untangling of reason, science,
metaphysics, and faith. It is important to recognize the growing demarcation of
science, as a subject in its own right, over the centuries if one is going to acquire
a deep understanding of the Twentieth Century developments, in particular, the
role of uncertainty and the lack of absolute objectivity.

This chapter begins with Aristotle’s epistemology and outlines the evolution
of reason and science prior to the birth of modern science in the Seventeenth
Century. There were outstanding Greek scientists before Aristotle, of which we
mention three: (i) Thales (624-546 BC), who first used deduction to prove
geometric theorems, studied astronomy independently of astrology, and predicted
the eclipse of the sun on May 28, 585 BC; (ii) Empedocles (492432 BC), who
expounded a theory of evolution in which all higher forms develop from lower
forms and there are no sharp distinctions between species, with Nature producing
monstrosities that perish on account of maladaptation and organisms that
propagate by meeting the conditions of survival; and (iii) Democritus (460-370
BC), who proposed an atomic theory of matter governed by necessity via natural
causes and who postulated the preservation of matter, it being neither created nor
destroyed, with only atomic combinations changing. The roots of science go very
deep.

2.2 Aristotle: Causality as the Ground of Knowledge

Aristotle (384-322 BC), a Macedonian, put into place the basic tenets of logic
and scientific epistemology that remained dominant for two thousand years. His
fundamental aim was to analyze the process and technique of reasoning. What is
reason? What is the domain of reason? His major logical treatise, the Organon,
served as the major logic text for two millennia.

11



12 Chapter 2

2.2.1 Plato: Allegory of the cave

For Aristotle’s mentor Plato (428-348 BC), the path to true knowledge lies
beyond the material world. In The Republic, Socrates tells Glaucon the famous
allegory of the cave, in which prisoners sit chained with their heads bound
straight ahead. Behind them a fire is burning. Between the fire and the prisoners
is a raised way with a low wall behind which men move about carrying statues
and other structures, held above the wall, so that their shadows appear on the
cave wall opposite the fire. These shadows constitute the world observed by the
prisoners. We are the prisoners condemned by the human condition to see only
the ephemeral shadows of sensibility that are thin reflections of a deeper reality,
one that is permanent and, unlike the shadow world, not always passing away.

True knowledge is knowledge of the forms that constitute that deeper reality
and these can only be reached by reason. Empirical knowledge is shadow
knowledge and leaves us in perpetual darkness. Mathematics, which to the
ancient Greek mind meant geometry, is unchanging and independent of the
senses. As a mathematical entity, a triangle is a form that has permanence and
mathematical knowledge of triangles is true knowledge, whereas any physical
instance of a triangle is only a crude shadow of a real triangle and knowledge of
physical triangles is a vulgar kind of knowledge. Like mathematics, metaphysical
knowledge is not transient and concerns the truly real, not shadows. It is not
surprising that Plato took so little interest in natural science.

As to a demarcation between science and metaphysics, Windelband writes,

The general questions which concern the actual taken as a whole are
distinguished from those which deal with single provisions of the actual.
The former, viz. the highest principles for explaining the universe, and
the general view of the universe based on these principles, form the
problems of metaphysics.... The special provisions of the actual are
Nature and History. [Windelband, 1958]

Natural science comes under the province of Nature.

The grand issues that concern explaining the universe as a whole form the
problems of metaphysics. Metaphysical explanations go beyond explanations of
individual conditions (provisions) within the world to a unity of all individual
conditions, not simply as a collection of conditions, but integrated within the
context of the whole. Metaphysics does not concern this or that scientific
principle but rather the deeper reality governing scientific principles in general.
From Plato onward it has been a perpetual struggle to keep science and
metaphysics demarcated.

Plato’s placing the physical below the metaphysical has had great impact for
over two thousand years. The metaphysician is enlightened; the physical scientist
is not. In deprecating the natural sciences in favor of metaphysics, Plato has had
the effect of encouraging the infusion of metaphysical speculation into science, a
problem still with us today.
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2.2.2 Aristotle’s epistemology

For Aristotle the basic axiom of logic is the law of contradiction: “X and (not X)”
is always false. Logical arguments are based on syllogisms, such as the classical
example: All men are mortal; Socrates is a man; therefore, Socrates is mortal.
Aristotle put great emphasis on definitions as they pertain to the class of an
object and the differences between objects in a class. The defining attribute of a
class is called a universal; for instance, the class of all triangles is characterized
by certain properties that define an abstract triangle, the latter being a universal.
Only individual objects exist in the material world. For Plato, a universal exists
as a form in a deeper reality, but for Aristotle, a universal is simply a concept, or
general idea. This conceptual view is in line with his empirical view that the
senses are the only source of knowledge and observation is necessary for science.

While the issue of universals might appear abstruse, one’s attitude towards
universals is closely related to his view of reality. There tends to be three general
positions. In the realist view, universals (man, truth,...) are real. “Man” is more
than simply the set of individual men. In the nominalist view, which is common
today, universals are simply names of sets and only the elements are real. In the
conceptualist view, a universal refers to a general idea in the mind.

Aristotle diverged from Plato by paying serious attention to the physical
world, in particular, biology. He made many observations and made serious
efforts to record and explain them; however, he lacked the notion of a model-
based designed experiment. Although he emphasized observation, Aristotle
placed the authenticity of knowledge in metaphysics. In Book III of the Physics,
Aristotle writes, “Knowledge is the object of our inquiry, and men do not think
they know a thing till they have grasped the ‘why’ of it (which is to grasp its
primary cause).” [Aristotle, 335 BC] By insisting on an answer as to why, he
points to a deeper reality (cause) beyond the phenomena (shadows). Whereas
Plato left the deeper reality to the abstract, mystical world of forms, and therefore
had little impact on actual scientific enquiry, Aristotle related the ‘why’ to the
phenomena via causality, thereby having a huge impact on the future
development of science. As described by Aristotle, causality has to do with
providing categories of explanation. Knowledge is explanation surrounding the
question of why and is based on four causes.

The four causes are defined in the Physics. A material cause is “that out of
which a thing comes to be and persists.” It is “the bronze of the statue, the silver
of the bowl, and the genera of which the bronze and the silver are species.” A
formal cause is “the form or the archetype, i.e. the statement of the essence, and
its genera,...and the parts in the definition.” An efficient cause is “the primary
source of the change or coming to rest; e. g. the man who gave advice is a cause,
the father is the cause of the child, and generally what makes of what is made and
what causes change of what is changed.” A final cause is “the end, or that for the
sake of which a thing is done, e. g. health is the cause of walking about.... The
same is true also of all the intermediate steps that are brought about through the
action of something else as means toward the end.” The same analysis is
provided by Aristotle in the Metaphysics.
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An efficient cause seems most in accord with our ordinary understanding of
causality, but what does it mean to be “the primary source of the change or
coming to rest?” Perhaps if one thinks of a moving billiard ball hitting another
billiard ball at rest, then a casual observer might say in the vernacular that the
moving billiard ball is the “cause” of the motion of the previously stationary
billiard ball. But this everyday appeal to causality lacks any quantitative
description. The latter would involve velocity, impact angle, elasticity, friction,
air resistance, etc. Note that we have avoided trying to define “causality” in its
current usage, instead allowing the reader to simply recognize the obvious
difference or agreement with Aristotle. As we proceed, it will become apparent
that defining causality in any meaningful sense is problematic.

The metaphysical nature of Aristotle’s notion of cause is revealed by his use
of it to prove the existence of God. He argues that there must be a first cause,
uncaused, and that first cause is God. He is the prime mover, after which all
movement is imparted.

Our primary concern with the epistemology characterized by Aristotle’s
conception of causal knowledge is the orientation towards the science of Nature
engendered by it and the resulting impact on the future development of scientific
epistemology. Three points are fundamental to Aristotle’s epistemology: (1) to
know is to explain; (2) explanation must involve a causal relation; and (3) there is
no demarcation between physics and metaphysics. The evolution of scientific
epistemology has involved the demolition of these three pillars of Aristotelian
epistemology and the removal of their retarding effect on scientific advancement.

2.3 Evolution and the Argument from Design

Empedocles expounded an evolutionary theory, but a more significant and
modern articulation of natural selection was put forth by Lucretius (99-55 BC)
in De Rerum Natura (On the Nature of Things), one of the greatest treatises of
Roman society. He writes,

Many were the monsters that the earth tried to make.... It was in vain;
Nature denied them growth, nor could they find food or join in the way
of love.... Many kinds of animals must have perished then unable to
forge the chain of procreation...for those to which nature gave no
protective qualities lay at the mercy of others, and were soon destroyed.
[Lucretius, 56 BC]

As framed by Charles Darwin (obviously without the genetic knowledge
available today), organisms possessing different variants of a trait may have
environmental advantages, thereby enhancing their survivability relative to other
variants and thus facilitating greater reproduction. This natural selection occurs at
the phenotypic level but the reproductive advantage (or disadvantage) shows up
at the genetic level, the result being that populations evolve. This evolution is
broken down into two general categories: (1) microevolution refers to changes
within a species; and (2) macroevolution refers to the emergence of new species.
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For this categorization to be meaningful, the definition of a species must be tight
and universal, not something vague like a class of organisms possessing many
similarities; otherwise, it will be subjective, not inter-subjective, and what for one
person is microevolution may be macroevolution for another. Although Lucretius
lacked mechanistic understanding of evolution, his analysis in terms of natural
selection was sophisticated.

The argument from design was also discussed during the Roman period. In
fact, it goes back to the Greek Stoics with little change. Cicero (10643 BC), in
De Natura Deorum (On the Nature of the Gods), writes, “When you see a sundial
or a water-clock, you see that it tells the time by design and not by chance. How
then can you imagine that the universe as a whole is devoid of purpose and
intelligence, when it embraces everything, including these artifacts themselves
and their artificers?” [Cicero, 45 BC] This feleological argument relates to
purpose, or final cause, and not, as is more popular today, an argument based on
complexity.

Both Lucretius’ theory of evolution and Cicero’s argument from design
depend on reason operating on observations. The degree to which they are or are
not scientific depends on the epistemology of science.

2.4 The Fall and Rise of Reason

Since our interest is primarily in the nature of scientific knowledge, we shall skip
to the beginning of the Middle Ages, which we take to be 325 AD, marked by the
Council of Nicaea, where the Christian creed was codified under the watchful
eye of the emperor Constantine. Much great work was done during the period
between Aristotle and the commencement of the Middle Ages, for instance, in
geometry and in the studies of Archimedes, but this is not our interest.

We leave it to historians to decipher the factors leading to the abandonment
of reason in the Roman world as Rome entered what was perhaps its final great
phase under Constantine. Very likely the decline in reason and the move to faith
were inextricably interwoven, with the failure of reason to bring material well
being and spiritual contentment. For our purposes it is important to mention some
markers in the fall and rise of reason.

2.4.1 Believe that you may understand

The fundamental problem was to reconcile reason with faith in the Age of Faith.
St. Augustine (354—430) of Hippo and a Doctor of the Church, argued that the
intellect is weak and there are many paradoxes that human reason cannot resolve.
Therefore, do not try to ground faith upon reason. Augustine advises, “Seek not
to understand that you may believe, but believe that you may understand.” Put
another way, faith precedes understanding. Augustine did not come to this view
because his reasoning was weak; rather, his reason was strong but it could not
lead him to the certainty of faith. Since faith is primary for Augustine, it must
lead the way to understanding. If reason does not agree with faith, then reason
must yield.
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Regarding the Bible, Augustine applies the same basic argument: “Dispute
not by excited argument those things which you do not yet comprehend, or those
which in the Scriptures appear...to be incongruous and contradictory; meekly
defer the day of your understanding.” [Augustine, in Durant, 1950]. The Bible is
not to be taken literally. It cannot be an arbiter of theological disputes. These
must be settled by Church councils.

2.4.2 Islamic transition

Although dormant in Europe, reason was far from dead. It had earlier migrated
into areas that were to be conquered by Islam and there it was preserved and
prospered for some time.

Avicenna (Ibn Sma, 980-1037) was a Persian Aristotelian for whom reason
is the arbiter of knowledge and knowledge of the natural world is obtained via
observation. Like Aristotle, he argued that contingent beings require a first cause;
hence, God must exist. He aimed to reconcile Islamic dogma with Aristotelian
reason. Regarding the existence of universals, he argued that they exist as real
entities in the mind of God, like Plato’s forms, and they exist as concepts in the
human mind, in agreement with Aristotle. Regarding religious dogma, parables
are needed to ensure the moral order, but for philosophers, reason must ground
knowledge. Avicenna influenced medieval European philosophy, including
Thomas Aquinas.

It is a common sequence in history for reason as queen to give way to faith
when reason proves unable to arrive at truth or to provide answers to the deepest
questions men pose: on freedom, on immortality, on God. We have seen this turn
with Augustine. His was part of a great millennial metamorphosis into the
medieval mind. Following the heights of reason in Plato and Aristotle, it was
only a few short years to the skepticism and return to religion of Pyrrho, and
more generally of the path trod by the Skeptics and Stoics. An analogous move
will play a key role in the Enlightenment during the Eighteenth Century and
affect the course of science.

The Enlightenment conflict was foreshadowed in Islam at the end of the
Eleventh Century by one of Islam’s greatest philosophers, al-Ghazali (1058—
1111). In his critique of reason, he anticipated David Hume by arguing that
reason depends on causality and causality is merely temporal regularity. He
anticipated Immanuel Kant by contending that reason cannot prove the existence
of God or immortality, without which there is no moral order, without which
civilization cannot survive. The only option is to return to the orthodoxy of the
Quran and Hadith. Al-Ghazali’s influence was conclusive: reason and science
began to wane in Islam. His argument is powerful, not too dissimilar from that of
Augustine and Martin Luther. Kant will attempt to preserve both science and
faith by limiting “pure reason” to science and basing faith on “practical reason.”

Following a long hiatus of almost a thousand years, reason would return to
Europe. A key factor in the process was the attempt of Christianity to regain
control of the Holy Land with the Crusades. It was during this period, 1095—
1291, that the contact and mixing between a mature Islamic civilization that had
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preserved the science and philosophy of ancient Greece and an adolescent
European civilization that had suffered through the Dark Ages facilitated the
movement of knowledge to Europe, including the translation from Arabic into
Latin of ancient Greek texts. The Crusades also facilitated the integration of
Europe under the Catholic Church, an integration that would break down with the
emergence of monarchies.

Averroes (Ibn Rushd, 1126-1198), born in Cordoba, present-day Spain, was
a major figure, perhaps the most important, in this movement of knowledge from
Islam to Europe. He was an Aristotelian and, contra al-Ghazali, accepted that
philosophy may risk atheism, but potentially there can be harmony between
religion and philosophy. Indeed, religious dogma as symbol can be harmonized
with philosophy by minimizing dogma to reconcile it with reason. Philosophers
should be free to think and speak amongst themselves. They do not take the Bible
or Quran literally but they recognize that the general public needs myths. Taking
a view that in several hundred years would be held by many scientists, Averroes
believed that natural law rules the world without any interference by God—a
position unwelcome by Islam and Christianity. Indeed, Averroes had negligible
influence in Islam, which had turned towards orthodoxy following al-Ghazali,
but his philosophical thinking swept the educated circles in France and England,
where secularism was beginning to contend with orthodox Christianity. It might
not be too strong of a statement to say that Averroes brought Aristotle to Europe.

2.4.3 The Thirteenth Century: an age of reason

When Aristotle’s Physics and Metaphysics arrived in Paris during the first decade
of the Thirteenth Century, the European mind was roused. All the old conflicts
between reason and faith took on new fervor. Out of these disputes arose the
great Doctor of the Church, Thomas Aquinas (1225-1274). Contra Averroes, he
aimed to make Aristotle consistent with Christianity. Contra Augustine, he
elevated the intellect over the heart. Like Aristotle, for Aquinas truth is
equivalence, in some sense, of thought with the thing. This view is a form of
naive realism and will be demolished with the coming of modern science.

Yet Aquinas cannot be neatly fit into rigid positions. He agrees with John
Locke that there is nothing in the intellect that is not first in the senses, except the
intellect itself, which agrees with Kant. Knowledge of Nature is acquired via the
senses; metaphysical knowledge, including God, is obtained by analogy; and
knowledge of the supernatural world comes only by faith. Taking this as a whole,
Aquinas recognizes the roles of faith, reason, and the senses. In his balanced
view, reason has its domain but must in some places yield to faith. In the Summa
Theologica, a treatise that stands as an outstanding testimony to human reason,
Aquinas writes, “Man is directed to God as to an end that surpasses the grasp of
his reason.” [Aquinas, 1485]

Just as al-Ghazali counteracted the reason of Avicenna, John Duns Scotus
(1266—-1308) followed quickly on the heels of Aquinas to confront reason on
behalf of faith. As a forerunner of Kant, Duns Scotus emphasized that reason
applied to religion leads to contradictions (Kant’s antinomies of pure reason) and,
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since religion is necessary for morality, dogmas of faith should be accepted as a
practical necessity (Kant’s practical reason). A battle between faith, the
Franciscans (Duns Scotus), and reason, the Dominicans (Aquinas), took place
within the Church. Even before Duns Scotus, it appeared that orthodox dogma
would prevail. In 1277, three propositions of Aquinas were declared heresies and
the Archbishop of Canterbury condemned Thomism.

Aquinas quickly recovered, being canonized as a saint in 1323. The Catholic
Church had to some extent legitimized reason and this would have huge effects
going further, including for science. Six centuries later in 1921 the Church went
so far as to declare Thomism its official philosophy. Much happened during the
intervening centuries. In the Sixteenth Century, the Protestant Reformation
attacked reason (Martin Luther, “That whore reason.”), looking to return to
Augustine, and the Catholic Church took an antagonistic view towards both
reason and science when they were perceived to threaten the Church—or perhaps
more accurately, perceived to threaten powerful interests in the Church. Fall-out
from the conflict between reason and faith (or its secular substitute, ideology)
always affects science.

Not only was modern philosophy foreshadowed in the Thirteenth Century
but so too was modern scientific epistemology. Roger Bacon (1214-1294)
asserted the two most fundamental aspects of that epistemology: first, scientific
theory takes mathematical form, and second, experiments provide final proof of a
theory. It would take many centuries before the meaning and application of these
statements would be clarified, but the ground had been seeded with the mental
form of theory and the requirement of an empirical connection.

Those living today often possess the distorted view of the days before the
Age of Reason as a period containing nothing more than an arid and tedious
scholasticism in which theologians argued amongst themselves as to how many
angels can dance on a pin head. Certainly there is much truth to this view;
however, the Thirteenth Century was itself an age of reason in which great
intellectual battles were fought whose outcomes would shape the Western World
for centuries, up into the modern period. In the Age of Faith, Will Durant writes,
“We must see the Thirteenth Century not as the unchallenged field of the great
Scholastics, but as a battleground on which, for seventy years, skeptics,
materialists, pantheists, and atheists contested with the theologians of the Church
for possession of the European mind.” [Durant, 1950]

2.4.4 William of Ockham: the razor

The Fourteenth Century produced a remarkably modern mind whose name may
be forever linked with the demand for concise theory. In addition to requiring an
empirical basis for knowledge, William of Ockham (1287-1347) called for
parsimony in reason. The famous Ockham’s razor states that a plurality (of
entities, causes, or factors) is not to be posited without necessity. Aquinas and
Duns Scotus had desired parsimony, but they were less rigorous in application.
Ockham wanted it applied everywhere, to metaphysics, science, and theology,
the latter presenting a particularly thorny domain in which to apply the razor.
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Ockham adopts a host of modern positions: philosophical and theological
truth are different; nothing can be an object of thought without having been an
object of the senses (Locke); universals are abstractions useful for thought,
existing only in the mind; reason’s conclusions are only meaningful as pertaining
to experience; our knowledge is molded by our perception (Kant); and there is no
objective truth. And Ockham was a theologian!

Beginning in antiquity we have come to the end of the Middle Ages, having
moved at lightning speed, hitting only the highest points; however, in doing so
we have touched upon the major issues facing reason and science heading into
the modern period by viewing them in terms of their greatest protagonists. This
provides a background for the epistemological eruptions to come in the
Seventeenth Century and hopefully has given the reader a sense that the big ideas
with us today have precursors running back through history.

2.5 Copernicus Moves Man from the Center of the Universe

The geocentric theory of Claudius Ptolemy (90—168), in which the earth is fixed
at the center of the universe with the sun and planets revolving around it, had
been generally accepted into the Sixteenth Century. The basic orbits are circular
but they require complex epicycles within the basic orbit and eccentrics that
move the basic orbit off center. The geocentric theory fit the existing data fairly
well, did a respectable job at predicting planetary motions for astronomical
charts, and had the metaphysically (theologically) pleasing consequence that
humanity held a very special place in the universe.

In 1543, Nicolaus Copernicus (1473-1543) in De Revolutionibus Orbium
Coelestium (On the Revolution of the Celestial Orbs) proposed the heliocentric
theory. It contained one of the most striking claims in European history: the sun
is fixed and the planets, including Earth, move in circular orbits about the sun.
Orbital predictions from the heliocentric theory were no better than those from
the geocentric theory; however, the heliocentric model was less complex, so that
based simply on predictive capacity and parsimony (Ockham’s razor) it was
superior. Nonetheless, it was not generally accepted; indeed, Tycho Brahe, the
greatest astronomer of the time, did not accept it.

The heliocentric theory of Copernicus was not completely novel. The idea
went back to Aristarchus of Samos (310-230 BC) and had been followed up in
more recent times by Nicole Oresme (1330-1382), Nicholas of Cusa (1401—
1464), and Leonardo da Vinci (1452—-1519). Nonetheless, it was Copernicus’
theory that got attention and ushered in a new conception of the human condition.

How important was it? In The Story of Civilization, Will and Ariel Durant
state what they consider to be “The basic events in the history of modern
Europe.” These events are three books: De Revolutionibus Orbium Coelestium by
Copernicus, Philosophiae Naturalis Principia Mathematica by Isaac Newton,
and The Origin of the Species by Charles Darwin. These books have driven the
philosophic, religious, and political evolution of Western Civilization.

Was the theory claimed to be true? Sounding very modern, the preface of De
Revolutionibus states:
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Many scientists, in view of the already widespread reputation of these
new hypotheses, will doubtless be greatly shocked by the theories of this
book.... However...the master’s hypotheses are not necessarily true;
they need not even be probable. It is completely sufficient if they lead to
a computation that is in accordance with the astronomical
observations.... Let us grant that the following new hypotheses take their
place beside the old ones which are not any more probable. Moreover,
these are really admirable and easy to grasp, and in addition we shall find
here a great treasure of the most learned observations. For the rest let no
one expect certainty from astronomy as regards hypotheses. It cannot
give this certainty. He who takes everything that is worked out for other
purposes, as truth, would leave this science probably more ignorant than
when he came to it. [Copernicus, 1543]

Truth is not claimed; only that when used in computations, the new theory
predicts the astronomical observations as well as any competing theory.

In fact, the statement was not written by Copernicus but by an assistant,
Andreas Osiander, apparently with the aim of keeping Copernicus out of the
hands of the Inquisition, and without the permission of the author. Nonetheless,
Osiander’s preface showed prudence of the kind necessary in science, where final
demonstrations are impossible. It is as though a Twentieth Century scientist had
stepped back in time to clarify the epistemological ground of the theory.

The Copernican theory suffers on account of the assumption of circular
orbits. Johannes Kepler (1571-1630) dropped this assumption and during the
period from 1609 to 1619 formulated three laws based on elliptical orbits:

I. Each planet moves in an elliptical orbit for which one focus is the sun.
II. Each planet moves faster when nearer the sun and a radius drawn
from the sun to the planet covers equal areas in equal times.

III. The square of the time of revolution of a planet around the sun is
proportional to the cube of its mean distance from the sun.

In addition to using elliptical instead of circular orbits to fit the data, Kepler’s
theory is structurally different than that of Copernicus because it involves
formulae for various aspects of planetary motion. The next step would await
Isaac Newton: derivation of planetary motion from a general theory of
gravitation, that is, from fundamental physical laws.



Chapter 3
The Birth of Modern Science

3.1 The Seventeenth Century

We shall define the Age of Reason to be the period between 1620, publication of
the New Organon by Francis Bacon, and 1750, publication of 4 Discourse on the
Moral Effects of the Arts and Sciences by Jean-Jacques Rousseau. As discussed
in the previous chapter, reason was well ensconced in European thought by the
end of the Thirteenth Century, but with the publication of the New Organon, it
took on an empirical flavor, the aim no longer being to reconcile reason with
faith, but to use it independently of faith to understand the world. With his
rejection of both reason and civilization, Rousseau ushered in the Romantic
Period, where sentiment and feeling take preference over reason.

During the Seventeenth Century, which is the focus of the present chapter,
Bacon propounded the central role of designed experiments, Galileo advanced
the notion that scientific knowledge must take mathematical form, Isaac Newton
formulated physics in terms of general mathematical laws, and, both Galileo and
Newton put aside the requirement of causal explanation, thereby dropping the
Aristotelian epistemology.

3.2 Francis Bacon: Empirical Method

Spurred by growing wealth and commerce, and the cross-pollination of ideas
engendered by increasing contact and communication, the Sixteenth Century had
witnessed a great increase in scientific investigation, capped by Copernicus’
heliocentric theory; nevertheless, Francis Bacon (1561-1626) saw progress being
hindered by pointless disputation lacking utility. Laying the blame on Aristotle,
he made the first major overt effort to break with The Philosopher. In distinction
with Aristotle’s Organon, he wrote the Novum Organum (New Organon).

In the first aphorism of the New Organon, Bacon states emphatically that
knowledge is rooted in experience: “Man, being the servant and interpreter of
Nature, can do and understand so much and so much only as he has observed in
fact or in thought of the course of Nature. Beyond this he neither knows anything
nor can do anything.” [Bacon, 1620] Empiricism is the ground of knowledge.
There will be no sterile speculation.

21
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3.2.1 Idols of the mind

Bacon identifies two key impediments to scientific progress. First, certain
prejudices in thinking impede objectivity and, second, efficient knowledge
discovery requires a formal method with which to approach and comprehend
Nature instead of haphazard observation and undisciplined imagination.

Regarding prejudice, Bacon identifies four “idols of the mind.” Idols of the
tribe are fallacies common to humanity in general that one holds simply by being
human. Our observations are necessarily filtered through our senses and our
perceptions are necessarily relative to the structure of our minds. Bacon explicitly
recognizes the formative role of the human understanding:

The Idols of the Tribe have their foundation in human nature itself, and
in the tribe or race of men. For it is a false assertion that the sense of man
is the measure of things. On the contrary, all perceptions as well of the
sense as of the mind are according to the measure of the individual and
not according to the measure of the universe. And the human
understanding is like a false mirror, which, receiving rays irregularly,
distorts and discolors the nature of things by mingling its own nature
with it. [Bacon, 1620]

Idols of the cave are personal or parochial prejudices. Arguments can be
twisted and turned to fit one’s prejudices and data can be selectively sought:

The Idols of the Cave are the idols of the individual man. For everyone
(besides the errors common to human nature in general) has a cave or
den of his own, which refracts and discolors the light of nature, owing
either to his own proper and peculiar nature; or to his education and
conversation with others; or to the reading of books, and the authority of
those whom he esteems and admires; or to the differences of
impressions, accordingly as they take place in a mind preoccupied and
predisposed or in a mind indifferent and settled. [Bacon, 1620]

Idols of the marketplace are fallacies arising from language, specifically, the
use of language to communicate ideas; everyday talk and fanciful story telling
distort rigorous scientific investigation:

The Idols of the Marketplace are the most troublesome of all — idols
which have crept into the understanding through the alliances of words
and names. For men believe that their reason governs words; but it is also
true that words react on the understanding; and this it is that has rendered
philosophy and the sciences sophistical and inactive. Now words, being
commonly framed and applied according to the capacity of the vulgar,
follow those lines of division which are most obvious to the vulgar
understanding. [Bacon, 1620]
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Idols of the theater involve the uncritical acceptance of dogma and popular
theories, in part because they are philosophically delightful or satisfy human
desire:

Idols of the Theater, or of Systems, are many, and there can be and
perhaps will be yet many more.... For as on the phenomena of the
heavens many hypotheses may be constructed, so likewise (and more
also) many various dogmas may be set up and established on the
phenomena of philosophy. And in the plays of this philosophical theater
you may observe the same thing which is found in the theater of the
poets, that stories invented for the stage are more compact and elegant,
and more as one would wish them to be, than true stories out of history.
[Bacon, 1620]

The deleterious effect of the idols on scientific research leads Bacon to desire
a universal method that avoids the temptations of the idols. The method he
proposes stems from his understanding of causality, which involves a re-
examination of Aristotle’s four causes.

3.2.2 Forms as law

Bacon agrees with Aristotle that causality is the ground of knowledge; however,
he separates Aristotle’s four causes as to whether they apply to physics or
metaphysics: material and efficient causes to physics, formal and final causes to
metaphysics. Bacon does not demarcate science from metaphysics. While he sees
no place for final causes in science, his preference for authentic scientific
understanding lies with formal causes. He writes,

It is a correct position that ‘true knowledge is knowledge by causes.’
And causes again are not improperly distributed into four kinds: the
material, the formal, the efficient, and the final.... The efficient and the
material (as they are investigated and received, that is, as remote causes,
without reference to the latent process leading to the form) are but slight
and superficial, and contribute little, if anything, to true and active
science.... For though in nature nothing really exists besides individual
bodies, performing pure individual acts according to a fixed law, yet in
philosophy this very law, and the investigation, discovery, and
explanation of it, is the foundation as well of knowledge as of operation.
And it is this law with its clauses that I mean when I speak of forms....
Now if a man's knowledge be confined to the efficient and material
causes (which are unstable causes, and merely vehicles, or causes which
convey the form in certain cases) he may arrive at new discoveries in
reference to substances in some degree similar to one another, and
selected beforehand; but he does not touch the deeper boundaries of
things. But whosoever is acquainted with forms embraces the unity of
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nature in substances the most unlike, and is able therefore to detect and
bring to light things never yet done. [Bacon, 1620]

Bacon separates himself from Plato by noting that forms do not give
existence and only individual bodies exist in Nature. These bodies act according
to a fixed law and “investigation, discovery and explanation of it” is the
foundation of knowledge. This law, which by Bacon is called a “form,” is not
within Nature; rather, it is metaphysical and governs Nature. It is in the domain
of metaphysics where “true and active science” resides. Knowing the material out
of which something comes to be or the source of change for a body’s change of
motion is “superficial” in comparison to knowledge of form. Efficient and
material causes do not touch “the deeper boundaries of things.”

Bacon distinguishes physics and metaphysics, and science intersects both,
with the more important aspect of science, that being formal cause, lying within
metaphysics. While the language of Bacon might appear muddled, one should
not overlook the advance in scientific perspective. Bacon drops final cause and
regards efficient and material causes as superficial. Suppose we go a bit further
than he and drop all reference to efficient and material causes. Then we are left
with only what he calls a formal cause. Let us examine this formal “cause.” First,
it is not within Nature. Second, it represents “true science.” Third, it corresponds
to a law governing natural behavior. Fourth, it allows the scientist “to detect and
bring to light things never yet done.” Thus, if we drop the word “cause,” drop the
appeal to explanation, and drop the characterization of a natural law as being
metaphysical, then it would be seen that Bacon has taken a significant step
towards modern science: the business of science is to discover natural law. We
are not saying that Bacon dropped Aristotle’s efficient and material causes, nor
that he disagreed with Aristotle regarding explanation, nor that by law he meant
anything beyond simple cause and effect, nor that he put aside metaphysics, but
we are saying that one can see in his thinking the beginning of the transformation
from Aristotelian to modern science.

3.2.3 Experimental design

Bacon desires a method to ascertain scientific knowledge via experiment, not
simply abstract reasoning. He recognizes that more is required than Aristotle’s
unplanned observations. Given that true knowledge rests upon causality, the form
of knowledge and its acquirement should conform to the causal relation. Thus,
causality becomes inextricably linked to induction: when we observe that event B
follows whenever event 4 is observed, then a cause-and-effect relation is in some
(unspecified) sense “logically” induced between 4 and B. For Bacon, this relation
is a formal cause and goes beyond the list of observations to a deeper knowledge
of reality. For Bacon, scientific knowledge is causal knowledge and this
knowledge is reached by the “logical” process of induction upon observing one
event, the effect, repeatedly following the other, the cause, without exception.
Think of billiard ball 4 repeatedly sent into billiard ball B. Each time, ball B
begins to move when hit by ball A4, the latter being the efficient cause. For Bacon,
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a deeper relation, one possessing true scientific knowledge, is induced in the
relation that any moving body 4 hitting a stationary body B will always result in
the stationary body moving. This more general relation about bodies would
constitute a formal cause. It is metaphysical and is induced from repeated
observations.

Bacon’s attempt to form logical machinery to infer law from data was
doomed to fail because it involved metaphysical confusion with science and
assumed a very simple physical world that somehow conformed to human logical
thinking. Nonetheless, his recognition that haphazard observation will not yield
the kind of structured observations that lead to knowledge discovery led Bacon to
his greatest contribution, articulation of the experimental method:

There remains simple experience which, if taken as it comes, is called
accident; if sought for, experiment. But this kind of experience is no
better than a broom without its band, as the saying is — a mere groping,
as of men in the dark, that feel all round them for the chance of finding
their way, when they had much better wait for daylight, or light a candle,
and then go. But the true method of experience, on the contrary, first
lights the candle, and then by means of the candle shows the way;
commencing as it does with experience duly ordered and digested, not
bungling or erratic, and from it educing axioms, and from established
axioms again new experiments. [Bacon, 1620]

Looking back over a century and a half since the New Organon, in the
Critique of Pure Reason, Immanuel Kant commented on the essence and
importance of Bacon’s call for rational experimental design:

It is only when experiment is directed by rational principles that it can
have any real utility. Reason must approach nature with the view, indeed,
of receiving information from it, not, however, in the character of a
pupil, who listens to all that his master chooses to tell him, but in that of
a judge, who compels the witnesses to reply to those questions which he
himself thinks fit to propose. To this single idea must the revolution be
ascribed, by which, after groping in the dark for so many centuries,
natural science was at length conducted into the path of certain progress.
[Kant, 1781]

Mind is inextricably embedded in the experimental method. Scientific
knowledge is not obtained via abstractions conjured up in thinking isolated from
data, nor from the blind collection of data absent a driving mental construct;
rather, it is a product of both reason and data, the latter being obtained according
to a plan of reason and then digested by reason in its theorizing. Bacon states the
matter metaphorically:
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Those who have handled sciences have been either men of experiment or
men of dogmas. The men of experiment are like the ant, they only collect
and use; the reasoners resemble spiders, who make cobwebs out of their
own substance. But the bee takes a middle course: it gathers its material
from the flowers of the garden and of the field, but transforms and
digests it by a power of its own. [Bacon, 1620]

Kant beautifully summarizes the ants and spiders in the Critique of Pure
Reason: “Perception without conception is empty; conception without perception
is blind.” This insight has been validated many thousands of times during the
progress of science; nevertheless, there are still many more ants and spiders than
there are bees.

3.3 Galileo: The Birth of Modern Science

While Francis Bacon was formulating the experimental method in England, in
Italy, besides making contributions to physics and astronomy, Galileo Galilei
(1564-1642) was articulating a behavior-oriented mathematical formulation of
scientific theory independent of causality. Modern science arrives with Galileo,
because he recognizes that science should concern itself solely with quantifiable
relations among phenomena. Galileo does not deny causality; rather, he brackets
it—sets it aside—and proceeds with the mathematical description of relations
between phenomena. In Dialogues Concerning Two New Sciences, Galileo puts
these words into the mouth of Salviati:

The present does not seem to me to be an opportune time to enter into the
investigation of the cause of the acceleration of natural motion,
concerning which various philosophers have produced various opinions,
some of them reducing this to approach to the center; others to the
presence of successively less parts of the medium [remaining] to be
divided; and others to a certain extrusion by the surrounding medium
which, in rejoining itself behind the moveable, goes pressing and
continually pushing it out. Such fantasies, and others like them, would
have to be examined and resolved, with little gain. For the present, it
suffices our Author that we understand him to want us to investigate and
demonstrate some attributes of a motion so accelerated (whatever be the
cause of its acceleration) that the momenta of its speed go increasing,
after its departure from rest, in that simple ratio with which the
continuation of time increases, which is the same as to say that in equal
times, equal additions of speed are made. [Galileo, 1638]

There would be “little gain” in examining the kind of “fantasies” put forth by
philosophers to explain acceleration in terms of causality. It is more beneficial to
“investigate and demonstrate some attributes of motion.” Galileo does not deny
causality; rather, he rejects it as a requirement for knowledge, thereby radically
breaking with Aristotle.
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Galileo is dissatisfied with words, Bacon’s idols of the marketplace. These
constitute ersatz knowledge, the result being both an illusion of knowledge and
an impediment to actual knowledge owing to satisfaction with empty phrases. In
Dialogue Concerning the Two Chief World Systems, when the Aristotelian
Simplicio comments that everyone knows that bodies fall on account of gravity,
Salviati responds,

You are wrong, Simplicio; you should say that everyone knows that it is
called ‘gravity.” But I am not asking you for the name, but the essence of
the thing. Of this you know not a bit more than you know the essence of
the mover of the stars in gyration. We don’t really understand what
principle or what power it is that moves a stone downwards, any more
than we understand what moves it upwards after it has left the projector,
or what moves the moon round. [Galileo, 1632]

Observation shows that bodies fall, and perhaps something called “causality”
is operating here, but to simply say that there is a cause and to name it provides
no knowledge. A name tells us nothing about the object being named or if such
an object exists. Moreover, understanding the power that moves a stone
downwards is not a prerequisite for providing a quantitative relation between the
stone and the earth. In general, cogitating on words can lead one away from the
phenomena rather than towards a characterization of their attributes.

Galileo contends that the book of Nature is written in mathematics. He
writes,

Philosophy is written in this grand book, the universe, which stands
continually open to our gaze. But the book cannot be understood unless
one first learns to comprehend the language and read the letters in which
it is composed. It is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures without
which it is humanly impossible to understand a single word of it; without
these, one wanders about in a dark labyrinth. [Galileo, 1623]

In arguing that mathematics is the language of the universe, Galileo mixes
metaphysics with science. While science may be written in mathematics, that is,
grounded in human epistemology, the extension of human epistemology to the
actual nature of Nature lies outside the realm of scientific knowledge and
constitutes a metaphysical argument.

3.3.1 Trial of Socrates

There have been two great trials pertaining to science and philosophy: Socrates in
399 BC at the beginning of the greatest period of ancient Greek philosophy and
Galileo in 1616 at the dawn of modern science. Tension between science and
society exists because political forces are often unhappy with a scientific theory
or wish to co-opt scientists to support a pseudo-scientific theory favorable to
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some ideology. Thus, scientists can find themselves under pressure to keep quiet
or bend the epistemological rules. While both political interference with science
and acquiescence to such interference certainly deserve disapprobation, it should
be recognized that science and philosophy have the potential to threaten the state.

The Peloponnesian War between the Athenian empire and the Spartan led
Peloponnesian League lasted from 431 BC to 404 BC and ended with the defeat
of Athens. Sparta imposed an Athenian government run by the “Thirty Tyrants.”
Their rule was brutal with many opponents being killed and they were ousted
after ruling for little more than a year. This was the atmosphere in 399 BC when
Socrates was brought before an Athenian court on the dual charges of corrupting
the youth and impiety. Athens was under dire threat.

In essence, the trial concerned the relationship of philosophy (science) to the
state. Where does the freedom to speak cross a line that the state cannot tolerate?
It would be facile to argue that there is no line. One cannot expect the freedom to
call for the assassination of the king. In effect, Socrates was accused of
undermining the viability of the civil society. He was impious because he did not
acknowledge the gods of the city. He claimed the right to let his own reason be
the arbiter and that he be allowed to promulgate his views. We see again the
problem of al-Ghazali: should philosophy be allowed to undermine the moral
order, and ultimately the civil order? This is a recurring theme and in 399 BC the
problem was exacerbated by the imminent danger faced by Athens.

Plato understands the dilemma. In the Apology the case is made for Socrates
and in the Crito it is made for the state. Socrates is clearly guilty and does not
deny it, arguing only that he is following the direction of “the god”—not a god of
the city. The profound issue is not whether Socrates is guilty but where the line
prohibiting philosophic and scientific enquiry should be drawn, or should there
be a line at all? Would not any line stifle free enquiry and ultimately distort
human knowledge of Nature? And would it not be inherently fuzzy, thereby
inviting abuse by those whose ambitions might be frustrated by such knowledge?

3.3.2 Trial of Galileo

The trial of Galileo is often misunderstood and misrepresented in the popular
media. On March 20, 1615, Tommaso Caccini delivered to the Congregation of
the Holy Office (the Inquisition) a letter stating that the Copernican heliocentric
theory is incompatible with the Bible and informing the Inquisition that Galileo
had advocated the theory. Later in the year, Cardinal Robert Bellarmine
explained the Church’s position at the time:

To say that on the supposition of the Earth's movement and the Sun's
quiescence all the celestial appearances are explained better than by the
theory of eccentrics and epicycles is to speak with excellent good sense
and to run no risk whatever. Such a manner of speaking is enough for a
mathematician. But to want to affirm that the Sun, in very truth, is at the
center of the universe and only rotates on its axis without going from east
to west, is a very dangerous attitude and one calculated not only to
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arouse all Scholastic philosophers and theologians but also to injure our
holy faith by contradicting the Scriptures.... If there were a real proof
that the Sun is in the center of the universe,...then we should have to
proceed with great circumspection in explaining passages of Scripture
which appear to teach the contrary. [Bellarmine, 1955]

Bellarmine is clear: should Galileo take the hypothetical view in Copernicus’
preface, then he would be at no “risk whatever;” however, to affirm the theory as
true would be “very dangerous.” But even should Galileo insist on the truth of
the heliocentric theory, if there were “real proof,” then the Church might have to
change her position. Bellarmine’s viewpoint was communicated to Galileo by
Piero Dini in a letter stating, in reference to Copernicus, that “with a similar
precaution you may at any time deal with these matters.”

Galileo decided to play a perilous game with the Inquisition. Still in 1615, he
wrote, “I mean to submit myself freely and renounce any errors into which I may
fall in this discourse through ignorance of matters pertaining to religion.... But |
do not feel obliged to believe that that same God who has endowed us with sense,
reason, and intellect has intended us to forgo their use.” [Galileo, 1615] He will
admit to errors owing to ignorance of religion, but theology must be wrong when
it contradicts reason. Like Socrates, he will not submit to the state in matters of
religion when his reason disagrees with the state.

The Inquisition responded: “The view that the sun stands motionless at the
center of the universe is foolish, philosophically false, and utterly heretical,
because [it is] contrary to Holy Scripture. The view that the earth is not the center
of the universe and even has a daily rotation is philosophically false, and at least
an erroneous belief.” [Congregation of the Holy Office, 1616] Whereas the
heliocentric theory had been acceptable as philosophy, following Galileo’s
challenge that compromise was withdrawn.

On February 26, 1616, the Inquisition ordered Galileo “to abstain altogether
from teaching or defending the said opinions and even from discussing them.”
Galileo submitted to the decree and avoided prison. But he never really accepted
it and continued to advocate the heliocentric theory, albeit, with less fanfare.
Eventually, on June 22, 1633, the Inquisition pronounced Galileo guilty of heresy
and disobedience. He spent three days in prison and was released by order of
Pope Urban VIII. In December, he was allowed to return to his own villa, still a
prisoner and confined to his own property, but free to continue his research and
host visitors.

Scientifically, Galileo’s position was specious. He was affirming truth when
the new science that he was in the process of creating, one absent causality, had
yet to establish a theory of knowledge. Moreover, he was supporting Copernicus’
theory rather than Kepler’s theory, of which he was well aware. The Inquisition’s
position lacks even a semblance of plausibility. Based on passages in the Bible
and the theological desire to have man situated at the center of the universe, it
rejected a scientific theory based on empirical observation in favor of another
theory that possessed no discernable empirical advantage over the one it was
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rejecting. As in the Athens of Socrates, the political situation in Europe was not
conducive to tolerance. Most of the ordeal between Galileo and the Church took
place during the Thirty Years War in Europe, which lasted from 1618 to 1648,
during which time great swaths of territory were laid waste and a large portion of
the population died from war, famine, and disease.

3.4 Isaac Newton: Hypotheses Non Fingo

Owing to our focus on epistemology, we go directly to Isaac Newton (1642—
1727), who in 1687 published the greatest scientific work and one of the Durants’
three most important events in modern European history, Philosophice Naturalis
Principia Mathematica (Mathematical Principles of Natural Philosophy).
Newton not only satisfies Galileo’s requirement of a strictly mathematical theory;
he also formulates the theory of motion in three compact statements from which
the quantitative behavior of bodies in motion can be developed via the
infinitesimal calculus.
Newton’s three laws of motion:

I.  Every body continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change that state by forces
impressed upon it.

II. The change of motion is proportional to the motive force impressed,
and is made in the direction of the straight line in which that force is
impressed.

III. To every action there is always opposed an equal reaction.

Using the laws of motion and the inverse square law, Newton mathematically
derived a planetary theory. He grounded his theory in laws that generate an
observable theory. The theory is not specific to the planets, as is the strictly
descriptive theory of Kepler. The laws are general and apply to planets, billiard
balls, and stars.

The epistemology of modern science begins to mature with Newton. The
structure is relational, its form is mathematical, and its propositions are ideal, in
the sense that relations between phenomena are characterized abstractly with the
recognition that in practice they will be affected by other conditions. The theory
is connected to the phenomena via its predictive capacity.

Consider gravity. Newton formulates a mathematical law of gravitation that
relates distance, mass, and acceleration. The gravitational law is mathematical,
relational, idealized insofar as when put into practice it ignores confounding
effects such as air resistance, and it can be related to phenomena via experiment.
The gravitational law mathematically characterizes a relation in such a way that
the relation can be used to make predictions, thereby providing a means for
validation and application. The mathematical structure represents a precise, inter-
subjective, and operational form of knowledge.
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The gravitational law contains no reference to some physical process behind
the relations and there is no mention of a cause of acceleration. Regarding
causality, Bertrand Russell (1872-1970) states,

In the motions of mutually gravitating bodies, there is nothing that can be
called a cause, and nothing that can be called an effect; there is merely a
formula. Certain differential equations can be found, which hold at every
instant for every particle of the system, and which, given the
configuration and velocities at one instant, or the configurations at two
instants, render the configuration at any other earlier or later instant
theoretically calculable.... But there is nothing that could be properly
called ‘cause’ and nothing that could be properly called ‘effect’ in such a
system. [Russell, 1913]

Like Galileo, Newton does not deny causality; he brackets it and formulates
knowledge independent of it. Newton signals his intent near the beginning of the
Principia when he writes, “For I here design only to give a mathematical notion
of these forces, without considering their physical causes and seats.” [Newton,
1687] Near the end of the Principia he leaves no doubt that he is creating a new
scientific epistemology:

Hitherto I have not been able to discover the cause of those properties of
gravity from the phenomena, and I frame no hypothesis; for whatever is
not deduced from the phenomena is to be called an hypothesis; and
hypotheses, whether metaphysical or physical, whether of occult
qualities or mechanical, have no place in experimental philosophy. In
this philosophy particular propositions are inferred from the phenomena,
and afterward rendered general by deduction. Thus it was the
impenetrability, the mobility, and the impulsive forces of bodies, and the
laws of motion and of gravitation were discovered. And to us it is enough
that gravity does really exist, and acts according to the laws which we
have explained, and abundantly serves to account for all the motions of
the celestial bodies, and of our sea. [Newton, 1687]

“Hypotheses non fingo”—l frame no hypotheses.” In three words, Newton
changes man’s perspective on himself and the universe, a change more profound
than the one brought about by Copernicus because it is a fundamental change in
what it means to know.

When speaking of gravity, Newton adds,

But our purpose is only to trace out the quantity and properties of this
force from the phenomena, and to apply what we discover in some
simple cases as principles, by which, in a mathematical way, we may
estimate the effects thereof in more involved cases: for it would be
endless and impossible to bring every particular to direct and immediate
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observation. We said, in a mathematical way, to avoid all questions about
the nature or quality of this force. [Newton, 1687]

There are two critical points in this statement. First, Newton is “to avoid all
questions about the nature” of gravity. As he said earlier, “it is enough that
gravity does really exist.” Something exists, but as Galileo had said, we know
nothing of its substance—a basic category of Aristotle that now disappears from
science. Second, the mathematical system is not meant to include all factors, but
is of sufficient predictive power that it can “estimate” effects in a more general
setting. Owing to its predictive nature, the mathematical system can be
empirically tested independently of the reasoning leading to it.

Galileo and Newton widen the scope of knowledge to include mathematical
systems that relate phenomena, while bracketing “questions about the nature” of
the phenomena. The physical substance behind the mathematical relations is
bracketed so that physical knowledge is constituted by mathematical knowledge,
with the proviso that the mathematical knowledge be explicitly related to
observations. Neither Galileo nor Newton explicitly deny causality; nevertheless,
they engender a radical epistemological transformation by describing relations
among phenomena in terms of mathematical formulas independent of causal or
physically intuitive explanations that can lead to “fantasies,” to use Galileo’s
terminology.

3.5 Determinism

Newton’s theory is deterministic: given an initial state (set of initial conditions) it
will evolve so that a unique state is reached at each point in time. If the universe
is causal, then its movement through time would be determined, each event
caused by some set of events, these having been in turn caused by preceding
events, the causal chain moving endlessly backwards and forwards in time.
Newton’s determinism is consistent with causality but does not imply causality.
As discussed previously, causality plays no role in Newton’s theory.

It was just such causal reasoning that led Aristotle to conclude that there
must be a first cause, uncaused, that being God. In The Leviathan, Thomas
Hobbes (1588-1679) states the implication of causality as it pertains to man’s
freedom:

Because every act of man’s will, and every desire and inclination,
proceedeth from some cause, and that from another cause, in a continual
chain (whose first link is in the hand of God the first of all causes), they
proceed from necessity. So that to him that could see the connection of
those causes, the necessity of all men’s voluntary actions would appear
manifest. [Hobbes, 1651]

The world is a machine governed by law, and so is man, whose desires and
actions proceed from necessity. As a consequence, free will is an illusion. Since
free will is required for man to be a moral being, he has no moral nature.
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Pierre-Simon Laplace (1749-1827), who is among the founders of
probability theory and a great physicist, recognizes the uncertainty in making
predictions but attributes this uncertainty to ignorance. While he sees the
practical need for a probabilistic approach to Nature, he holds on to causality as
existing in Nature. In the following famous passage from A Philosophical Essay
on Probabilities he formulates a complete determinism:

We ought then to regard the present state of the universe as the effect of
its anterior state and the cause of the one which is to follow. Given for
one instant an intelligence which could comprehend all the forces by
which nature is animated and the respective situation of the beings who
compose it—an intelligence sufficiently vast to submit this data to
analysis—it would embrace in the same formula the movements of the
greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present
in its eyes. [Laplace, 1814]

By conditioning deterministic knowledge on a “sufficiently vast”
intelligence, Laplace does not claim that human beings can achieve a completely
deterministic theory of Nature; nevertheless, he postulates determinism in Nature
based on causality in Nature. This causality is not merely temporal contiguity.
His words, “the present state of the universe as the effect of its anterior state and
the cause of the one which is to follow,” clearly suggest that there is more to
cause and effect than anterior to posterior.

Laplace’s statement makes it clear that determinism is a metaphysical, not a
scientific concept: it concerns a grand issue explaining the universe as a whole. It
does not concern this or that scientific principle but a deeper reality governing
scientific principles in general. Laplace speaks of an intelligence that can grasp
the movements of all bodies, but does not claim that the intelligence exists.
Laplace prefaces his determinism with causality but this need not have been the
case. He could have hypothesized a vast intelligence that knew all the laws of
physics and could at one instant make all the necessary measurements, and that
Nature is completely described by these laws.

3.6 Dissenting Voices

Newton’s Principia leaves us with a science that is both rational and empirical.
Reason supplies the laws but they are arrived at and validated empirically. If one
rejects either reason or the senses as being too unreliable to serve as a source of
knowledge, then science must be rejected. In the allegory of the cave, Plato
rejects the empirical as a source of certain knowledge and argues that only reason
can provide certain knowledge. This section considers two French philosophers
of the first half of the Seventeenth Century, one who distrusts the senses and
turns to rationalism, and another who distrusts reason and embraces faith.
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3.6.1 René Descartes: Cogito ergo sum

René¢ Descartes (1596—1650), French philosopher and mathematician, employed
the principle of methodological doubt in his Meditations on First Philosophy to
arrive at certainty by wiping the slate clean of his prior beliefs, which rest on
uncertain grounds, and by thinking of some underlying certainty upon which to
ground his beliefs. Such an undertaking would seem to be in accord with Bacon’s
criticism of the idols of the mind; however, whereas Bacon looks to observation,
Descartes rejects observation: “Everything which I have thus far accepted as
entirely true and assured has been acquired from the senses or by means of the
senses. But I have learned by experience that these senses sometimes mislead me,
and it is prudent never to trust wholly those things which have once deceived
me.” [Descartes, 1641].

Descartes postulates a situation in which he doubts all and only accepts that
which cannot be doubted. He does this by distrusting his senses, because these
sometimes mislead him and he distrusts all things that have ever deceived him.
But he trusts his reason. Whereas Bacon adopts an empiricism filtered by reason,
Descartes turns to a strict rationalism.

He assumes the existence of an evil spirit who is using all of his guile and
power to deceive him, so that it is possible that all his senses have been put there
to trick him. He will assume himself to possess neither hands, nor eyes, nor flesh,
nor blood, nor senses, but will assume that he has been tricked into believing that
he has all of these. Even in the face of this powerful, tricky, and perpetual
deceiver, Descartes concludes,

There can be no slightest doubt that I exist, since he deceives me; and let
him deceive me as much as he will, he can never make me be nothing as
long as I think that I am something. Thus, after having thought well on
this matter, and after examining all things with care, I must finally
conclude and maintain that this proposition: / am, [ exist, is necessarily
true every time that I pronounce it or conceive it in my mind. [Descartes,
1641]

This is the famous “Cogito ergo sum” (“I think, therefore I am.”). In
doubting there is thinking, there must be a thinker doing the doubting. As stated
long before by Augustine, “Who doubts that he lives and thinks?... For if he
doubts, he lives.”

Descartes concludes that he is a thinking being. He writes, “Thought is an
attribute that belongs to me; it alone is inseparable from my nature.” He goes on
to claim that it is inherent in a thinking being that he understands, conceives,
affirms, denies, wills, rejects, imagines, and perceives. He argues that these are
parts of thinking and it is “obvious that it is I who doubt, understand, and desire.”

In the Meditations, certainty is not rooted in any kind of concrete existence,
be it spiritual or corporeal; instead, it is rooted in the isolated thinking ego.
Existence must be demonstrated by a rational proof from within the isolated ego,
without recourse to the world in which actual existence takes place.
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To prove the existence of God, Descartes invokes a form of the ontological
argument. The thinker has a clear and distinct idea of God that includes
perfection, and existence is a necessary attribute for divine perfection. Descartes
conceives of a perfect, existing being. Were that being not to exist, then his
mental conception would be in error, and this cannot be since he has a clear and
distinct understanding of divine perfection. He writes,

That which we clearly and distinctly understand to belong to the true and
immutable nature of anything, its essence or form, can be truly affirmed
of that thing. But after we have with sufficient accuracy investigated the
nature of God, we clearly and distinctly understand that to exist belongs
to His true and immutable nature. Therefore we can with truth affirm of
God that He exists. [Descartes, 1963]

Descartes goes on to argue that, since God has now been proven to exist and
He is perfect, God cannot be a deceiver because Descartes’ idea of Him includes
that He is perfect and Descartes’ idea of perfection includes the attribute that a
perfect being cannot be a deceiver. Hence, Descartes is not being deceived into
believing something exists that does not exist when he has ideas of corporeal
objects. Descartes can now re-visit his doubting of ideas originating in his senses.

For Descartes, God's existence depends on his having an idea of Him. Other
truths can be reached by his having clear and distinct conceptions. He writes,

Whenever 1 restrict my volition within the bounds of my knowledge,
whenever my volition makes no judgment except upon matters clearly
and distinctly reported to it by the understanding, it cannot happen that I
err. For every clear and distinct conception is without doubt something
real and positive, and thus cannot derive its origin from nothingness, but
must have God for its author — God, I say, Who, being supremely
perfect, cannot be the cause of any error — and consequently we must
conclude that such a conception or such a judgment is true. [Descartes,
1641]

Ultimately, the ground of truth lies in the thinking being's clarity of thought. Any
judgment of Descartes based on a clear and distinct idea cannot be in error.

What if I have a clear and distinct conception that statement X is true and
Descartes has a clear and distinct conception that X is false? Unless Descartes is
going to argue that only his clear and distinct conceptions are true, both X and
not-X must be true. As for the ontological argument, which long preceded its use
by Descartes, suppose | clearly and distinctly understand that immortality
belongs to the true and immutable nature of a cat. Ipso facto, cats are immortal.

Descartes' rationalism is anti-scientific because scientific knowledge is
rooted in the phenomena and must be tied to it, not do Descartes’ clear and
distinct ideas. In Bacon’s metaphor, Descartes is a spider making cobwebs
according to is own fancy. Furthermore, whereas science aims to be inter-
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subjective, so that concepts can be shared and agreement reached as to why a
proposition is acceptable or not acceptable, even though there might not be
agreement on whether to accept or not accept, Descartes engages in a radical
subjectivism. No one but Descartes can judge the clearness and distinctness of
his conceptions.

One might be tempted to dismiss the Meditations as an absurd amusement,
but this would ignore the enormous impact of Descartes on Western thinking;
indeed, during the first two decades of the Twenty-first Century, the view that
truth is a private matter based solely on one’s internal thoughts has become
widespread. Such thinking is anathema to science. A major motivation in the
development of scientific epistemology has been to eliminate spider-cobweb
thinking.

3.6.2 Blaise Pascal: the eternal silence

Francis Bacon envisioned unending progress as scientific knowledge would
allow man to control Nature and extract the benefits. His maxim: ‘“Nature, to be
commanded, must be obeyed.” Man shall obey Nature to learn her secrets but
once they are known he will command her. A utopia will ensue in which
scientists provide all the benefits to mankind. Blaise Pascal (1623—-1662) had
doubts. Looking into the night sky at the dawn of modernity, he remarked, “The
eternal silence of those infinite spaces frightens me.” Philosopher William
Barrett comments that Western civilization is split in two by Pascal's thought:
before there was Nature, a gift of God in which man was at home; after, man is
homeless and alienated within the cosmos.

Pascal is one of the most subtle thinkers the world has known. His Pensées,
although a collection of notes and fragments, reveals a mind that cuts everywhere
to the quick. He was a scientist and great mathematician. He built the first
mechanical calculator and, along with Pierre Fermat, founded the calculus of
probabilities. He was among the greatest writers of French prose. Lastly, but not
least, he was a defender of faith in the Age of Reason.

Rather than like Descartes extolling the ability of reason to provide certain
knowledge or Bacon hoping that a new form of logical reasoning along the lines
of the inductive methods presented in the New Organon would reveal the
causality driving the physical world, Pascal saw reason to be weak and very
limited. Sounding like Immanuel Kant almost 150 years later, he argues that
reason cannot ground morality, reason cannot grasp the real nature of the world,
and reason cannot comprehend God, prove His existence, or prove immortality.
Portending the Romantic Period, Pascal exclaims, “The heart has its reasons,
which reason does not know.”

Pascal puts the deepest question of man before us:

When I consider the short duration of my life, swallowed up in the
eternity before and after, the little space which I fill, and even can see,
engulfed in the infinite immensity of spaces of which I am ignorant and
which know me not, I am frightened and I am astonished at being here
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rather than there; for there is no reason why here rather than there, why
now rather than then. Who has put me here? By whose order and
direction have this place and this time been allotted to me? The eternal
silence of those infinite spaces frightens me. [Pascal, 1986]

Pascal is not speaking here of rational analysis, propositions, and logical
proofs. Perhaps he wrote these lines in the hours after midnight, after having lain
in the grass on his back gazing up at the stars on a moonless night. Billions of
stars, light years away, appear at every angle above him. He imagines the mass of
all these stars measured against his own mass, which at once becomes nothing.
He imagines the light years and age of the universe measured against his own
time on earth, which is infinitesimal in comparison. Nothing! All of his
mathematical and scientific learning, and he knows nothing.

His advice: “Know then, proud man, what a paradox you are to yourself.
Humble yourself, weak reason; be silent, foolish nature; learn that man infinitely
transcends man, and learn from your Master your true condition, of which you
are ignorant. Hear God.” [Pascal, 1670]

So, in the Seventeenth Century, in which science emerges as a colossus to
transform man’s thinking and his place in the world, two of the greatest minds of
the century demur, one on behalf of reason over observation and the other on
behalf of faith over reason. These are two very different messages. Descartes’s
extreme rationalism is destructive of science, whereas Pascal is simply warning
of the limitations of science

In the Critique of Pure Reason, Immanuel Kant sounds a similar warning:

[Reason] begins with principles, which cannot be dispensed with in the
field of experience, and the truth and sufficiency of which are, at the
same time, insured by experience. With these principles it rises, in
obedience to the laws of its own nature, to ever higher and more remote
conditions. But it quickly discovers that, in this way, its labors must
remain ever incomplete, because new questions never cease to present
themselves; and thus it finds itself compelled to have recourse to
principles which transcend the region of experience, while they are
regarded by common sense without distrust. It thus falls into confusion
and contradictions. [Kant, 1781]

One may wish that science could uncover “the highest principles for explaining
the universe,” but it cannot.






Chapter 4
Reflections on the New
Science

4.1 Critique of Knowledge

As monumental as it was with respect to man’s view of the solar system, his
perception of his place in the universe, and his relation to God, the Copernican
theory did not structurally differ from Ptolemy’s theory. Thus, the Sixteenth
Century ended with no significant change in the structure of scientific knowledge
or its causal basis, which had been in place for approximately 2000 years. On the
other hand, beginning with Kepler’s laws, Bacon’s experimental method, and
Galileo’s mathematical epistemology, the Seventeenth Century produced a
radical break with the past, its greatest achievement being Newtonian science
based on general relational laws that applied to phenomena without requiring
reference to strictly physical categories.

Looking back on the Seventeenth Century, Alfred North Whitehead (1861—
1947), one the greatest philosophers of the Twentieth Century, commented,

A brief, and sufficiently accurate, description of the intellectual life of
the European races during the succeeding two centuries and a quarter up
to our own times is that they have been living upon the accumulated
capital of ideas provided for them by the genius of the seventeenth
century. The men of this epoch...bequeathed formed systems of thought
touching every aspect of human life. [Whitehead, 1990]

It should not be surprising that philosophers in the Eighteenth Century turned
their attention to gaining an appreciation of what this “new science” meant, in
particular, the relationship of Nature to both man and science, which involves the
relationship of science to man—his body, his mind, and his God. The result was
a profound critique of knowledge that saw the Eighteenth Century begin with
science virtually unchallenged and end with science in a virtual war with feeling.

39
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4.2 John Locke: The Mind as White Paper

John Locke (1632—-1704) lived almost his entire life in the Seventeenth Century
and published An Essay Concerning Human Understanding in 1689. We include
him in this chapter for two reasons: first, he published the Essay near the end of
the Seventeenth Century and after Newton’s Principia and, second, he is the first
of three major empiricists whom we will discuss, Locke followed by George
Berkeley and David Hume.

What is empiricism? Typically, it is defined as the theory that all knowledge
is derived from sense experience. This definition requires defining knowledge
and explaining what it means to be derived. Knowledge can be of many kinds.
Here we are working our way towards a modern definition of scientific
knowledge. Even more abstruse is what it means to derive knowledge from sense
experience. This must somehow characterize the manner in which sensation is
processed to arrive at knowledge.

Empiricism may also be defined as the theory that all concepts come from
sense experience. This is a bit more general since concepts do not have to
represent knowledge. Concepts are called a posteriori if they can be applied only
on the basis of experience and a priori if they can be applied independently of
experience. The problem is that these terms are also problematic. Consider the
concept triangle. Its definition and properties are all in the mind and so one might
argue that the concept triangle is a priori; however, an empiricist may claim that
the concept triangle has arisen from the experience of physical objects that are
essentially triangular so that it is a posteriori. We leave these conundrums to
philosophers and proceed with a general understanding that an empiricist takes
the view that all knowledge is derived from sense experience. This certainly rules
out God and immortality.

Regarding his empiricism, in An Essay Concerning Human Understanding,
Locke writes,

Let us then suppose the mind to be, as we say, white paper, void of all
characters, without any ideas. How comes it to be furnished?... To this I
answer, in one word, from experience. In that all our knowledge is
founded; and from that it ultimately derives itself. Our observation
employed either, about external sensible objects, or about the internal
operations of our minds perceived and reflected on by ourselves, is that
which supplies our understandings with all the materials of thinking.
[Locke, 1689]

To all the subtleties mentioned previously, we can add what is meant by the mind
being a “white paper.” If the mind is totally void, then how is experience
processed? What does the writing on the paper?

Locke breaks the properties we observe into two categories. Primary
qualities are “utterly inseparable from the body” and are objective. These include
solidity, extension, number, and motion. They exist in a substratum (“matter”).
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Secondary qualities “are nothing in the objects themselves but powers to produce
various sensations in us by their primary qualities” and are subjective. These
include color, sound, taste, and odor. The separation into primary and secondary
properties is an old distinction, essentially adopted by Aquinas, Descartes,
Galileo, and Hobbes.

The salient point is that we experience sensations and actually know nothing
of the underlying substratum, so that the Aristotelian notion of substance is
meaningless. How do we know that matter even exists? Using an empiricist
epistemology based strictly on sensation, Locke is driven towards idealism,
meaning that mind is more fundamental than material and that material objects,
insofar as human understanding is concerned, are at least in part products of the
mind. If this sounds strange, then think of what Newton has already done: “I
frame no hypotheses.” He has abandoned the physical substratum in favor of
equations relating quantitative observations.

If all knowledge is derived from sensation, then so too must knowledge of
the mind. Thus, if Locke is to carry his reasoning to the bitter end, then just as the
existence of matter is brought into question, so too must the existence of the
mind itself. The following statement from the Essay is a bit convoluted but its
prescience of the devastating analysis of David Hume yet to come makes reading
it well worth the effort:

It is evident that, having no other idea or notion of matter, but something
wherein those many sensible qualities which affect our senses do subsist;
by supposing a substance wherein thinking, knowing, doubting, and a
power of moving, etc., do subsist, we have as clear a notion of the
substance of spirit, as we have of body; the one being supposed to be
(without knowing what it is) the substratum to those simple ideas we
have from without; and the other supposed (with a like ignorance of what
it is) to be the substratum to those operations we experiment in ourselves
within. It is plain then, that the idea of corporeal substance in matter is as
remote from our conceptions and apprehensions, as that of spiritual
substance, or spirit. [Locke, 1689]

In sum, why should an empiricist sensation-based epistemology leave us with
any more certainty regarding the existence of mind than regarding the existence
of matter?

4.2.1 Innate principles of thought

Gottfried Wilhelm Leibniz (1645-1716) is one of history’s greatest geniuses. Not
only was he a leading philosopher of his time, independently of Newton he
discovered the infinitesimal calculus. In fact, the notation employed today is
basically that proposed by Leibniz. Contrary to Locke, and anticipating the view
of Kant, Leibniz took the position that mind is not a passive receptacle of
experience but rather, via its structure, it transforms the data of sensation:
“Nothing is in the mind that has not been in the senses, except the mind itself.”
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For Leibniz, mind supplies categories of thought and understanding, such as
substance, identity, and cause. There are innate principles of thought that develop
through experience. Leibniz includes the principle of contradiction and the
principle of sufficient reason—"“Nothing happens without a reason why it should
be so rather than otherwise.” For Leibniz, these principles are inherent in the
structure of the mind, but only take active form as a person recognizes their
operation in his experience. These principles correspond to Kant’s notion of a
priori categories which drive the mind’s understanding of Nature. The point is
that mind is not completely a clean slate (fabula rasa), but that it has an intrinsic
operational structure.

4.3 George Berkeley: Esse Est Percipi

If all knowledge is derived from the senses, then, comments George Berkeley
(1685-1753), there is no reality outside what we have perceived. The primary
qualities are as subjective as the secondary qualities. What then is left of matter?
Berkeley states, “It is the mind that frames all that variety of bodies which
compose the visible world, any one whereof does not exist longer than it is
perceived.” [Berkeley, 1710] Thus, to be is to be perceived (esse est percipi). But
what happens if there is no one perceiving? Does the tree crashing in the forest
make a sound if there is no one to hear it? But there is a constant perceiver: God.
Hence, the external world is not denied, only its materiality. Given Berkeley’s
arguments, should God not exist, then what?

Like Locke, Berkeley goes on to bring into question the existence of mind. In
his Three Dialogues (1713), Hylas states,

You admit nevertheless that there is spiritual substance, although you
have no idea of it, while you deny there can be such a thing as material
substance, because you have no notion or idea of'it.... It seems to me that
according to your own way of thinking, and in consequence of your own
principles, it should follow that you are only a system of floating ideas,
without any substance to support them. Words are not to be used without
a meaning. And as there is no more meaning in spiritual substance than
in material substance, the one is to be exploded as well as the other.
[Berkeley, 1713]

At this point Berkeley demurs and in the Dialogues Phylonous rejoins Cartesian-
like that he is aware of his own consciousness. Thus, mind is saved, but only
momentarily, since Hume will reject the rejoinder.

Are we to take any of this seriously? Yes, if we are concerned about
scientific knowledge. In the Twentieth Century, implications of the subtleties
introduced by the Seventeenth Century empirical grounding of science, which
necessarily include issues regarding human sensation and the existence of objects
external to perception, will become clear. In the Introduction to the 1957 Dover
Edition of Erwin Schrédinger’s Science Theory and Man, James Murphy writes,
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The trend of theoretical physics today, in its search for a definite
epistemological standpoint, is somewhat in the nature of a pilgrimage to
the Cathedral of Cloyne.... The key to much of what Schrédinger writes
in the following chapters, about the difficulties of the epistemological
problem in quantum mechanics as a whole and especially in wave
mechanics, will be found in Berkeley. [Murphy, 1957]

4.4 David Hume: Reason Is Humbled

When Galileo and Newton bracket causality, they not only posit non-causal
knowledge, they also permit themselves the luxury of not addressing the meaning
of causality. In particular, if we focus on Bacon’s perspective, then there is a
temporal aspect to causality in that the cause occurs prior to the event and this
temporality plays a key role in Bacon’s proposed inductive method. David Hume
(1711-1776) raises a crucial epistemological question: Are a cause and its effect
merely related via temporal priority, with the cause prior to the effect, or is there
more than temporal contiguity? To wit, is there something that touches “the
deeper boundaries of things,” as Bacon would have it? Is there a necessary
connection between the cause and the effect? Hume argues that in using the
phrase “cause and effect,” we mean the latter.

4.4.1 The ghost in the Galilean brackets
In An Enquiry Concerning Human Understanding (1751), Hume writes,

When one particular species of events has always, in all instances, been
conjoined with another, we make no longer any scruple of foretelling one
upon the appearance of the other, and of employing that reasoning,
which alone can assure us of any matter of fact or existence. We then call
one object, Cause; and the other, Effect. We suppose that there is some
connexion between them; some power in the one, by which it infallibly
produces the other, and operates with the greatest certainty and strongest
necessity. [Hume, 1751]

Do repeated conjoined observations warrant the supposition of a necessary
connection? Is there a ground in reason or an empirical ground for judging there
to be a necessary connection? Hume states emphatically that there is no such
ground. Belief in causality rests not on reason, but on habit. In one of the key
epistemological passages, he writes,

But there is nothing in a number of instances, different from every single
instance, which is supposed to be exactly similar; except only, that after a
repetition of similar instances, the mind is carried by habit, upon the
appearance of one event, to expect its usual attendant, and to believe that
it will exist. This connexion, therefore, which we feel in the mind, this
customary transition of the imagination from one object to its usual
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attendant, is the sentiment or impression from which we form the idea of
power or necessary connexion. Nothing farther is in the case.
Contemplate the subject on all sides; you will never find any other origin
of that idea. This is the sole difference between one instance, from which
we can never receive the idea of connexion, and a number of similar
instances, by which it is suggested. The first time a man saw the
communication of motion by impulse, as by the shock of two billiard
balls, he could not pronounce that the one event was connected: but only
that it was conjoined with the other. After he has observed several
instances of this nature, he then pronounces them to be connected. What
alteration has happened to give rise to this new idea of comnnexion?
Nothing but that he now feels these events to be conmnected in his
imagination, and can readily foretell the existence of one from the
appearance of the other. When we say, therefore, that one object is
connected with another, we mean only that they have acquired a
connexion in our thought. [Hume, 1751]

In A Treatise of Human Nature (1738), Hume states,

[The] supposition that the future resembles the past is not founded on
arguments of any kind, but is derived entirely from habit, by which we
are determined to expect for the future the same train of objects to which
we have been accustomed.... All our reasonings concerning causes and
effects are derived from nothing but custom and belief is more properly
an act of the sensitive than of the cogitative part of our nature. [Hume,
1738]

The sticking point is necessity. In the Treatise, Hume writes, “From the mere
repetition of any past impression, even to infinity, there never will arise any new
original idea, such as that of a necessary connexion; and the number of
impressions has in this case no more effect than if we confined ourselves to one
only.” [Hume, 1738] Repetition may lead to increased expectation, but not
necessity—and certainly not to some deeper relationship. Induction does not
depend upon causality; in fact, it is the opposite. Belief in causality is itself an
unwarranted leap from repeated observations.

The implications of this conclusion are immense. If, as Aristotle and Bacon
believed, scientific knowledge is knowledge of causes, and if causality rests on
habit and custom, then the ground of scientific knowledge is brought into
question. If, as Hume argues, the concept of a necessary connection between
phenomena is subjective, then does not this entail the subjectivity of scientific
knowledge?

Hume does not miss this point. Regarding his conclusion that the connection
between cause and effect is arrived at by habit and exists only in human thought,
in the Enquiry, he writes,
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For surely, if there be any relation among objects which it imports to us
to know perfectly, it is that of cause and effect. On this are founded all
our reasonings concerning matter of fact or existence. By means of it
alone we attain any assurance concerning objects which are removed
from the present testimony of our memory and senses. The only
immediate utility of all sciences, is to teach us, how to control and
regulate future events by their causes. Our thoughts and enquiries are,
therefore, every moment, employed about this relation: Yet so imperfect
are the ideas which we form concerning it, that it is impossible to give
any just definition of cause, except what is drawn from something
extraneous and foreign to it. Similar objects are always conjoined with
similar. Of this we have experience. [Hume, 1751]

In these few words, Hume unsettles the foundations of scientific knowledge.
If all reasoning concerning matter of fact or existence is founded on causality and
the utility of all sciences is to control nature through the regulation of events via
their causes, and if causality is simply a product of habit, then scientific
understanding rests on habit, or custom, not on objective physical relations.

All reasoning concerning matter of fact is not founded on causality, and
Hume should have been aware of this. While he may have shown there to be
nothing of consequence inside the brackets that Galileo and Newton put aside,
his skeptical assault does nothing to undercut the mathematical-experimental
structure of modern science as conceived by its founders. Their scientific theories
do not rest upon causality. Nevertheless, in showing that the brackets contain a
ghost—at least insofar as causality represents some intrinsic physical reality—
Hume deals a severe blow to the human desire for certainty.

Einstein writes, “Man has an intense desire for assured knowledge. That is
why Hume's clear message seems crushing: the sensory raw material, the only
source of our knowledge, through habit may lead us to belief and expectation but
not to the knowledge and still less to the understanding of lawful relations.”
[Einstein, 1944b]

4.4.2 Modernity arrives

Hume forever buried the Aristotelian concept of science, and he fundamentally
went beyond Galileo and Newton, who recognized that his mathematical theories
of science are idealized and can only “estimate” actual behavior. When Hume
wrote, “the mind is carried by habit, upon the appearance of one event, to expect
its usual attendant,” he made the monumental shift from causality to expectation,
thereby recognizing that scientific statements are inherently probabilistic; indeed,
in the Enquiry, the section dealing with the fundamental issues surrounding
causality is entitled, “Of the Probability of Causes.”

Modernity fully arrives with Hume (and not just in science). He does not
bracket causality as a scientific category; he dismisses it as a scientific category
altogether by showing that it has no grounding in reason or in Nature, at least
insofar as is empirically discernable. Necessary connections are subjective
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impressions, not objective relations. Observations lead to expectation, a
probabilistic category, not to certainty. Scientific certitude is a fiction, a product
of a leap of thought.

Two centuries after Hume’s Treatise, Erwin Schrédinger wrote, “It can never
be decided experimentally whether causality in Nature is ‘true’ or ‘untrue.” The
relation of cause and effect, as Hume pointed out long ago, is not something that
we find in Nature but is rather a characteristic of the way in which we regard
Nature.” [Schrodinger, 1957]

Having eliminated causality and weakened scientific knowledge, Hume was
not done. Whereas Locke and Berkeley had toyed with the eradication of mind
but did not pursue it, Hume was not so hesitant. In the Treatise he wrote,

That which we call a mind is nothing but a heap or collection of different
perceptions, united together by different relations, and supposed, though
falsely, to be endowed with a perfect simplicity and identity.... The mind
is a kind of theatre, where several perceptions successively make their
appearance; pass, repass, glide away, and mingle in an infinite variety of
postures and situations. There is properly no simplicity in it at one time,
nor identity in different [times], whatever natural propension we may
have to imagine that simplicity and identity. The comparison of the
theatre must not mislead us. They are the successive perceptions only
that constitute the mind. [Hume, 1738]

There is no connecting mind. Experience is a succession of atomistic sense
impressions disconnected from each other. The mind is nothing but a bundle of
perceptions. Berkeley had eliminated matter; Hume dispenses with mind.

Why did the Age of Reason not lead to clarity and certainty? For Hume the
answer was obvious if only we be brutally honest: “Reason is and ought only to
be the slave of the passions.” The landscape was clear for the Romantic Period,
which only awaited the arrival of Jean-Jacques Rousseau, a few years hence.

If reason is a slave to the passions, how can it support religion and morality?
Hume does not temporize. Sounding a bit like Augustine, in the Treatise he
writes, “Belief is more properly an act of the sensitive than of the cognitive part
of our natures.” Since morality is also thrown back on the passions, like faith, it
too is subjective. Hume writes, “We tend to give the name of virtue to any
quality in others that gives us pleasure by making for our advantage, and to give
the name of vice to any human quality that gives us pain.” [Hume, 1738]

Causality, reason, scientific certainty, metaphysics, faith, and morality—all
are slain by Hume’s dialectical scalpel. Surely such carnage would generate a
titanic reaction. And it did—Immanuel Kant.

4.5 Immanuel Kant: Critique of Reason

In his Prolegomena to Any Future Metaphysics (1783), Immanuel Kant (1724—
1804) tells us whose thinking interrupted his ordered life as a philosopher and
astronomer in Konigsberg and galvanized him into action: “I freely admit that the
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remembrance of David Hume was the very thing that many years ago first
interrupted my dogmatic slumber and gave a completely different direction to my
researches in the field of speculative philosophy.” [Kant, 1783] Now awoken, he
would counter Hume’s skepticism on all fronts and in doing so become the
greatest philosopher of modernity. In the process he would write three celebrated
critiques: the Critique of Pure Reason (1781), the Critique of Practical Reason
(1788), and the Critique of Judgment (1790). Our main interest is with the first
critique because of its strong focus on scientific epistemology; however, we will
consider the second critique to understand Kant’s notion of practical reason and
his grounding of morality outside of experience. The Prolegomena is to a large
extent a shortened and somewhat easier to read version of the first critique.

This section is difficult to read because Kant is difficult and because it will
bring many readers into areas of thinking far outside where they have heretofore
ventured. For motivation, we begin with a quote by Arthur Schopenhauer (1788—
1860) from his classic work, The World as Will and Representation:

Kant's teaching produces a fundamental change in every mind that has
grasped it. This change is so great that it may be regarded as an
intellectual rebirth. It alone is capable of really removing the inborn
realism which arises from the original disposition of the intellect.... The
mind undergoes a fundamental undeceiving, and thereafter looks at
things in another light.... On the other hand, the man who has not
mastered the Kantian philosophy, whatever else he may have studied, is,
so to speak, in a state of innocence; in other words, he has remained in
the grasp of that natural and childlike realism in which we are all born.
[Schopenhauer, 1818]

As brought home by quantum mechanics in the first half of the Twentieth
Century, natural realism is a powerful impediment to the progress of science.

4.5.1 Categories of the understanding

The linchpin of Hume’s analysis is his elimination of causality. Kant would have
to re-establish causality in a way that would not be susceptible to Hume’s
arguments. Recall that for an empiricist all knowledge is a posteriori, meaning
that it is derived from sense experience. Kant concurs with this empiricist view
up to a point. He accepts that knowledge begins with sensations (stimulations of
the senses) but insists that these are at once transformed by the mind to form
perceptions (mental objects) that are conceptually organized by the mind’s
categories of the understanding, which are part of its structure (recall Leibniz).
The categories are a priori because they are intrinsic to the structure of the mind
and therefore exist prior to experience.

In this way, Kant defines pure reason: “The faculty of knowledge from a
priori principles may be called pure reason, and the general investigation of its
possibility and bounds the critique of pure reason.” [Kant, 1790] Pure reason
concerns a priori knowledge, and the examination of the possibility and limits of
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pure reason constitute its critique. Pure theoretical (speculative) reason, the
subject of the first critique, employs the categories of the understanding, and its
application is limited to experience.

Kant agrees with Hume that the principle of causality is not a product of
reason. In the Prolegomena, he writes, “[Hume] justly maintains that we cannot
comprehend by reason the possibility of causality, that is, of the reference of the
existence of one thing to the existence of another, which is necessitated by the
former.” [Kant, 1783] However, whereas for Hume habit underlies causality, for
Kant, causality is a category of the understanding. It is a form imposed on
phenomena by the nature of the human mind. The mind imposes forms on the
data of sensation, and scientific knowledge is limited by these forms. The way
things appear, such as being spatially coordinated and connected by causality, are
due to subjective a priori conditions for knowledge. One cannot know things
apart from the manner in which they conform to these a priori mental forms.

Of the categories of the understanding, including causality, in the Critique of
Pure Reason, Kant writes,

Conceptions of objects in general must lie as a priori conditions at the
foundation of all empirical cognition; and consequently, the objective
validity of the categories, as a priori conceptions, will rest upon this,
that experience (as far as regards the form of thought) is possible only
by their means. For in that case they apply necessarily and a priori to
objects of experience, because only through them can an object of
experience be thought. [Kant, 1781]

The last line is the crux: only through the categories can an object of experience
be thought.

The mind, in its very structure, imposes causality on our experiences as a
prior condition for thinking about the experiences. In the Prolegomena, Kant
writes, “We ourselves introduce that order and regularity in the appearance which
we entitle ‘Nature.” We could never find them in appearances had we not
ourselves, by the nature of our own mind, originally set them there.” [Kant,
1783]

Kant’s argument imposes causality upon the phenomena we experience but
not on the things-in-themselves that underlie the phenomena, the noumena, as he
calls them, or what we might refer to as reality. We cannot experience the things-
in-themselves because they lie outside our sense experience. Kant asserts the
existence of things-in-themselves, which for a strict empiricist like Hume cannot
be asserted. Kant does not ascribe causality to the things-in-themselves, only to
the phenomena. The mind imposes causality on the phenomena as a condition of
thinking about them, but the categories of the understanding apply only to
phenomena, not to noumena (reality beyond experience). For Aristotle causality
1s in Nature; Kant moves it to the mind.

Reasoning in terms of the categories can yield certain conclusions because
they cannot be contradicted by experience since they are prior to experience;
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however, pure theoretical reason is limited by the categories and the categories
are applicable only to the phenomena. Proofs of the existence of God are out—a
conclusion regarding a first cause would have to apply the category of causality
outside the phenomena and therefore would be fallacious, but proofs about God’s
nonexistence are also out. Hume’s attack on causality is circumvented because
science is not about the noumena; it is about the phenomena, and there causality
is imposed by the understanding. Metaphysics is possible because its subject
matter consists of the categories themselves. Mind can study mind, insofar as the
categories are concerned.

Among Kant’s categories, causality is a category of relation, between cause
and effect. Surely the mind relates events. But if there is contiguity between a
prior event 4 and a posterior event B, then why insist that the mind imposes the
category of causality as the relation between them? If causality is more than mere
temporal contiguity, then the category seems to say that the mind imposes the
belief that there is some occult connection, precisely the notion that Newton
brackets and Hume rejects as having no logical or empirical foundation. Hume
has already seen that the functional category of understanding is expectation.
Observation of event A4 leads one to expect event B. Hume sees correctly that
expectation is a probabilistic concept. There is simply no empirical or logical
reason to raise the idea of causality. If experience shows that event 4 tends to
precede event B, or even if in our experience event A has always preceded event
B, then why go beyond saying that upon observation of event 4 we expect to
observe event B? Hume recognizes that there is no empirical or logical reason for
introducing a category beyond expectation. What he fails to see, and what would
await the Twentieth Century, is the manner in which expectation would be
incorporated into a rigorous mathematical theory of probability and how
scientific knowledge would be constituted in a probabilistic framework.

Kant’s basic position is that mind imposes categories on the way in which
Nature is humanly understood. He agrees with Hume that causality cannot be
grounded in Nature, but argues that it is more than habit because, in conjunction
with other categories of the understanding, it is imposed upon experience. One
need not agree with Kant that the categories lie in the domain of metaphysics, in
the sense that they “determine the whole range of the pure reason, in its limits as
well as in its content, completely according to universal principles.” Yet, the
point remains that human experience does not arrive qua experience; rather, as
human experience it arrives via the senses and the mind. The mind imposes
connectivity upon events. For Hume, there is no mind to organize successive
perceptions into a coherent whole because the perceptions, themselves,
“constitute the mind.” Kant puts mind, as an organizing and connecting entity,
prior to experience.

As for causality, although it is not a scientific category, humans do tend to
apply it to events in their ordinary understanding. While Kant disagrees with
Newton when he imposes a subjective form of causality on scientific thinking to
replace the objective form discredited by Hume, at minimum, his insistence on
causality being intrinsic to human understanding possesses considerable merit.
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In arguing that the application of causality lies at the level of the phenomena,
Kant is making a second, fundamental point: whatever ultimately lies behind the
phenomena is outside the domain of science. A strict empiricist like Hume
dogmatically asserts that one cannot speak of anything lying behind the
phenomena. Kant argues otherwise and, in doing so, is more in line with Newton,
who believes that gravity exists, although he can say nothing about it except what
is revealed by the mathematical formulae expressing phenomenal relations.
Insofar as science is concerned, Galileo, Newton, and Kant bracket physical
substance, but among the three, Kant does not bracket causality. He places it in a
different place—in the mind, but not as Hume would have it, as habit, but as a
prior condition for experience.

The differing views of Hume and Kant on causality lead to two
fundamentally different perspectives on the structure of scientific propositions.
For Hume, science is intrinsically probabilistic, so that scientific statements are
framed in terms of probabilities; for Kant, causality leads to determinism. Given
the accuracy of predictions resulting from Newtonian mechanics, whose
equations are deterministic, it is easy to see that, even if one were to disagree
with Kantian epistemology, he might still reject Hume’s probabilistic
interpretation and remain a determinist, agreeing with Laplace that observed
variation is due to measurement error or ignorance of deeper laws, which when
discovered would eliminate uncertainties.

4.5.2 The transformation of human reason

We started out this section with a quote from Arthur Schopenhauer to the effect
that Kant ended the human period of naive realism. Let us say that Kant,
reflecting on the scientific events from Bacon and Galileo through Newton and
on into the Fighteenth Century recognized the massive role of mind in the new
science. He was not primarily about building an idealistic epistemology in which
objects are a product of the mind; rather, his idealism resulted from his
assessment of his empiricist predecessors, especially Hume.
In The lllusion of Technique, William Barrett writes,

Kant...has more than a century of the new science to reflect upon, and he
is the first philosopher to understand what has happened. The whole of
his Critique of Pure Reason is not primarily an attempt to set up a system
of idealistic philosophy; it is the effort, stubborn and profound, to grasp
the meaning of the new science and its consequences for human
understanding generally.... What has happened is nothing less than the
transformation of human reason itself. [Barrett, 1979]

Barrett argues that the key to the scientific revolution is that the scientist no
longer tries to conform his understanding to haphazard data; rather, his reason
becomes “legislative of experience,” to the extent that concepts are no longer
expected to be realized in Nature but instead are to dictate how the facts are to be
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measured. Kant, he claims, is the first person to recognize the significance of this
change. Barrett writes,

What does Galileo do? He does not turn to the ‘irreducible and stubborn’
facts; rather, he sets up a concept [inertia] that can never be realized in
actual fact.... Rationalism does not surrender here to the brute facts.
Rather, it sets itself over the facts in their haphazard sequence; it takes
the audacious step of positing conditions contrary to fact, and it proceeds
to measure the facts in the light of these contrafactual conditions. Reason
becomes ‘legislative of experience’—this was the decisive point that
Kant’s genius perceived as the real revolution of the new science.
[Barrett, 1979]

Recall Kant’s words: “Reason must approach nature...in the character...of a
judge, who compels the witnesses to reply to those questions which he himself
thinks fit to propose.”

4.5.3 The moral philosopher

Kant’s second goal is to rescue the moral law from Hume’s skepticism, which
had left morality as nothing more than subjective desire. Our interest being
science, for most philosophers their moral philosophy would be irrelevant, but
with Kant this would leave a very wrong impression of this thinking, especially
because his moral theory depends on the limitations he has imposed upon the
domain of application for theoretical reason. In the preface to the second edition
of the Critique of Pure Reason, Kant writes, “l have found it necessary to deny
knowledge [of things-in-themselves] in order to make room for faith.” In
addition, Kant’s role in the transformation of the Age of Reason to the Romantic
Period would be completely missed, a transformation that continues to have
major impact today, including a significant detrimental influence on science.

To recover the moral order requires that Kant establish human freedom in the
moral sphere conditioned on causality being a category of the understanding,
which has as a consequence a deterministic understanding of phenomena. His
solution is a duality. As phenomena, human actions are viewed in the light of
cause and effect, so that the necessary condition for moral action, freedom, does
not exist; however, causality and its consequent elimination of moral action only
apply to the phenomenal world because that is the world experienced through the
categories of the understanding. Causality does not apply to the noumenal world,
and freedom resides therein.

Essentially, Kant wants to show that the moral law is a priori, that it is
universal and does not depend upon experience. Whereas pure theoretical reason
applies to phenomena, pure practical reason applies to action, which in all cases
(at least for Kant) has a moral dimension. As Kant had flipped causality from
being a part of Nature to being a condition of experiencing Nature, he now flips
morality as emanating from God to emanating from the nature of man. In the
Critique of Practical Reason, he famously writes,
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Two things fill the mind with ever new and increasing admiration and
awe, the oftener and the more steadily we reflect on them: the starry
heavens above and the moral law within. I have not to search for them
and conjecture them as though they were veiled in darkness or were in
the transcendent region beyond my horizon; I see them before me and
connect them directly with the consciousness of my existence. [Kant,
1788]

The moral law is immediate, not a matter of reflection. Kant feels it as directly
part of his existence.

The moral law does not derive from experience: it is a priori. It is not a
collection of prudent rules to facilitate social cohesion. It is universal and, like
the categories, inherent in our being. It is absolute and unconditional, that is,
categorical. Kant has the problem of providing a categorical imperative to serve
as the fundamental law of the practical reason. He gives two forms of his
categorical imperative: (1) “Act so that the maxim of thy will can always hold
good as a principle of universal legislation;” and (2) “So act as to treat humanity,
whether in thine own person or in that of any other, in every case as an end,
never only as a means.”

The categorical imperative is supposed to provide a way of rationally judging
maxims. For instance, under the categorical imperative, if I hold the maxim that
it is acceptable to lie, then I must be able to will lying as a universal principle.
This means that I accept being lied to. As a second example, if [ hold the maxim
that it is acceptable to kill those who are inconvenient, then I must be able to will
such killing as a universal principle, even if I am the one who is judged
inconvenient by those holding the power to do so.

While the two formulations of the categorical imperative might at first sound
appealing, they are fraught with difficulties. For instance, if my child is about to
be killed and I have a gun, should I shoot the assailant? Kant seems to saying that
if I shoot, then I am acting so as to make shooting another human being a
principle of universal legislation; however, if I do not shoot, then I am acting so
as to make not defending my child a principle of universal legislation. Surely
such a simplistic seemingly rational imperative cannot serve as a fundamental
law of the moral order.

Given the existence of the moral law, Kant argues that, since freedom,
immortality, and God cannot be theoretically established or rejected based on the
theoretical reason, and since our belief in them provides vital practical support to
the moral law, he will postulate their existence, believe in them, and act
according to this belief.

Being more specific, having arrived at the moral law from feeling, Kant
proceeds to arrive at God via the will:

Admitting that the pure moral law inexorably binds every man as a
command (not as a rule of prudence), the righteous man may say: ‘I will
that there be a God, that my existence in this world be also an existence
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outside the chain of physical causes, and in a pure world of the
understanding, and lastly, that my duration be endless; I firmly abide by
this, and will not let this faith be taken from me; for in this instance alone
my interest, because I must not relax anything of it, inevitably
determines my judgment.’ [Kant, 1788]

In the first critique Kant moves science from the study of Nature to the study
of the product of man’s categories of the understanding applied to Nature; then,
in the second critique, he moves religion from being grounded in scripture or
reason to being grounded in feeling and will.

To get a better sense of Kant’s thinking in the Critique of Practical Reason,
consider the following comment on the argument from design:

I see before me order and design in Nature, and need not resort to
speculation to assure myself of their reality, but to explain them I have to
presuppose a Deity as their cause; and then since the inference from an
effect to a definite cause is always uncertain and doubtful, especially to a
cause so precise and so perfectly defined as we have to conceive in God,
hence the highest degree of certainty to which this presupposition can be
brought is that it is the most rational opinion for us men. [Kant, 1788]

Kant cannot apply pure theoretical reason to assure himself of the reality of
order and design, so they are not part of science. To explain them he would need
to infer God as a cause but he cannot because causality only applies to the
phenomena. Thus, the “most rational opinion” is to suppose the existence of a
deity behind the order and design.

In the second critique Kant takes the very practical position that one cannot
live within the domain of pure theoretical reason. Human beings possess feelings
and desires, and these must be considered by a philosopher if he is to take his
subject, man, as a whole. With respect to the movement from the Critique of
Pure Reason to the Critique of Practical Reason, the Spanish philosopher Miguel
de Unamuno says, “He [Kant] reconstructs in the latter what he destroyed in the
former.... Kant reconstructed with the heart that which with the head he had
overthrown.” [Unamuno, 1954]

Partly because he embraces both theoretical and practical reason, and partly
because he wishes to save both science and faith from Hume’s criticism, Kant’s
thinking is rife with paradox. What else could be expected from one whose
purview is so vast? Barrett calls Kant “the pivot.” There is philosophy anterior to
Kant and philosophy posterior to Kant. Barrett has a figure entitled, “A Map of
the Modern World.” It shows two arrows leading into Kant, one from empiricism
and another from rationalism. It shows four arrows emanating from Kant:
idealism, pragmatism, existentialism, and positivism. Each of these and their
variants begins with an aspect of Kant but under the desire for consistency
narrows its scope and resorts to marginal thinking. On the other hand, Kant takes
the whole man as his subject matter—a much more difficult endeavor.
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4.6 Jean-Jacques Rousseau: No to Science

Kant’s appeal to the heart has roots in the thinking of Jean-Jacques Rousseau
(1712-1778), whose picture hung on the wall of Kant’s study. Rousseau comes
chronologically before Kant but since Hume awoke Kant from his dogmatic
slumber and the Critique of Pure Reason was a response to Hume regarding
reason and science, we wanted to discuss them in sequence. Rousseau is a major
intellectual figure of the Eighteenth Century. He almost single handedly brought
an end to the Age of Reason and that is why we have dated its end with the
publication of his first discourse. Rousseau shunned the salons of Paris where
wealthy aristocratic intellectuals held sway. He was not from their class and the
air of the salons was not conducive to his sensitivity.

Prior to Rousseau’s emergence, reason had ruled the French Enlightenment.
Voltaire was the great champion of reason and a bitter foe of the Catholic
Church, although he remained religious and in old age attended Mass regularly.
The first volume of the great Encyclopédie, edited by Denis Diderot and Jean le
Rond d’Alembert, which was to be a pacan to The Age of Reason, was published
in 1751, but Rousseau’s Discourse on the Arts and Sciences had already
appeared in 1750 and his Discourse on the Origin and Basis of Inequality Among
Mankind would appear in 1754. An age of sensibility had already begun.

Rousseau saw civilization as the bane of mankind and saw primitive man as
free from civilization’s discontents and a natural repository of pity, an emotion
that he claimed had waned when men began to parcel out property and ceased to
take sexual partners as one would pick apples from a tree. He opposed reason on
behalf of feeling and openly rejected logic and the need for facts.

In the Discourse on Inequality, Rousseau wastes no time in rejecting science:
“Let us begin therefore, by laying aside facts, for they do not affect the
question.... You shall hear your history such as I think I have read it, not in
books composed by those like you, for they are liars, but in the book of Nature
which never lies.” [Rousseau, 1754] Rousseau’s anthropology of primitive man
will not be affected by facts, nor will it be related to Nature via observation.
Absent data, he will read the book of Nature. Rousseau’s arguments cannot be
invalidated with data because these are not relevant. Like Descartes, Rousseau
exemplifies Bacon’s spiders spinning their webs—with the exception that
Descartes has the excuse that he was meditating a half century before Newton’s
Principia, whereas Rousseau was meditating more than a half century after.

Further on in the Discourse on Inequality, Rousseau tells us that although his
explanations are conjectural, because his conclusions are certain, any set of
conjectures acceptable to him would lead to the same conclusions:

I must own that, as the events I am about to describe might have
happened many different ways, my choice of these I shall assign can be
grounded on nothing but mere conjecture; but besides these conjectures
becoming reasons, when they are not only the most probable that can be
drawn from the nature of things, but the only means we can have of
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discovering truth, the consequences I mean to deduce from mine will not
be merely conjectural, since, on the principles I have just established, it
is impossible to form any other system, that would not supply me with
the same results, and from which I might not draw the same conclusions.
[Rousseau, 1754]

Rousseau’s “conclusions” regarding anthropological phenomena are true a«
priori!

Having eliminated observation in the Discourse on Inequality, in his
immensely influential work, The Social Contract (1762), Rousseau goes on to
reject logic when he states the fundamental problem to be solved by The Social
Contract. “The problem is to find a form of association which will defend and
protect with the whole common force the person and goods of each associate, and
in which each, while uniting himself with all, may still obey himself alone, and
remain as free as before.” [Rousseau, 1762] Consider the logic. Statement X is
that a person will always be as free as before, meaning in the state of Nature
where he is free to do anything he desires. Statement not-X is that he will not
always have such freedom, in particular, when the state says that he cannot do
something he desires. Rousseau proposes to provide an instance where the
statement “X and not-X" is true, thereby denying the law of contradiction.

To get around it, Rousseau creates a fiction called the general will, which is
more than the sum of the individual wills of the body politic. He spuriously
solves the problem by defining freedom to be conformity with the general will.
He appears to believe that redefining a term as its negation can escape a
contradiction. It reminds one of George Orwell’s “Freedom is Slavery.” Lest his
thinking not be clear, Rousseau explains, “Whoever refuses to obey the general
will shall be compelled to do so by the whole body. This means nothing less than
that he will be forced to be free.” [Rousseau, 1762]

The general will is a prominent example of an idol of the marketplace, the
kind that Bacon describes as ‘“names of things which do not exist (for as there are
things left unnamed through lack of observation, so likewise are there names
which result from fantastic suppositions and to which nothing in reality
corresponds).” These include “Fortune, the Prime Mover, Planetary Orbits,
Element of Fire, and like fictions which owe their origin to false and idle
theories.” Had Bacon lived long enough he could have added the general will to
his list.

While scientists tend to have negligible interest in Rousseau, his opposition
to science, his elevation of sentiment over reason, and his political philosophy are
ubiquitous. Whereas Descartes’ legacy is a tendency to subordinate the empirical
to the rational, Rousseau’s thinking is manifested in a rejection of both the
empirical and the rational in favor of desire and will. Those who believe that
modernity and science are concomitant, and that science is unassailable, need to
reflect on Rousseau’s continuing influence.

At this point, when discussing perhaps the greatest modern foe of science, it
might be enlightening to reflect on the following words of Ortega y Gasset:
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Experimental science is one of the most unlikely products of history. Seers,
priests, warriors and shepherds have abounded in all times and places. But
this fauna of experimental man apparently requires for its production a
combination of circumstances more exceptional than those that engender the
unicorn. Such a bare, sober fact should make us reflect on the supervolatile,
evaporative character of scientific inspiration.” [Ortega y Gasset, 1994]

This thought should arouse our vigilance as the Twenty-first Century human
longing for knowledge of complex systems and the benefits that would accrue
from such knowledge pushes against the limitations of scientific epistemology.

4.6.1 Kant and Rousseau

How deep was the impact of Rousseau on Kant? Clearly there was negligible
impact on the Critique of Pure Reason, but what about Kant’s moral theory in the
Critique of Practical Reason? Political philosopher Stephen Smith thinks that
Rousseau’s influence on Kant was considerable. He states, “Kant's entire moral
philosophy is a kind of deepened and radicalized Rousseauianism where what
Rousseau called the general will is transmuted into what Kant calls the rational
will and the categorical imperative.” [Smith, 2008]

One can certainly debate the relationship between the categorical imperative
and the general will; nevertheless, Kant makes it clear that for him the moral law
arises from feeling and belief in the existence of God is a product of will. Recall
his words on willing God. Then consider the closing words of Rousseau in a
letter to Voltaire (1756):

I have suffered too much in this life not to look forward to another. All
these metaphysical subtleties may embitter my pains, but none can cause
me to doubt a time of immortality for the soul and a beneficent
providence. I sense it, I believe it, I wish it, I hope for it, I will uphold it
until my last gasp—and of all the cases I will have supported, it will be
the only where my own interest will not be forgotten. [Rousseau, 1756]

The similarity is striking.

Now consider Kant’s own thoughts on Rousseau: “There was a time when I
thought that this [knowledge] alone could constitute the honor of mankind, and I
despised the people, who know nothing. Rousseau brought me to rights. This
blind prejudice vanished. I learned to honor human beings.” [Kant, 1997]
Whereas Hume awoke Kant from his dogmatic slumber on metaphysics, it seems
that Rousseau awoke him from his indifference to human dignity.

If Rousseau awakened the heart of Kant, then this is to the good, but with
respect to reason the salient point is that Rousseau appears to have widened
Kant’s thinking beyond logic and the categories of the understanding. Kant,
having to his satisfaction demonstrated that pure theoretical reason is limited to
phenomena and that it frames human experience relative to those phenomena,
had severely limited its domain of application. Proofs of God’s existence and His
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nonexistence were out, as well as any possible theoretical grounding for the
moral law. So Kant, emulating Rousseau, based the moral law and God on his
inner feelings.

Yet there is a huge difference between Kant and Rousseau. Rousseau makes
no critique of reason; rather, he simply makes a shambles of it. Kant absorbs
what has come before and proceeds to analyze the transformation in reason and
perception that was underway thanks to the scientific revolution of Bacon,
Galileo, and Newton. Mathematical and scientific developments would make
many of his particulars wrong, especially developments in the Twentieth
Century, but in recognizing the role of the understanding in framing experience,
he found a nugget. Rousseau on the other hand seems ignorant of the scientific
revolution that had preceded him and would change man’s perspectives on
Nature and himself. Perhaps Hume, who personally knew Rousseau, stated it best
when he said of Rousseau, “He has not, indeed, much knowledge. He has only
felt, during the whole course of his life.”

4.7 Mill: Metaphysics through the Back Door

John Stuart Mill (1806—1873) wished to empirically ground science in induction,
which, following Bacon, means that he had to resuscitate causality. In 4 System
of Logic, Ratiocinative and Inductive (1843) he wrote, “At the root of the whole
theory of induction is the notion of physical cause. To certain phenomena, certain
phenomena always do, and, as we believe, always will, succeed. The invariable
antecedent is termed the ‘cause,’ the invariable consequent, the ‘effect.”” [Mill,
1843] Mill proceeded to the following definition: “The Law of Causation, the
recognition of which is the main pillar of inductive science, is but the familiar
truth that invariability of succession is found by observation to obtain between
every fact in nature and some other fact which has preceded it.” [Mill, 1843]

There are four salient points to Mill’s view: (1) no necessary connection is
implied by causality; (2) the effect must be the “invariably and unconditionally
consequent” of the cause; (3) causality makes no reference to what is behind the
phenomena; and (4) causality is “coextensive with human experience.” In one
sense, Mill escapes Hume’s criticism by abandoning any notion of necessary
connection and making induction purely sequential, but he misses Hume’s
critical scientific point regarding the impossibility of arriving at the unconditional
invariability of succession by any finite number of observations.

Mill recognizes that causality cannot be as simple as a single event being the
sole cause of an effect. Regarding the complexity of causation, he states, “But the
real cause is the whole of the antecedents, the whole of the contingencies of
every description, which being realized, the consequent invariably follows. Yet
even invariable sequence is not synonymous with causation. The sequence,
besides being invariable, must be unconditional.” [Mill, 1843] Clearly, “the
whole of the antecedents, the whole of the contingencies of every description”
has no bounds and may very well be the entire universe, which would reduce the
entire notion of cause and effect to a statement about universal determinism. This
would be a restatement of Laplacian determinism absent any individual causal
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relations within the universe. It is therefore not surprising that Mill adopts a
Laplace-like position, except that unlike Laplace, who appeals to a “sufficiently
vast” intelligence, Mill remains within the realm of human experience. He writes,

The state of the whole universe at any instant, we believe to be the
consequence of its state at the previous instant; insomuch that one who
knew all the agents which exist as the present moment, their locations in
space, and all of their properties, in other words, the laws of their agency,
could predict the whole subsequent history of the universe, at least unless
some new volition of a power capable of controlling the universe should
supervene. [Mill, 1843]

If causality depends on knowing all the antecedents composing a cause, then
surely it is not coextensive with human experience. On the other hand,
expectation is very much coextensive with human experience.

Mill follows Bacon in recognizing that haphazard observation is insufficient
for the discovery of causal relations. He writes,

We must either find an instance in nature suited to our purposes, or by an
artificial arrangement of circumstances make one. When we make an
artificial arrangement, we are said to experiment; and experimentation
has great advantages over observation in that it often enables us to obtain
innumerable combinations of circumstances which are not to be found in
nature. [Mill, 1843]

But instead of the Newtonian recognition that experimental constraint leads to
relations that “estimate” relations among naturally occurring phenomena, Mill
wants to use experiment to obtain “innumerable combinations of circumstances,”
a goal that on its face is impossible.

In trying to circumvent Hume’s attack on causality on strictly empiricist
grounds, Mill returns to a pre-Galilean world in the sense that, although
necessary connection is abandoned, causality remains a requirement for
knowledge. Hume’s analysis regarding uncertainty and the impossibility of
concluding a necessary connection, one that is unconditional and invariable, is
impenetrable because the certainty of formal logic does not apply to human
interaction with Nature. Expectation, not causality, is coextensive with human
experience. Mill’s problem is that he wants to bring metaphysics in through the
back door. Aristotle was correct in placing the four forms of causality in the
Metaphysics, but not correct in placing them in the Physics. Mill’s hope of
grounding causality in invariable and unconditional empirical sequences had
already been doomed by Hume. Kant had recognized this but Mill did not.
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4.8 Bertrand Russell: Causality, a Relic of a Bygone Age

In his 1913 essay, On the Notion of Cause, Bertrand Russell (1872-1970)
stresses the impossibility of giving precise meaning to several different attempts
to define “cause.” For the sake of argument, he settles on the previously cited
definition of Mill as perhaps the best attempt at a viable definition of causality.
He shows that this attempt fails owing to the impossibility of supplying it with a
suitable notion of event and the “insuperable difficulties,” which Russell
carefully articulates, of trying to define the timing between a cause and an effect.

Russell recognizes that Mill’s reasoning regarding induction and causality
are based on the appearance of uniformities in Nature and addresses the issue:

It must, of course, be admitted that many fairly dependable regularities
of sequence occur in daily life. It is these regularities that have suggested
the supposed law of causality; where they are found to fail, it is thought
that a better formulation could have been found which would have never
failed. I am far from denying that there may be such sequences which in
fact never do fail. It may be that there will never be an exception to the
rule that when a stone of more than a certain mass, moving with more
than a certain velocity, comes in contact with a pane of glass of less than
a certain thickness, the glass breaks.... What I deny is that science
assumes the existence of invariable uniformities of sequence of this kind,
or that it aims at discovering them. All such uniformities, as we saw,
depend upon a certain vagueness in the definition of the ‘events.” That
bodies fall is a vague qualitative statement; science wishes to know how
fast they fall. This depends upon the shape of the bodies and the density
of the air. It is true that there is more nearly uniformity when they fall in
a vacuum; so far as Galileo could observe, the uniformity is then
complete. But later it appeared that even there the latitude made a
difference, and the altitude. Theoretically, the position of the sun and
moon must make a difference. In short, every advance in a science takes
us farther away from the crude uniformities which are first observed, into
greater differentiation of antecedent and consequent, and into a
continually wider circle of antecedents recognized as relevant. The
principle ‘same cause, same effect,” which philosophers imagine to be
vital to science, is therefore utterly otiose. As soon as the antecedents
have been given sufficiently fully to enable the consequent to be
calculated with some exactitude, the antecedents have become so
complicated that it is very unlikely they will ever recur. Hence, if this
were the principle involved, science would remain utterly sterile.
[Russell, 1913]

Russell makes it clear that the Laplace-Mill effort to frame causality in terms of
“the state of the whole universe at any instant” is vacuous.
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Russell neatly sums up his view of causality: “The law of causality, I believe,
like much that passes muster among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is erroneously supposed to do no
harm.” [Russell, 1913]

To the extent that science must be grounded on certainty, or on unconditional
and invariable sequences, Hume’s analysis is devastating. In the Rise of Scientific
Philosophy, Hans Reichenbach (1891-1953) writes, “Empiricism broke down
under Hume’s criticism of induction, because it had not freed itself from a
fundamental rationalist postulate, the postulate that all knowledge must be
demonstrable as true. For this conception the inductive method is unjustifiable,
since there is no proof that it will lead to true conclusions.” [Reichenbach, 1971]
Science does not depend on unconditional sequences, does not base its
formulations on a notion of “logical” induction, and does not have a notion of
certainty. This does not mean that science is ungrounded, only that its theoretical
home is in probability theory and statistical inference, not in deterministic logic
and induction.

4.9 James Clerk Maxwell: Hoping for an Intelligible Theory

The electromagnetic field theory, which is responsible for much of today’s
technology, is based on equations proposed by James Clerk Maxwell (1831—
1879). Its applications depend on the behavior of detectors as predicted by the
theory. As to the nature of the physical processes behind the equations, Maxwell
does not know. In his theorizing he finds himself on the horns of a dilemma. He
is unhappy with a purely mathematical theory because he desires a physical
understanding of the phenomena and yet he fears physical hypotheses because
these can filter the facts according to preconceptions.
In his 1861 paper On Faraday’s Lines of Force, Maxwell writes,

The first process therefore in the effectual study of the science, must be
one of simplification and reduction of the results of previous
investigation to a form in which the mind can grasp them. The results of
this simplification may take the form of a purely mathematical formula
or of a physical hypothesis. In the first case we entirely lose sight of the
phenomena to be explained and though we may trace out the
consequences of given laws, we can never obtain more extended views
of the connexions of the subject. If, on the other hand, we adopt a
physical hypothesis, we see the phenomena only through a medium, and
are liable to that blindness to facts and rashness in assumption which a
partial explanation encourages. We must therefore discover some method
of investigation which allows the mind at every step to lay hold of a clear
physical conception, without being committed to any theory founded on
the physical science from which that conception is borrowed, so that it is
neither drawn aside from the subject in pursuit of analytical subtleties,
nor carried beyond the truth by a favorite hypothesis. [Maxwell, 1855]
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In fearing that a mathematical approach “may lose sight of the phenomena to
be explained,” Maxwell still has one foot in the Aristotelian epistemology; in his
concern that adopting a “physical hypothesis” that may lead to “blindness to facts
and rashness,” he reminds us of Newton’s Hypotheses non fingo. Hypothetical
assumptions based on human understanding cannot be trusted. They can lead to
distorted interpretations of the observations to fit a “favorite hypothesis.”
Maxwell instead desires a “physical conception” to guide his thinking while at
the same time not being committed to the science behind the conception—an
analogy to guide his thinking but not bias it towards a preconceived notion. The
question one might ask is why analogical thinking would be free from distortion,
except perhaps that one knows it to be analogical and is therefore less likely to
overly rely upon it.

Following an explanation of how analogies with physically based models are
often useful for arriving at satisfactory theories, even when a model may relate to
a different physical setting than the one being considered, Maxwell comments
that he will analogize lines of force as “fine tubes of variable section carrying an
incompressible fluid.” After discussing the aim and methodology of the fluid
analogy, he writes,

I propose, then, first to describe a method by which the motion of such a
fluid can be clearly conceived; secondly to trace the consequences of
assuming certain conditions of motion, and to point out the application of
the method to some of the less complicated phenomena of electricity,
magnetism, and galvanism; and lastly to shew how by an extension of
these methods, and the introduction of another idea due to Faraday, the
laws of the attractions and inductive actions of magnets and currents may
be clearly conceived, without making any assumptions as to the physical
nature of electricity, or adding anything to that which has been already
proved by experiment. By referring everything to the purely geometrical
idea of the motion of an imaginary fluid, I hope to attain generality and
precision, and to avoid the dangers arising from a premature theory
professing to explain the cause of the phenomena. If the results of mere
speculation which I have collected are found to be of any use to
experimental philosophers, in arranging and interpreting their results,
they will have served their purpose, and a mature theory, in which
physical facts will be physically explained, will be formed by those who
by interrogating Nature herself can obtain the only true solution of the
questions which the mathematical theory suggests. [Maxwell, 1855]

Maxwell proceeds “without making any assumptions as to the physical
nature of electricity.” In this way he avoids being constrained by “a premature
theory professing to explain the cause of the phenomena,” that is, by a
misleading application of the categories of the understanding. Nevertheless, he
remains hesitant, adding that the mathematical theory is only suggestive of the
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“true solution.” He hopes for an intelligible “mature theory, in which physical
facts will be physically explained.”
Maxwell is not alone in this dissatisfaction. Historian Morris Kline writes,

Despite the Herculean efforts to determine physically what an electric
field and a magnetic field are, scientists are unsuccessful.... We do not
have any physical account of the knowledge of the electromagnetic
waves as waves. Only when we introduce conductors such as radio
antennae in electromagnetic fields do we obtain any evidence that those
fields exist. Yet we send radio waves bearing complex messages
thousands of miles. Just what substance travels through space we do not
know. [Kline, 1985]

As Newton brackets causality and the physical nature of gravity in favor of
mathematical relations, Maxwell brackets the physical waves behind the field
theory. The upshot of all this bracketing is that the subject of physics (as science)
is embedded within mathematics. Science does not try to force Nature into the
straight jacket of human intelligibility. Thus, it is free to develop mathematical
systems that allow us to build devices that respond according to the equations
and thereby produce pragmatic effects in the physical world. The full meaning of
putting aside the categories of the understanding in favor of mathematics will
become clear in the Twentieth Century.



Chapter 5

A Mathematical-Observational
Duality

5.1 The End of Intelligibility

When discussing the enormity of the transformation wrought by Galileo and
Newton, Kline states, “What science has done, then, is to sacrifice physical
intelligibility for the sake of mathematical description and mathematical
prediction.” [Kline, 1985] Sacrificing physical intelligibility does not involve an
abandonment of knowledge; on the contrary, it involves the recognition that
everyday human categories concerning Nature—those that arise from ordinary
interaction with the physical world, such as pushing and pulling—are, at best,
only suitable for describing simple phenomenal relations. Kline writes,

The insurgent seventeenth century found a qualitative world whose study
was aided by mathematical abstractions. It bequeathed a mathematical,
quantitative world that subsumed under its mathematical laws the
concreteness of the physical world. In Newton’s time and for two
hundred years afterwards, physicists spoke of the action of gravity as
‘action at a distance,” a meaningless phrase that was accepted as a
substitute for explaining the physical mechanism, much as we speak of
spirits or ghosts to explain unseen phenomena. [Kline, 1985]

Kline’s point is twofold. First, the transformation to a mathematical world
was accomplished before the end of the Seventeenth Century. Second, for two
hundred years afterwards many scientists refused to accept this transformation—
and many today still do not.

5.2 Quantum Mechanics

The development of quantum mechanics during the first third of the Twentieth
Century compelled scientists to confront the epistemological issues lurking
within Newton’s Hypotheses non fingo, as it applies to causality/determinism and
to the structure and validation of scientific theories. This section describes some
basic aspects of quantum theory that foster a deeper understanding of what it
means for knowledge to be framed as a mathematical-observational duality and
then discusses epistemological implications.

63
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5.2.1 The Bohr atom

Up until shortly after the beginning of the Nineteenth Century, Newton’s
corpuscular theory of light, which claimed that light consisted of tiny particles,
was widely accepted. Then, around 1803, Thomas Young performed his famous
double-slit experiment in which light from a point source emanated in the
direction of a barrier with two holes (called “slits”), passed through the slits, and
was captured on a flat detector (Fig. 5.1). The light arriving on the detector was
distributed in a manner consistent with wave interference from the light passing
through the two slits, not as one would expect if particles were passing through
the slits. Although not accepted at first, Young’s wave theory became
predominant in the Nineteenth Century.

In 1900, based on his study of blackbody radiation, Max Planck proposed
that light and other electromagnetic waves are emitted in discrete packets
(quanta) of energy that can only take on certain discrete values. These values are
multiples of a constant s, now called Planck’s constant. Energy radiated from a
blackbody must be a multiple of 4f, f'being the frequency of the radiation.

In 1905, in the paper that earned him the Nobel Prize in 1921, Einstein went
further by not just claiming emission in discrete packets, but that light is
composed of discrete packets. He did this by considering the photoelectric effect,
discovered in 1887 by Heinrich Hertz, which refers to the ejection of electrons by
metals when exposed to light. Behavior that he observed regarding the ejected
electrons appeared inconsistent with the view that light is a wave phenomenon.

Regardless of brightness, only light above a certain frequency prompts
electrons to emit. As the frequency increases, the maximum kinetic energy of the
ejected electrons increases proportionally with the frequency of the light, but
does not vary with the intensity of the light, which would accord with wave
theory. Moreover, the electrons are emitted almost simultaneously with the
arrival of the light. Einstein explained the behavior of the emissions by assuming
light to be made of individual particles, later called photons. Each photon
possesses a quantum of energy E = hf. Hence, argued Einstein, it is not simply
the emission of energy that is quantized, but that energy itself is quantized.

b

Figure 5.1 Young’s double-slit experiment [Fermilab Today, 2008].
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A second discrete phenomenon, discovered in the Nineteenth Century,
concerned atomic emission spectra. When solids, liquids, and dense gases are
heated to high temperatures, for instance, as occurs when electricity is passed
through a light filament, light possessing a continuous spectrum is emitted.
However, when energy is supplied to gas atoms under low pressure, the atoms
emit light consisting of only discrete frequencies and these form a discrete atomic
emission spectrum (Fig. 5.2).

In 1897, J. J. Thomson proposed a model of the atom in which tiny
negatively charged electrons float in a “pudding” of positive change. In 1911,
Ernest Rutherford shot high-velocity alpha particles (helium nuclei) into gold foil
and captured the locations of the alpha particles on a fluorescent screen after they
had passed through the gold foil. Most of the alpha particles passed through with
very little deflection, as might be expected given the Thompson model; however,
some deviated substantially and a small number bounced back. Rutherford
hypothesized that the atom had a small dense positively charged nucleus at its
center with negatively charged electrons orbiting around it. Although this
planetary model was consistent with the charges and the behavior of the alpha
particles in his experiment, it had problems. In particular, an electron circling a
nucleus should be continually sapped of its energy and thus rapidly spiral into the
nucleus. Moreover, the model could not explain discrete atomic emission lines.

To correct some of the defects in the Rutherford model, in 1913, Niels Bohr
hypothesized that electrons orbit the nucleus of an atom at discrete distances, the
actual distances depending on the element (Fig. 5.3) Electrons closer to the
nucleus have lower energy than those further away. An electron must occupy
definite energy levels, known as quantum states. It can jump to a different level
without passing through intermediate levels, a so-called quantum jump. If light
with the right energy encounters an atom, then the light will be absorbed, the
atom’s electrons will be excited, and they will rise to higher energy states. In the
other direction, when an electron jumps from a higher energy orbit to a lower
one, it emits a photon whose energy equals the difference between the energy
levels of the orbits. The discrete jumps fit neatly with the discrete spectral lines.

. -'--
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Figure 5.2 Atomic emission spectra.
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Figure 5.3 Bohr atomic model [Wikipedia, 2007].

5.2.2 Wave—particle duality

While the Bohr model predicts empirical observations better than the Rutherford
model, quantum jumps are not in accord with our ordinary experience of
continuity: an electron never occupies space between its original level and the
one to which it jumps. Furthermore, is light a particle or a wave? Our ordinary
experience seems to say that it must be one or the other, but not both. But
suddenly it appears that light behaves as both a particle and a wave, depending
on the experiment. Thus, physicists are confronted with a wave—particle duality,
a notion that defies our ordinary categories of the understanding.

In 1924, Louis de Broglie argued that wave—particle duality is characteristic
of both radiation and all particles of matter, not just light. Whereas Planck and
Einstein had demonstrated that what was thought to be waves act like particles,
de Broglie asserted that what was thought to be particles act like waves. In the
case of electrons, a wave-like character implies that interference can only be
avoided by occupying orbits at certain distances from the nucleus, in accordance
with the Bohr atomic model. De Broglie’s wave—particle duality theory was later
supported when wave-like interference patterns were observed when electrons
were passed through a double-slit experiment.

We consider the double-slit experiment more closely. It is possible to
generate light of such low intensity that the experimenter can keep track of
individual photons and record hits on the detector as they build up. It turns out
that each individual photon falls randomly on the detector; however, after a large
number of photons have arrived, a wave pattern emerges. What then is the path
of an individual photon? Which slit does it go through, or does it go through
both? Are these questions even meaningful? All that is known is that
probabilities can be assigned to regions in which a photon might hit, these being
consistent with the wave pattern. Various experiments have been performed and
sundry observations have been made. What seems to be safe to say is that, from
the perspective of ordinary understanding, strange phenomena have been
observed.
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To illustrate wave—particle behavior associated with a double-slit experiment,
we consider an experiment performed by a group led by Akira Tonomura. Single
electrons are emitted one by one from the source in an electron microscope. They
pass through a device called an “electron biprism,” which consists of two parallel
plates with a fine filament at the center (each side of which corresponds to a slit)
and they are individually observed as particles on a detector. Parts (a) through (e)
of Fig. 5.4 show increasing numbers of electrons on the detector: 11, 200, 6000,
40,000, and 140,000. With a small number of electrons, the pattern appears
completely random; however, as the number of electrons increases the
interference pattern becomes increasingly visible, even though the electrons are
emitted individually. Are the electrons waves or particles?
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Regarding the wave—particle behavior observed in double-slit experiments, in
his Lectures on Physics, Richard Feynman writes,

In this chapter we shall tackle immediately the basic element of the
mysterious behavior in its most strange form. We choose to examine a
phenomenon which is impossible, absolutely impossible, to explain in
any classical way, and which has in it the heart of quantum mechanics. In
reality, it contains the only mystery. We cannot make the mystery go
away by “explaining” how it works. We will just tell you how it works.
In telling you how it works we will have told you about the basic
peculiarities of all quantum mechanics. [Feynman, 1964]

Once an individual electron hits the detector, its position is known exactly,
but before then its position can only be described probabilistically. The behavior
of an electron is governed by Schrodinger’s wave equation (for the mathematical
form of which we refer the interested reader to the abundant literature). Max
Born showed that the square of the wave function is a probability density
governing particle position. In principle, Schrodinger’s equation applies to all
non-relativistic matter; however, only for small systems are the wavelengths
observable and significant. Schrodinger solved for the exact solutions of the
wave equation for the hydrogen atom. The results match the known energy levels
of the atom. Figure 5.5 shows probability density plots for the hydrogen atom
orbitals. The plots are two-dimensional slices; the actual densities are three-
dimensional. Given that an electron is in an orbital, the probability of finding the
electron in any region of the orbital is the probability of that region.

Probability density plots,

@ Lé Hydrogen Wave Functio;

(2,0,0) (3,0,0)

(2,1,0) (3,1,0)

Figure 5.5 Hydrogen atom orbitals [Sevencolors.org, 2009].
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5.2.3 The uncertainty principle

In 1927, Werner Heisenberg stated the famous uncertainty principle with which
his name is often associated:

At the instant of time when the position is determined, that is, at the
instant when the photon is scattered by the electron, the electron
undergoes a discontinuous change in momentum. This change is the
greater the smaller the wavelength of the light employed, i.e., the more
exact the determination of the position. At the instant at which the
position of the electron is known, its momentum therefore can be known
only up to magnitudes which correspond to that discontinuous change;
thus, the more precisely the position is determined, the less precisely the
momentum is known, and conversely. [Heisenberg, 2006]

Heisenberg originally conceived the idea by considering the measurement of
a particle’s position and velocity using an optical microscope. Light hits the
particle and is reflected. When the light photons hit a sub-atomic particle, it
moves. The position is accurately measured but the velocity of the particle is
affected. Hence, the position is obtained but knowledge pertaining to the velocity
is lost. Based upon this thinking, Heisenberg proposed that the certainty with
which we know the location of a particle is inversely related to the certainty with
which we know its momentum.

The uncertainty principle is often written as AxAp > h/4r, where Ax and Ap
denote the uncertainties in position and momentum, respectively, and % is
Planck’s constant. More precisely, it takes the form 6.6, > h/4n, where o, and G,
denote the standard deviations of the position and momentum, respectively.
Whereas Heisenberg originally thought of the uncertainty principle as due to the
measurement process, it arises as a consequence of the quantum wave nature of
the electron. Consequently, it is a fundamental physical property, not a statement
concerning measurement technology.

According to the uncertainty principle, a particle does not possess specific
position and velocity; instead, these are known probabilistically and there is an
intrinsic limitation of the accuracy with which the system composed of the
position and momentum can be known. Physical laws can only provide
probabilistic descriptions up to the limit allowed by the uncertainty principle.
Epistemologically, this differs radically from the basic deterministic principle of
classical physics in which the state of a system can be precisely determined and,
once this is determined, future states can be predicted precisely by the laws.

5.3 Epistemological Reflections on Quantum Theory

Quantum theory is inconsistent with many commonplace assumptions:
continuity, causality, determinism, a particle having a unique position, and the
distinction between particles and waves. Thus, it is not surprising that the theory
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provoked much debate as to its meaning, its status as a physical theory, and its
implications for epistemology.

5.3.1 The Copenhagen interpretation

Prior to the measurement of its position on the detector, an electron has no
definite position, at least insofar as physics is concerned, there being only a
probability distribution characterizing the likelihood of its position, but once
detected, it has a definite position. How is this to be interpreted? The view taken
by Bohr and Heisenberg is that once a particle is measured, the probability of its
being detected elsewhere becomes zero. Prior to detection, the particle's position
is inherently random. The randomness disappears upon interaction with a
measuring device. Bohr believed that there is no precise way to define the exact
point at which this so-called wave function collapse occurs. Hence, there is no
deep quantum reality, no actual world of electrons and photons. Quantum
mechanics provides a formalism that we can use to predict and manipulate
events. There is no knowledge beyond that. However, once the measurements are
made, these behave in the classical manner and should be describable in classical
language. On account of Bohr’s laboratory being in Copenhagen, this perspective
is known as the Copenhagen interpretation.

From the human perspective, the theory views Nature as intrinsically random
and somehow interdependent with human observation. One thinks of Berkeley
(esse est percipi). When observed, an electron has a position; when not being
observed it does not. And, according to the uncertainty principle, if it is observed
with perfect precision, then its momentum, which means its velocity, is totally
unknown.

Einstein was uncomfortable with this interpretation. There can be no proof
that there are not hidden variables whose discovery would eliminate randomness.
Perhaps quantum theory is incomplete. This would agree with Laplace’s view
that the randomness we observe is always due to ignorance. The argument cannot
be decided beforehand, that is, before the actual discovery of the variables, so
that they are no longer hidden. Beyond that, Einstein believed that science has to
be deterministic because he believed reality is deterministic. Referring to the
Seventeenth Century philosopher Baruch Spinoza, Einstein wrote, “He was
utterly convinced of the causal dependence of all phenomena, at a time when the
success accompanying efforts to achieve a knowledge of the causal relationship
of natural phenomena was still quite modest.” [Einstein, 1982] Thus, Einstein is
taking a metaphysical position in agreement with Spinoza.

Although there are other interpretations of quantum theory, it appears that the
Copenhagen interpretation is held by the majority of physicists. This is consistent
with Newton’s Hypotheses non fingo, although one would be rash to conclude
that Newton would agree with the extension of his dictum to the Copenhagen
interpretation. In any event, it is a minimalist view and consistent with
maintaining a demarcation between science and metaphysics.
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5.3.2 Knowledge depends on the questions asked

As one might expect from the originator of the uncertainty principle, Heisenberg
puts great emphasis on the interaction between the scientist and Nature. He
writes, “Natural science does not simply describe and explain Nature; it is part of
the interplay between nature and ourselves.” The key to that interplay is the
manner in which we probe Nature. In Heisenberg’s words, “What we observe is
not Nature itself, but Nature exposed to our method of questioning.” Think of the
uncertainty principle. Does the question concern the position or the momentum?
Heisenberg says that we must choose where to put our focus: “We decide, by our
selection of the type of observation employed, which aspects of nature are to be
determined and which are to be blurred.” [Heisenberg, 1977a]

Since the knowledge gained depends on the questions asked, the
mathematical system, which constitutes the frame of thinking, is in some sense
determinative of the kind of knowledge to be gained because the questions must
lead to answers that can be formulated in the language of the system. Thus,
depending on the mathematical system chosen, the same phenomena may be
modeled (thought about) in different ways. Heisenberg considers this idea to be
the most important concept arising from quantum theory:

The most important new result of nuclear physics was the recognition of
the possibility of applying quite different types of natural laws, without
contradiction, to one and the same physical event. This is due to the fact
that within a system of laws which are based on certain fundamental
ideas only certain quite definite ways of asking questions make sense,
and thus, that such a system is separated from others which allow
different questions to be put. [Heisenberg, 1977b]

Questions presuppose answers and scientific answers are quantitative. They
involve measurement. The uncertainty principle raises the following question:
Does a property that cannot be measured exist? According to Percy Bridgman,

On careful examination the physicist finds that, in the sense in which he
uses language, no meaning at all can be attached to a physical concept
which cannot ultimately be described in terms of some sort of
measurement. A body has position only in so far as its position can be
measured; if a position cannot in principle be measured, the concept of
position applied to the body is meaningless, or in other words, a position
of the body does not exist. Hence if both the position and velocity of the
electron cannot in principle be measured, the electron cannot have the
same position and velocity; position and velocity as expressions of
properties which an electron can simultaneously have are meaningless.
To carry the paradox one step further, by choosing whether I shall
measure the position or the velocity of the electron, I thereby determine
whether the electron has position or velocity. The physical properties of
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the electron are not inherent in it, but involve also the choice of the
observer. [Bridgman, 1950]

It has long been known that science is inextricably tied to technology
because the capacity to measure depends directly on the instrumentation
available, but quantum theory goes beyond that by saying that certain
measurements are intrinsically impossible and therefore the impossibility of
measurement cannot be overcome by improved technology.

5.3.3 Nature is absurd

Given that scientific knowledge depends on the questions asked, which are in
turn limited by the mathematical apparatus and the measurement process, what
then is the relation between scientific knowledge and Nature? On this most
fundamental point, Bohr takes a Kantian position: “It is wrong to think that the
task of physics is to find out how Nature is. Physics concerns what we say about
Nature.”

For Bacon, the essence of a phenomenon pertains to its metaphysical form,
which constitutes a deeper reality than the empirical observation and would have
to be where meaning resides. Bohr dismisses any hope for meaning;:

A subsequent measurement to a certain degree deprives the information
given by a previous experiment of its significance for predicting the
future course of the phenomena. Obviously, these facts not only set a
limit to the extent of the information obtainable by measurements, but
they also set a limit to the meaning we may attribute to such information.
We meet here in a new light the old truth that in our description of
Nature the purpose is not to disclose the real essence of the phenomena
(i.e., the quantum character of their ultimate constitution) but only to
track down, as far as possible, relations between the manifold aspects of
our experience. [Bohr, 2012]

Indeed, it is an “old truth”—in Galileo, Newton, and Kant.

For Kant there is a deeper reality, the noumena, but this is not accessible to
the categories of the understanding, which apply to phenomena. Here Bohr parts
with Kant because Bohr’s description of Nature is not limited to the categories of
the understanding; indeed, it is precisely the ordinary human understandings
about Nature that quantum mechanics rejects.

What we can say about Nature depends on what we can observe and what
mathematical tools can be brought to bear. As Newton’s desire to quantitatively
express mechanical concepts led him to develop the calculus, the probabilistic
nature of quantum events in space and time helped spur the rapid development of
the theory of random processes in the 1930s and 1940s. The formulation of
quantum theory in terms of operators depends on the theory of Hilbert spaces,
which illustrates the dependency of science on the language of mathematics.
There is the famous example of Einstein approaching David Hilbert for help in
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formulating the general theory of relativity and Hilbert suggesting Riemannian
geometry as an appropriate language.

Did quantum theory fundamentally advance the epistemology of the
Seventeenth Century, which, as stated by Kline, “bequeathed a mathematical,
quantitative world that subsumed under its mathematical laws the concreteness of
the physical world?”” Perhaps not theoretically! But practically it did. One could
no longer depend on the language of ordinary experience, such as “wave” and
“particle,” to formulate laws. One could no longer depend on using everyday
models such as billiard balls banging into each other to explain the theory.
Galileo had dismissed explanation as science in principle. Quantum mechanics
left no doubt that Nature cannot be described in mental pictures.

In the Mysterious Universe, James Jeans writes,

The final truth about phenomena resides in the mathematical description
of it; so long as there is no imperfection in this, our knowledge is
complete. We go beyond the mathematical formula at our own risk; we
may find a [nonmathematical] model or picture that helps us to
understand it, but we have no right to expect this, and our failure to find
such a model or picture need not indicate that either our reasoning or our
knowledge is at fault. [Jeans, 1930]

Non-mathematical reasoning may be useful for the scientist in exploratory
thinking, but scientific knowledge is constituted in a mathematical model. One
might use a metaphor of observers holding lights on approaching trains to make
an intuitive point concerning relativity, but the scientific theory lies properly
within the equations. Any attempt to force a non-mathematical understanding
creates the risk of having a diminished (or erroneous) scientific theory because it
substitutes readily understandable and often convincing descriptions in place of
strict scientific knowledge, which must take a mathematical form.

With all of this mathematics, where is the concreteness of the physical
world? Indeed, is there something concrete? If we cannot express it, then is there
an “it” to express? Jeans writes,

A mathematical formula can never tell us what a thing is, but only how it
behaves; it can only specify an object through its properties. And these
are unlikely to coincide in foto with the properties of any single
macroscopic object of our everyday life.... We need no longer discuss
whether light consists of particles or waves; we know all there is to be
known about it if we have found a mathematical formula which
accurately describes its behavior, and we can think of it as either
particles or waves according to our mood and the convenience of the
moment. [Jeans, 1930]

There is behavior apprehended as measurements. These are abstracted as
variables in a mathematical system and comprise the elements related by the
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mathematics. That is it. Concreteness is a will-o'-the-wisp. Not only is there an
unbridgeable chasm between the phenomenal and noumenal worlds, there is also
a huge gulf between human understanding and the phenomena.

Schrodinger states the matter metaphorically:

As our mental eye penetrates into smaller and smaller distances and
shorter and shorter times, we find nature behaving so entirely differently
from what we observe in visible and palpable bodies of our surrounding
that no model shaped after our large-scale experiences can ever be 'true'.
A completely satisfactory model of this type is not only practically
inaccessible, but not even thinkable. Or, to be precise, we can, of course,
think it, but however we think it, it is wrong; not perhaps quite as
meaningless as a 'triangular circle', but much more so than a 'winged
lion'. [Schrodinger, 2004 ]

Where does this leave us in our relationship with Nature? Beginning a lecture
series on quantum electrodynamics to an audience of non-specialists, Richard
Feynman is unequivocal:

What I am going to tell you about is what we teach our physics students
in the third or fourth year of graduate school—and you think I'm going to
explain it to you so you can understand it? No, you're not going to be
able to understand it.... You see, my physics students don't understand it
either. That is because I don't understand it. Nobody does.... It is whether
or not the theory gives predictions that agree with experiment. It is not a
question of whether a theory is philosophically delightful, or easy to
understand, or perfectly reasonable from the point of view of common
sense. The theory of quantum electrodynamics describes Nature as
absurd from the point of view of common sense. And it agrees fully with
experiment. So I hope you can accept Nature as she is—absurd.
[Feynman, 1985]

Nature qua Nature is not absurd. Nature qua the human categories of the
understanding is absurd. Would it not be presumptuous to suppose otherwise? A
mathematical theory is intelligible because it is a product of the human intellect;
Nature is not a product of the human intellect.

5.4 The Structure of Scientific Knowledge

Feynman’s statement posits two definitive assumptions underlying scientific
knowledge: (1) understanding in the form of intelligibility is neither necessary
nor sufficient for scientific knowledge, and (2) the sole criterion for the validity
(“truth”) of a scientific theory is concordance between predictions derived from
the theory and corresponding observations.

Everything begins with an experiment designed to answer questions in the
mind of the scientist. The product of an experiment is a set of measurements that
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form the data of sensibility, the empirical (as opposed to a rational) basis for
knowledge. In themselves, measurements do not constitute scientific knowledge.
They must be integrated into a conceptual system. Scientific knowledge is
constituted via synthesis of the observed measurements. These are related to
variables and relations among the variables. Modern science is based on the
integration of two fundamental principles: (1) the design of experiments under
constrained circumstances to extract specifically desired information; and (2) the
mathematical formulation of knowledge. The two principles arise from the two
sides of the scientific problem, the source of knowledge and the representation of
knowledge in the knower.

Scientific knowledge necessarily takes the form of mathematics for four
reasons:

1. Scientific knowledge is based on quantitative measurements, be they logical
Or numeric.

2. Scientific knowledge concerns relations, and mathematics provides the formal
structure for relations.

3. The validity of a scientific theory depends on predictions, and this requires a
quantitative structure from which to generate predictions and a theory of
probability in which the goodness of predictions can be quantified.

4. Mathematics provides a formal language in which both the constituting theory
and the experimental protocols for prediction are inter-subjective, once the
underlying mathematical representation of the theory is agreed upon.

Regarding the last requirement, Karl Popper (1902-1994) writes, “The
objectivity of scientific statements lies in the fact that they can be inter-
subjectively tested.” [Popper, 1959] Inter-subjectivity demands that scientific
knowledge not depend on reason, except within the strict rules of mathematics
and logic; otherwise, philosophical theories like Marxism could legitimately
claim to be science. This would be “cult science,” open only to those who claim
to understand empty phrases such as “dialectical materialism.”

There is much more to a model than the defining relations, that is, the general
principles of the model. A great power of the scientific epistemology lies in the
deducibility of logically necessary relations from the defining relations—the
hypothetico-deductive method. This deduction can reveal critical relations not at
once apparent in the defining relations. A full mathematical model consists of the
defining relations and all relations logically deduced from these. The knowledge
constituted by the derived relations is implicit in the defining structure but only
becomes apparent when derived explicitly.

A mathematical model alone does not constitute a scientific theory; the
model must be related to phenomena, that is, the formal mathematical system
must be related to the empirical ground of science. Validation of a system
requires that it be tied to observations by rules that relate not necessarily to its
defining relations but to conclusions logically deduced from the defining
relations. There must be a formal protocol for testing the theory by checking
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measurable consequences of the theory. Bridgman observed that the relational
rules involve the description of physical operations and called them operational
definitions.

The operational definitions are an intrinsic part of a scientific theory, for
without them there would be no connection between the mathematics and
observation, between the conceptual system and the experiments. The conceptual
system must have consequences that can be checked via their relation to sensory
observations. There must be a defined procedure for relating the consequences of
the equations to quantifiable observations, such as the compression of a spring or
the distribution of electrons on a detector.

A scientific theory consists of two parts:

1. A mathematical model composed of symbols (variables and relations
between the variables).

2. A set of operational definitions that relate the symbols in the model and
measurements of corresponding physical events.

In addition, two requirements must be met to have a validated scientific theory:

3. There must be validating data, that is, a set of future quantitative predictions
derived from the theory and corresponding measurements.

4. A statistical analysis that supports acceptance of the theory, that is, supports
the concordance of the predictions with the physical measurements—
including the mathematical theory justifying application of the statistical
methods.

The fourth requirement means that one cannot apply a statistical technique
unless there is solid theory demonstrating the validity and specificity of the
conclusions drawn relating the predictions and measurements, and there is
theoretical justification for applying the statistical technique under the current
conditions. For instance, if the statistical theory requires that the data come from
a normal distribution, then there must be evidence that an assumption of
normality, while not necessarily guaranteed, is at most only weakly violated. One
might apply a hypothesis test and show that the data do not support rejection of
the normality assumption.

5.5 Scientific “Truth”

For Plato, true knowledge involves certainty and resides in the deeper reality of
the forms, not in the shadow world of empirical observations, where uncertainty
prevails. While dismissing the deeper reality as a fiction, Hume agrees that
knowledge gained via the senses is inherently uncertain. This does not leave us
with a categorical absence of knowledge, nor does it render the notion of truth
meaningless. On the contrary, taking expectation as the ground of scientific
knowledge leads to the basis of scientific truth. Predictive relations characterize
model validity and are necessary for scientific knowledge. Truth is determined by
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concordance of the predictive relations with future observations corresponding to
the predictions. Scientific truth relates to the predictive capacity of a scientific
theory. Scientific knowledge is about the future. Past observations may lead to
discovery of a theory but the theory must predict the future.

Reichenbach writes,

If the abstract relations are general truths, they hold not only for the
observations made, but also for observations not yet made; they include
not only an account of past experiences, but also predictions of future
experiences. That is the addition which reason makes to knowledge.
Observation informs us about the past and the present, reason foretells
the future. [Reichenbach, 1971]

Foretelling the future is the crux. A model may fit existing data, but the
model must incorporate mathematical machinery that makes it predictive across
time to be scientifically valid.

Prediction is not certitude. Instead of causality, science involves conditional
distributions that describe the probability of a target random variable Y given the
values of a set of predictor random variables, Xi, X>,..., X,n. The target measures
some process, and it has a probability distribution quantifying its behavior. The
predictor variables possess the quality of causes in that their outcomes condition
the behavior of the target, in analogy to causes determining an effect, but they do
so in a probabilistic manner. Specifically, the original probability distribution of
the target Y is altered depending on the outcomes of the predictors X, Xa,..., X.
In particular, given values of the predictor random variables, the best prediction
(relative to mean-square error) of Y is its conditional expectation, meaning its
expectation conditioned on the values of Xi, X2,..., X

Causality is replaced by conditioning. Statements concerning conditional
prediction can be validated via experimentation. The meaning of a statement can
be defined within the framework of probability theory, and its relation to
measurable phenomena can be mathematically characterized within the theory of
statistics. If the predictor variables are antecedent to the variable to be predicted,
then we have forward prediction. The terms “cause” and “effect” never appear.

The general epistemological perspective does not specify how it is to be
applied in particular settings. According to Einstein,

In order that thinking might not degenerate into ‘metaphysics,” or into
empty talk, it is only necessary that enough propositions of the
conceptual system be firmly enough connected with sensory experiences
and that the conceptual system, in view of its task of ordering and
surveying sense experience, should show as much unity and parsimony
as possible. Beyond that, however, the system is (as regards logic) a free
play with symbols according to (logically) arbitrarily given rules of the
game. [Einstein, 1944b]
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The model (conceptual system) is a creation of the imagination, in
accordance with the rules of the game. The manner of this creation is not part of
the scientific theory. The classical manner is that the scientist combines an
appreciation of the problem with reflections upon relevant phenomena and, based
on mathematical knowledge, creates a model. As Einstein states, this creation is
free except that it must conform to the rules of the mathematical game.

Epistemologically more problematic is that Einstein’s prescription does not
lead to a unique, absolute truth because validation is a process and the “truth” of
the theory is relative to that process. Indeed, what is meant by “enough
propositions” being “firmly enough connected with sensory experiences?” How
many propositions? How firmly? The model must be connected to observations
but the specification of this connection in a given circumstance is left open. This
specification constitutes an epistemological requirement that must be addressed
in mathematical statements. Absent such a specification, a purported scientific
theory is meaningless. Different people may set different requirements, so that
one may accept the theory as valid and the other may not.

A scientific theory is incomplete without a formal specification of achievable
measurements that can be compared to predictions derived from the conceptual
theory and the manner in which the measurements are to be compared to the
conceptual system, in particular, validity criteria and the mathematical properties
of those criteria as applied in different circumstances. The validity of a theory is
relative to this specification, but what is not at issue is the necessity of a set of
relations tying the conceptual system to operational measurements. A scientific
theory is inter-subjective, but the epistemological criteria underlying a particular
validation are open to debate. Once the validation requirements are specified, the
mathematical model (conceptual system) is valid relative to the validation criteria
and to the degree that the requirements are satisfied, that is, to the degree that
predictions demanded by the validation protocol and resulting from the
mathematical model agree with experimental observations.

Reichenbach states, “Scientific philosophy has constructed a functional
conception of knowledge, which regards knowledge as an instrument of
prediction and for which sense observation is the only admissible criterion of
nonempty truth.” [Reichenbach, 1971]

Scientific knowledge is worldly knowledge in the sense that it points into the
future by making predictions about events that have yet to take place. Scientific
knowledge is contingent, always awaiting the possibility of its invalidation. Its
truth or falsity lies in the verity of its predictions and, since these predictions
depend upon the outcomes of experiments, ultimately the validity of scientific
knowledge is relative to the methodology of verification.

This is a long way from Plato’s cave, in which the prisoners see only
shadows but reason can reach deeper to the true forms casting the shadows.
These exist in some timeless place where there is no idea of process. It is also a
long way from Aristotle’s three pillars: causality, explanation, and metaphysics.
For Aristotle, reason could explain the observations by placing them within some
rational structure intrinsic to the whole of reality. For both Plato and Aristotle,
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truth is metaphysical, it being a property of an idea that, while it might be only
partially revealed in observations, is intrinsic to the idea. For science, the truth of
an idea depends on the process of validating its truth. Since many processes
might be used, there are many truths. Change the process and the truth may
change.

Some might try to argue that a truth relative to its process of verification is
no more solid than Rousseau’s mental fantasies. This would be a grossly
fallacious analogy. Rousseau specifically states that facts do not matter, whereas
a scientific theory must show concordance with facts. What is open in science is
the manner in which concordance is to be manifested. One might argue that this
leaves open the possibility of positing operational requirements that are so loose
that any theory could be validated. This argument is facetious because it
presupposes scientific nihilism, a position rejected by serious scientists and
demonstrated by their willingness to put aside the idols of the mind to discover
mathematical conceptualizations of natural processes consistent with
observations across time.

5.6 A New Role for Reason

Aristotle provides four causes as the basis for explanation of the physical world.
Irrespective of the continuing appeal to causality, explanation remains ubiquitous
and is perhaps the greatest impediment to meaningful scientific enquiry.
Explanation makes the world intelligible by characterizing it via categories
grasped by the intellect, thereby satisfying the emotional desire to give order to
the physical world and comprehend the “why” of that order. Nature seemingly
becomes accessible to the human intellect. The result is reason working a
posteriori on observations or perhaps in the absence of observations (think of
Rousseau) to construct a mental picture of the world. This would be a picture in
terms of human physical concepts such as particles, gravity, force, etc. It would
be a picture of Nature filtered through the idols of the tribe, seen in the reflection
of “a false mirror, which, receiving rays irregularly, distorts and discolors the
nature of things by mingling its own nature with it.”

Science has not abandoned reason; rather, the role of reason has changed.
Scientific knowledge is constituted in a most pure form of reason, mathematics,
but the truth of that knowledge is not ascertained directly by reason, nor is that
knowledge required to conform to ordinary categories of intelligibility. In one
sense, reason loses its lofty position because it cannot remain independent in its
judgments; these must be tied to phenomena in well-defined ways. To put the
matter more forcefully, reason is no longer trusted.

The Enlightenment, in the person of its two greatest philosophers, Hume and
Kant, turns reason upon itself and exposes its limitations, at least in its pure form.
When Maxwell speaks of discovering a method that allows the mind not to be
“carried beyond the truth by a favorite hypothesis,” he is warning of the danger
of unchecked reason, a warning given more forcefully by Hume, who, in the
Treatise, asserts, “Reason is, and ought only to be the slave of the passions, and
can never pretend to any other office than to serve and obey them.” [Hume,
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1738] Whereas Maxwell is concerned about tilting one’s reason in the direction
of a favorite hypothesis owing to “that blindness to facts and rashness in
assumption which a partial explanation encourages,” Hume, with his usual flair
for directness, states that reason is a servant of desire and therefore cannot be
trusted as an arbiter of its own deliberations. One should not only be wary of
blindness to the facts affecting explanations but also recognize that explanations
may be constructed in such a way as to “serve and obey” the passions (again
think of Rousseau). Consider two scientific protagonists who firmly believe in
the products of their individual reason. We need not dig into the intricacies of
their cobwebs. We need only test their claims, which can be done because they
must each provide operational definitions in conjunction with their models.

Perhaps modernity has to some extent deprived reason of its lofty perch;
however, it has also made reason more powerful in other ways. First, it has made
an extraordinary move away from the immediate perceptions that were
previously the basis for understanding the natural order. This entails a huge leap
in creativity. Einstein writes, “Experience, of course, remains the sole criterion
for the serviceability of mathematical constructions for physics, but the truly
creative principle resides in mathematics.” [Einstein, 1933] The veracity of a
scientific model lies in experience, but its conception arises from the
imagination, an imagination freed from the fetters of Euclidean geometry, linear
time, certainty, causality, and other constraints of the past. Second, when
confronting Nature, reason no longer is confined to groping through aimlessly
collected data; instead, it views Nature though an experimental filter based upon
its own needs. Third, science has abandoned the rational explanation of Nature,
and reason no longer is stuck looking backwards in an attempt to explain the
past; rather, its role is to foretell the future. Recall Reichenbach: “Observation
informs us about the past and the present, reason foretells the future.” To be able
to predict the future puts great power into the hands of mankind because it
facilitates the predictable transformation of Nature resulting from human action
in the world. Science provides a “functional conception of knowledge.”

5.7 Deterministic or Stochastic Models?

An advantage of a deterministic theory is that, assuming sufficient knowledge,
there is no uncertainty in the evolution of the state of the system. In practice,
measurements are not perfectly precise, so there is always uncertainty as to the
value of any variable. This uncertainty does not undermine a deterministic
epistemology; rather, it pertains to the actualization of the epistemology in the
measurement process. One might anticipate increasingly precise measurements,
to the point that measurement error would be negligible. This assumption
vanishes with quantum theory, where, in principle, there is a hard limit.
According to the uncertainty principle, at any moment in time, the product of
the uncertainties in position and momentum of a particle must exceed 4/4n. The
position and momentum can be measured separately without a limit on accuracy,
but not jointly. According to the Copenhagen interpretation, the uncertainty
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principle is intrinsic to human interaction with Nature, so that stochastic
modeling in quantum mechanics is necessary. However, suppose Einstein is
vindicated and hidden variables are found, so that a deterministic theory is
sufficient relative to all known phenomena, or that the level of randomness is
reduced. The new theory would be contingent, as are all scientific theories,
awaiting new observations that might render it inadequate.

The fundamental point is that causality and determinism are metaphysical
concepts. Recall Schrodinger’s comment that causality is just “a characteristic of
the way in which we regard Nature.” For a scientific theory, the choice of a
stochastic or deterministic model is pragmatic: Which gives better predictions?

Constraints are typically imposed on science by observational limitations.
Since a model can only be verified to the extent that its symbols can be tied to
observations, the ability to design and perform suitable experiments, including
the availability of technology to make the desired measurements, is mandatory.
Limitations on experimentation can result in limitations on the complexity or
details of a theory. To be validated, a theory cannot exceed the experimentalist’s
ability to conceive and perform appropriate experiments. With the uncertainty
theory, modern physics appears to have brought us beyond the situation where
limitations on observation result only from insufficient experimental apparatus to
a point where limitations are unsurpassable in principle.

Schrodinger states,

It really is the ultimate purpose of all schemes and models to serve as
scaffolding for any observations that are at all conceivable.... There does
not seem to be much sense in inquiring about the real existence of
something, if one is convinced that the effect through which the thing
would manifest itself, in case it existed, is certainly not observable.
[Schrodinger, 1957]

Absent observable effects due to an object, the object is not a suitable subject for
scientific inquiry.

We need not go to the uncertainty theory to appreciate Schrédinger’s point.
The inability to experience absolute simultaneity and other such absolutes plays a
key role in Einstein’s approach to relativity theory. He writes,

A further characterization of the theory of relativity is an epistemological
point of view. In physics no concept is necessary or justifiable on an a
priori basis. A concept acquires a right to existence solely through its
obvious and unequivocal place in a chain of events relating to physical
experiences. That is why the theory of relativity rejects concepts of
absolute simultaneity, absolute speed, absolute acceleration, etc.; they
can have no unequivocal link with experiences. Similarly, the notions of
‘plane,” and ‘straight line,” and the like, which form the basis of
Euclidean geometry, had to be discarded. Every physical concept must
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be defined in such a way that it can be used to determine in principle
whether or not it fits the concrete case. [Einstein, 1993]

A second constraint on scientific theory imposed by observational limitations
concerns the kind of mathematical models to be employed. If there is inherent
uncertainty in the measurements relating to a model, then a deterministic model
is limited in its ability to produce accurate predictions because phenomenal
predictions tied to the model via its operational definitions will be affected by the
uncertainty and therefore validation is problematic. Consequently, probabilistic
models, taking uncertainty into account, are preferable. Whereas imprecise
measurements always affect model validation, the uncertainty principle makes
this problem intrinsic. This does not imply that deterministic models are no
longer useful. In the classical setting, when measurement error is very small, it
can be ignored. This is also true in the macroscopic world when it comes to
quantum uncertainty because Planck’s constant is very small and the uncertainty
can be practically ignored.

Deterministic models may be suitable for simple physical systems not subject
to consequential changes outside those internal to the system; however, they are
rarely, if ever, satisfactory for modeling complex interactive physical systems
subject to external variables outside the system, which are ubiquitous in biology.
If a dynamical process is repeatedly observed and measurements made on some
set of variables over time, one cannot expect the measurements to remain the
same across the different trials because, even if one could somehow replicate the
initial state of the variables for each trial, unless the process is completely
isolated so that the variables being measured are affected by no others but
themselves, its evolution will depend upon variables outside the set.

Like determinism interpreted as a world view, randomness is a metaphysical
category that can neither be proved nor disproved by empirical observations. The
assumption of a stochastic model is a scientific decision, not a metaphysical
perspective. Andrey Kolmogorov, discoverer of the measure-theoretic approach
to probability theory, writes, “The possibility of using, in the treatment of a real
process, schemes of well-determined or of only stochastically definite processes
stands in no relation to the question whether the real process is itself determined
or random.” [Kolmogorov, 1931] The “real process” is not a subject of scientific
knowledge.



Chapter 6

Complex Systems: A New
Epistemological Crisis

6.1 The Twenty-first Century: Starved for Data

The preceding chapter discussed the manner in which the modern scientific
epistemology originating with Galileo reached a deep understanding in the first
half of the Twentieth Century; however, the book on epistemology is far from
closed. The epistemological challenges confronting the Twenty-first Century are
the most severe since the dawning of the Seventeenth Century. They arise from a
desire to model complex systems that exceed human conceptualization ability.
As a consequence, people attempt to use highly flexible mathematical structures
with large numbers of parameters that can be adjusted to fit the data, the result
often being models that fit the data well but lack structural representation of the
phenomena and thus are not predictive outside the range of the data. The
situation is exacerbated by uncertainty regarding model parameters on account of
insufficient data relative to model complexity, which in fact means uncertainty
regarding the models themselves. More importantly from the standpoint of
epistemology, the amount of available data is often miniscule in comparison to
the amount needed for validation. The desire for knowledge has far outstripped
experimental/observational capability. We are starved for data.

With all the talk these days of “Big Data,” one must remember that bigness is
relative to need. While the current amount of data may be big relative to small
systems, it is paltry compared to the data required for large complex systems,
especially if it is not collected with a sharp eye to the intended use, which often it
is not. We need only recall the warnings of Bacon and Kant about groping in the
dark. With complex systems, experimental design is even more imperative. Still,
with or without experimental design, in many cases it is virtually impossible to
obtain the data required for model validation.

6.2 Gene Regulatory Networks

The Twenty-first Century is sometimes viewed as the century of biology; yet in
biology complexity reaches heights undreamed of until very recently. A human
body consists of trillions of cells containing about 100,000 different types of
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proteins and 30,000 genes interconnected in a myriad of signaling pathways, and
let us not forget that each gene consists of a region of DNA, and the genome is
subject to an immense number of single nucleotide polymorphisms, which are
variations in a single nucleotide. We will discuss complexity in the context of
modeling gene regulation in a single cell, which, although it represents only a
small portion of the full system, presents unworkable levels of complexity even
when only a relatively small number of genes are involved.

The regulatory system in a cell is mainly based in its genetic structure. The
basic paradigm has two parts. Transcription refers to the process by which the
genetic information in a gene is copied into messenger RNA (mRNA). When this
process is occurring the gene is said to be expressing (or activated). Expression is
governed by signaling proteins attaching themselves (binding) to the gene’s
promoter region. In essence, each gene is controlled by the states of a set of
genes, so that its activation or non-activation depends on a combination of the
expression levels in its regulating genes. Translation, which occurs subsequent to
transcription, refers to the production of protein based on the code carried by the
mRNA. The resulting protein can either be involved in maintaining the cell
structure or function as a signal (transcription factor) to instigate or prohibit
further gene expression by binding to the promoter region of a gene and forming
a complex with other transcription factors to regulate the gene. This process goes
on continuously across the genome to produce signaling pathways that regulate
gene activity dynamically. Other factors affect gene activity, but we will focus
solely on this basic transcriptional system.

A gene regulatory network (GRN) is a mathematical model comprised of a
set of entities called “genes” and a regulatory structure that governs their
behavior over time. GRNs can be finely detailed, as with differential-equation
models, or coarse-grained, with discrete expression levels transitioning over
discrete time. There is no expectation that coarse models closely represent actual
molecular structure; rather, their purpose is to model interaction at the gene level
in order to serve as a framework for studying regulation and provide rough
models that can be used to develop strategies for controlling aberrant cell
behavior, such as finding optimal drug treatments. While it might appear that
gene-level modeling mistakenly ignores the molecular interaction constituting
genetic activity, as well as the myriad of other molecular activity in a cell, it
needs to be recognized that, while biological function requires chemistry, biology
is not chemistry. Although there is no clear dividing line, biology concerns the
operation of the cell at the level of genes, proteins, and other macromolecules
involved in the life functions of the cell, not the physiochemical infrastructure of
these macromolecules.

6.2.1 Deterministic Boolean networks

In the late 1960s, Stuart Kauffman introduced a discrete model known as a
Boolean network [Kauffman, 1993]. Each gene can have logical values 1 or 0,
corresponding to expressing or not expressing, respectively, and regulation is
specified by logical operations among genes. Thus, the functional relationships
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between genes can be specified by a truth table. While the Boolean model is very
coarse, it does model the thinking of cancer biologists, who speak of a gene being
on or off under different conditions. Moreover, although the original formulation
is two-valued, 0 or 1, the concept applies to any number of discrete gene values.

Formally, a Boolean network is defined by & binary variables, xi, x2,..., X,
where the value x; of gene g; at time 7 + 1 is determined by the values of some
regulator genes at time ¢ via a Boolean function f; operating on the regulator
genes. A typical function would be of the form x3 = f3(x2, x4) = X2 A x4, where A
means “and.” This means that gene g3 is on (expressing) at time ¢ + 1 if and only
if genes g» and g4 are on (expressing) at time 7. There are k£ such Boolean
functions, one for each gene, and together they determine the deterministic
dynamic evolution of the system over time. If there are four genes, then a typical
dynamic trajectory over three time points would look like 0101 — 1100 — 1101.
Given an initial state, a Boolean network will eventually reach a set of states,
called an attractor cycle, through which it will cycle endlessly. Each initial state
corresponds to a unique attractor cycle and the set of initial states leading to a
specific attractor cycle is known as the basin of attraction of the attractor cycle.

We consider a small network involving the tumor suppressor gene p53. In
mammalian genomes p53 is a transcription factor for hundreds of downstream
genes that modulate cell cycle progression, repair damaged DNA, and induce
senescence and apoptosis (cell self-destruction). Figure 6.1 shows some major
pathways involving p53 that are activated in the presence of DNA double strand
breaks. Adapted from [Batchelor, et al., 2009], it is not meant to be inclusive. An
arrow indicates an activation signal, and a blunt end indicates suppression. Note
that p53 activates Mdm?2 and activated Mdm?2 has a suppressing effect on p53.
Even in this small network one can see the complicating effect of feedback.

Given this kind of pathway diagram, which is inherently logical, one would
like to find Boolean networks whose state transitions generate the pathways
[Layek et al., 2011]. The problem is ill-posed because there may be numerous
networks that realize the pathways and there may be logical inconsistencies
among the pathways since they have been found under various conditions in
different studies. These kinds of issues are common with complex systems.

We consider two Boolean networks having states [ATM, p53, Wipl, Mdm2]
generated for the pathways in Fig. 6.1. An external input signal, denoted
dna_dsb, takes on the value 1 or 0, depending on whether there is or is not DNA
damage. This leads to two 4-gene Boolean networks determined by the following
logical rules [Imani and Braga-Neto, 2016]:

ATM;exe = Wipl A dna_dsb

P53nex = Mdm2 A ATM A Wipl
Wiplnext = p53
Mdm2,ext = (ATM A (p53 v Wipl)) v (p53 A Wipl)

The symbols A, v, and  represent logical “and”, “or”, and “not”, respectively.
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ATM
p53
Wipl > | Mdm?2

Figure 6.1 p53 pathways (adapted from [Imani and Braga-Neto, 2016]).

The state transition diagrams for these networks are shown in Fig. 6.2: (a)
dna dsb = 0; (b) dna_dsb = 1. Absent damage, from any initial state the network
evolves into the single attractor state 0000; with damage, the network evolves
into a 5-state attractor cycle in which p53 (state number 2) oscillates between
expressing and not expressing. If one were to observe the network without
knowing the damage status, then network behavior would appear stochastic, for
instance, 0001 — 0000 when dna_dsb =0 and 0001 — 1000 when dna_dsb = 1.

dna_dsb = 1 (DNA Double Strand Break)

dna_dsb =0 (No Damage)

(a) (b)

Figure 6.2 State transition diagrams for p53 networks: (a) no damage—single attractor
state; (b) damage—five-state attractor cycle.
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6.2.2 Probabilistic Boolean networks

From the perspective of each of the two p53 networks, the damage signal is a
latent variable exterior to the network. Given the value of the latent variable, the
network is deterministic; however, latency means that the damage signal is not
part of the network and is not observed. Hence, when observed the network is
stochastic. One might argue that the problem would be solved by including
dna_dab in the network. That would just push the latency further out because
dna dab is being influenced by other unobserved physical events. The central
point is that the model system cannot be isolated from interaction with its
environment, so, recalling Russell, even if the universe is deterministic, one
would have to include all events not totally disconnected from the network, a
practical impossibility.

One can incorporate both p53 Boolean networks into a single network by
viewing each individual Boolean network as a context (constituent) of a network
whose regulatory structure is defined at a given time point by setting the damage
signal to either O or 1. The new network maintains that regulatory structure until
it randomly switches to the other Boolean regulation, say dna_dsb = 0 to dna dsb
= 1, with some switching probability. The resulting network is called a
probabilistic Boolean network (PBN) [Shmulevich and Dougherty, 2010]. The
PBN inherits the attractor structures of the constituent Boolean networks, the
difference being that context switching can result in the network jumping out of
an attractor cycle into a different basin of attraction and then transitioning into a
different attractor cycle. While the p53 PBN has two contexts, the general
definition of a PBN allows any number of context Boolean networks. It also does
not require binary-valued genes.

To illustrate network (and biological pathway) switching, suppose there is no
damage and the network has settled into the attractor state 0000, as shown in Fig.
6.2(a). Since the role of the p53 network is to respond to DNA damage and since
there is no damage, this dormant state is what one might expect. Suppose DNA
damage is detected. Then dna_dsb flips to 1, the Boolean network of Fig. 6.2(b)
becomes operative, and the state changes from 0000 to 1000 in the next time
step, so that almost immediately the 5-state cyclic attractor is entered and p53
oscillates between 0 and 1 on each cycle.

The PBN model incorporates randomness in a structured manner. Should this
uncertainty be considered intrinsic, as in the case of quantum mechanics? One
could certainly argue that there are hidden variables and that, if we could observe
all of them, then the uncertainty would be eliminated. The debate is academic
because the physical system is too complex and consists of tens of thousands of
variables—genes, proteins, and other macromolecules within a single cell plus all
elements pertaining to extra-cellular signaling. Forming a sufficiently extensive
model to eliminate latency is impossible. There are two choices: use a
deterministic model if the latency is very small, or include the latency-induced
stochasticity in the model, as with PBNs.

Further randomness can be introduced to a Boolean network via
perturbations. Specifically, for each gene there is some small perturbation
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probability that it will randomly switch values. This is practical because there is
random variation in the amount of mRNA and protein produced. Perturbations
allow a network to jump out of an attractor cycle and, as with context switching,
eventually transition to a new attractor. A probabilistic Boolean network is
usually assumed to have perturbation randomness in addition to context-
switching randomness.

6.3 Validation of Complex Systems

In the classical deterministic scenario, a model consists of a few variables and
physical constants. The relational structure of the model is conceptualized by the
scientist via intuition gained from thinking about the physical world. Intuition
means that the scientist has some mental construct regarding the interactions
beyond positing a skeletal mathematical system he believes is sufficiently rich to
capture the interactions and then depending upon data to infer the relational
structure and estimate a large number of parameters. Classically, there are few
parameters to estimate and they are estimated from a handful of experiments.
Owing to the deterministic character of the model, it can be tested with a few
numerical predictions whose disagreement with future observations is due to
either experimental error or model failure, with the former being mitigated by
careful experimentation. The theory is contingently accepted if predictions are
deemed to be concordant with observations.

As model complexity grows to tens, then hundreds, and then thousands of
variables and parameters, the classical procedures become increasingly difficult
to carry out. The problem is exacerbated by stochasticity because prediction then
includes testing the accuracy of probability distributions in the model. Systems
with thousands of variables are virtually unvalidatable.

6.3.1 Validation of deterministic models

For a deterministic model, initial conditions can be set and, in principle, the state
at some future time determined exactly, although in practice there will be some
experimental variability. If the initial conditions of a test experiment are aligned
with those of the model and the experiment run to some future time, then
agreement between the final model and experimental states can be checked.
Large-scale deterministic systems have high-dimensional state vectors, so that
test experiments are more demanding; nevertheless, the ultimate comparison is
still between model and experimental state vectors. It is prudent to run tests using
a variety of initial conditions so that a large portion of the state space is tested.

Consider validating a Boolean network with & genes. Initializing the state
vector at xo, one determines the state vectors Xi, Xo,..., Xp at times t =1, 2,..., b
via the regulatory logic, initializes the experimental set-up at zo, runs the
experiment taking measurements at each step to compute zi, z,,..., Z», and checks
for agreement between Xxi, Xo,..., X, and zi, Z,..., Zy, or perhaps just at some
subset of time points.
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To see why it is prudent to consider various initial conditions, suppose the
Boolean network has two attractor cycles 4 and A», with corresponding basins
Bi and B,. If the initial state lies in basin Bj, then after some number of steps the
network will arrive in attractor cycle 4. If A, and A correspond to modeling two
different phenotypes, since the regulatory pathways in the different phenotypes
are different, the model might be a good fit for one phenotype but not the other,
and this would never be tested by a single initial condition in basin B;. One
would at least need to test initial conditions in the two basins. Beyond that, a
single initial condition in a basin will lead to a specific state trajectory, so that
disagreements on other pathways might not show up. Thus, prudence dictates
testing a number of initial conditions. As network complexity increases, so does
the number of tests.

As an example, suppose there is a mutation and the p53 network of Fig.
6.2(b) is altered so that state 0000 becomes an attractor; that is, the network stays
in 0000 when there is DNA damage. This can happen with a single alteration in
the regulatory logic: when the network is in state 0000, instead of ATMyext = 1,
ATM,ext = 0. This is a serious mutation because p53 remains off when there is
DNA damage so that the downstream effects that it should actuate are not
actuated. Regarding validation, the mutated network has two attractors, the
singleton 0000 and the original 5-state attractor cycle. If one proceeds to validate
the network starting from initial state 1101, then the experiment should end with
state 0000. Is this sufficient validation? All that has been tested is the path 1101
— 1010 — 0000. What about initialization at 0101 or, more importantly, at 0111
or 1111, where the cyclic attractor would be tested? It is clear that testing must
involve more than a single initial state.

6.3.2 Validation of stochastic models

With a stochastic model, the situation is more challenging. Given an initial state,
the final state will not be determined exactly; rather, there will a probability
distribution of possible final states. Hence, comparison must be between the state
distribution, which is generally multivariate, and a state histogram generated by
many experimental runs, the number of required runs growing exponentially with
the number of variables. Distributional statistical tests are required. For instance,
with hypothesis testing one decides between two hypotheses—the distributions
match or they do not match. A decision to accept the theory depends on the
acceptance threshold. The theory and test are inter-subjective, but the decision to
accept or reject depends on subjective considerations, as with a hypothesis test,
where the acceptance region depends on a chosen level of significance. The
overall procedure can be onerous (or impossible) depending on the number of
experimental runs required, especially with complex systems, where distributions
are high-dimensional. Validation of a wave pattern in the double-slit experiment
constitutes a low-dimensional example of the method: compare the electron
distribution on the detector with the pattern predicted by the wave model.

To illustrate the problem, consider the p53 network in Fig. 6.2(b). State 0000
is important because, if there is no damage, then the ground state is 0000, but
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now there is damage. At once the cyclic attractor is entered, so that oscillation of
p53 takes place. Now suppose ATM is unstable and is subject to perturbation
with some probability. While cycling through the attractor states, suppose at state
0011 ATM flips to 1 so that the network is in state 1011. It will then transition
through 0000 into the attractor cycle. After several cycles suppose the network
arrives at state 1100 and ATM flips to O so that the network is in state 0100. Then
it will transition through 1011 and 0000 to again be in the attractor cycle. The
point is that starting at the initial state 0000 the network will not reach a
determined state after a given amount of time; instead, there will be probabilities
of being in many, or all, states. To check the model this probability distribution
must be tested against living cells, which is extremely difficult even for modest
sized networks. This is for one initial state among 16 possible initial states. For a
Boolean network with & genes there are 2 possible initial states.

6.4 Model Uncertainty

Parameter estimation is a basic aspect of model construction and historically it
has been assumed that data are sufficient to estimate the parameters, for instance,
correlations that are part of the model; however, when the number of parameters
is too large for the amount of data, accurate parameter estimation becomes
impossible. The result is model uncertainty.

Insufficient data for accurate estimation is an old problem in statistics. For a
simple illustration, consider a one-dimensional variable governed by a normal
distribution with known standard deviation and unknown mean p. The standard
method of estimating p is to take a random sample of points x, x2,..., x, and form
the sample mean (x1 + x2 +...+ x,)/n. The sample mean provides a good estimate
of the mean if the sample size n is sufficiently large. The precision of the
estimate can be quantified in terms of the sample size. If the sample size is small,
then rather than a point estimate it may be preferable to provide an interval
estimate of the form [a, b], so that there is no specific estimate of the mean. In
effect, this means that one is assuming that the “true” model is among the infinite
number of possible models compatible with the interval estimate.

For a situation in which model complexity plays a role, consider the p53
network for no damage and suppose that the regulatory function for ATM is
unknown. The truth table defining the regulatory structure for the network has 64
= 4x2* rows because there are 2* possible input states for each of the four genes:
0000, 0001,..., 1111. This means that there are 64 parameters taking values 0 or
1. If there is no existing knowledge concerning the regulation of ATM, then there
are 16 unknown parameters: f1(0000), f1(0001),..., fi(1111). Since each of these
can have two possible values, 0 or 1, there are 2'¢ possible networks, one for each
combination. Owing to uncertainty, instead of one network there is an
uncertainty class of 65,536 possible networks. Each is represented by a
parameter vector 0y of length 16, so that the uncertainty class takes the form ® =
{61, 62,..., B6s 536} . This is for a single unknown regulatory function in a single 4-
gene binary network!
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If there is prior knowledge that can be applied, then the uncertainty class can
be reduced. For example, suppose it is known that ATMyex = 0 if Wipl = 1. This
knowledge would result from a scenario in which the presence of the Wipl
transcription factor on the promoter region of ATM blocks the binding of
activating proteins. In this case, there are only 8 unknown parameters, f1(0000),
£1(0001),..., £i(0111), and 2® networks in the uncertainty class. This kind of huge
complexity reduction puts a premium on prior (existing) knowledge in model
construction. The effect of prior knowledge will be seen in the next chapter when
we discuss model-based operator design.

6.5 Data Mining

The classical approach to model design is to construct a mathematical structure
satisfying the scientist’s conceptualization of phenomenal behavior and then
estimate model parameters. As models become more complex, in addition to
increasing numbers of parameters to estimate, conceptualizing interacting
phenomena becomes more taxing. Thus, it has become popular to posit a very
general mathematical structure and then, instead of using some statistically best
estimate such as maximum likelihood to estimate individual parameters, the
parameters are manipulated as a group until the model fits the data to some
desired degree. Data-fitting algorithms can be ingenious and may take advantage
of high-performance computing to employ models with thousands of parameters.

6.5.1 Overfitting

At first glance, this approach, known as data mining, may seem attractive and
appear to circumvent the need for conceptualization; however, fitting the data
without a satisfactory conceptualization of the interactions (law) underlying the
behavior of the phenomena can easily lead to a model that overfits the data. The
model fits the data but does not model the relevant physical processes, the result
being that it poorly predicts future observations and may not even successfully
predict existing data not used in model construction. Indeed, the mathematical
structure (neural network, graph, etc.) may not be of a suitable form to model the
physical processes but is sufficiently flexible on account of its complexity and
high dimensionality that it can be fit to the data. To add to the predicament, even
if the fitted structure should happen to provide a good model for the underlying
processes, there often is no method for precisely estimating its accuracy. Hence,
if it is accurate, there is no way to know so.

Climate scientists Tibaldi and Knutti articulate the problem as manifested in
their discipline:

Most models agree reasonably well with observations of the present-day
mean climate and simulate a realistic warming over the Twentieth
Century (of course, the specific performance depends on each
model/metric combination), yet their predictions diverge substantially for
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the Twenty-First century, even when forced with the same boundary
conditions. [Tibaldi and Knutti, 2007]

Recall Reichenbach: “Observation informs us about the past and the present,
reason foretells the future.” Perhaps some reason has been used in constructing
climate models, but not enough. Faced with the complexity of climate systems, is
it reasonable to believe that there can ever be enough reason?

To illustrate overfitting, consider the problem of finding a regression
function y = g(x) that best estimates the value of Y given a value of X, where X
and Y possess a joint distribution. We denote the random value of Y given a fixed
value X = x by Y|x. The best estimate in the mean-square sense is the one that
minimizes the average value of |Yjx — y,|* among all possible estimates .. This
average value is known as the expected value and is denoted by F, so the aim is
to minimize E[|Y]x — y,/*]. The minimum mean-square estimate is the mean of Yx,
which is denoted by py;.

In the case of a bivariate normal distribution, if the means of X and Y are px
and py, respectively, their standard deviations are oy and Gy, respectively, and the
correlation coefficient is p, then the regression function is given by

(¢}
Hae = py + pc—y(x—ux), (6.1)

X

which is a straight line with slope pcy/cy.

A basic problem in statistics is to estimate the regression function from
points randomly drawn from the joint distribution. Since for normal distributions
the regression function is a straight line, given a joint normal distribution the
estimated regression function is taken to be a straight line also. This sample
regression line constructed from the data is the line y = a + bx that minimizes the
error sum of squares

SSE=p1—(a+ bx1)|2 +pr—(a+ bx;)|2 +..tp—(a+t bxn)|2, (6.2)

where the sample points are (xi1, 1), (x2, ¥2),..., (Xn, V1). As the number of data
points grows, the sample regression line becomes closer to the true regression
line (in a probabilistic sense).

Suppose one does not know that the joint distribution is normal. Then the
true regression line can take almost any form. Should the regression line be
highly nonlinear, then assuming a straight line, in particular, using the best-fit
regression line for a normal distribution would constrain the estimation to one
that is far from accurate regardless of the number of data points. To avoid this
kind of constraint, instead of assuming a linear regression, one can assume a
polynomial regression. But what order polynomial should be chosen? Should it
be high order to better fit the data? Such a choice may provide excellent data
fitting on account of complexity and the large number of parameters to be
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adjusted, but this may result in overfitting if the assumed regression model is
overly complex relative to the true regression equation.

Figure 6.3 provides an example involving a joint normal distribution with
means [y = [y = 3, standard deviations 6x = oy = 1, and correlation coefficient p
= 0.5. Each part of the figure shows ten randomly generated data points, the true
regression line, and a sample regression line found via the error sum of squares
for the assumed form of the line: linear, cubic, fifth-order polynomial, seventh-
order polynomial, ninth-order polynomial, and eleventh-order polynomial. As the
order of the polynomial grows, the sample regression line fits the data better but
gets further away from the true regression line. This is classic overfitting.
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Figure 6.3 Polynomial regression lines of increvfasing degree fit to two different sets of 10
randomly generated points from a bivariate normal distribution.
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If fitting the data is the sole aim, then having enough computing power to fit
a complex model, say, one with tens of thousands of parameters in an equally
vast dimensional space, is typically the sole issue; however, scientifically, fitting
the data is not a sensible aim. A hundred points are lost in thousand-dimensional
space and are easily overfit. Think of modeling the approximately 30,000 genes
in the human genome. The bigness of data depends on its relation to model
dimension, not simply the number of gigabytes.

The complexity dilemma—choosing low model complexity and not
capturing behavioral complexity versus choosing high model complexity and
overfitting the data—is caused by ignorance. One is trying to model phenomena
without sufficient knowledge to do so.

Maxwell addresses the issue squarely:

As students of physics we observe phenomena under varied
circumstances and endeavor to deduce the laws of their relations. Every
natural phenomenon is, to our minds, the result of an infinitely complex
system of conditions. What we set ourselves to do is to unravel these
conditions, and by viewing the phenomenon in a way which is in itself
partial and imperfect, to piece out its features one by one, beginning with
that which strikes us first, and thus gradually learning how to look at the
whole phenomenon so as to obtain a continually greater degree of
clearness and distinctness. In this process, the feature which presents
itself most forcibly to the untrained inquirer may not be that which is
considered most fundamental by the experienced man of science; for the
success of any physical investigation depends on the judicious selection
of what is to be observed as of primary importance, combined with a
voluntary abstraction of the mind from those features which, however
attractive they appear, we are not yet sufficiently advanced in science to
investigate with profit. [Maxwell, 2003]

In Maxwell’s phraseology, an “untrained inquirer” throwing together a huge
number of features in the hope that some data-mining algorithm in conjunction
with massive computational machinery will discover a nugget is “not yet
sufficiently advanced in science.” Or, as stated by William Barrett, “The absence
of an intelligent idea in the grasp of a problem cannot be redeemed by the
elaborateness of the machinery one subsequently employs.” [Barrett, 1979]

6.5.2 Asymptotic theory

The complexity dilemma arises from insufficient knowledge to make sufficient
assumptions to render principled model design feasible. Modeling assumptions
carry risk in the sense that the phenomena may not satisfy them; in fact, they will
almost certainly not satisfy them. Nevertheless, absent assumptions there can be
no propositions. Omitting distributional assumptions might seem desirable so as
not to limit the scope of the theory; however, as seen with regression, the absence
of distributional assumptions easily leads to meaningless results.
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Can we appeal to asymptotic (sample size — o) statistical theory to
guarantee model accuracy? Theorems concerning the convergence to zero of the
difference between a parameter estimate and the parameter as sample size goes to
infinity go back to Jacob Bernoulli (1655-1705). At best, asymptotic results may
say something about estimation accuracy for large samples but they say virtually
nothing about small samples—and small samples are the problem for complex
systems. Even if data are abundant, unless there are distributional assumptions,
an asymptotic theorem usually does not specify how large the sample must be
and assumptions have to be imposed to obtain propositions concerning required
sample size.

In 1925, Ronald Fisher commented on the limitations of asymptotic theory:

Little experience is sufficient to show that the traditional machinery of
statistical processes is wholly unsuited to the needs of practical research.
Not only does it take a canon to shoot a sparrow, but it misses the
sparrow! The elaborate mechanism built on the theory of infinitely large
samples is not accurate enough for simple laboratory data. Only by
systematically tackling small sample problems on their merits does it
seem possible to apply accurate tests to practical data. [Fisher, 1925]

Twenty years later, Harald Cramér strongly supported Fisher’s position:

It is clear that a knowledge of the exact form of a sampling distribution
would be of a far greater value than the knowledge of a number of
moment characteristics or a limiting expression for large values of n.
Especially when we are dealing with small samples, as is often the case
in the applications, the asymptotic expressions are sometimes grossly
inadequate, and a knowledge of the exact form of the distribution would
then be highly desirable. [Cramér, 1945]

Fisher and Cramér, two giants of statistics, make it very clear that real-world
problems are often small-sample problems and, for these, asymptotic theory will
not do—and they never witnessed today’s complexity. Small-sample theory is
necessary for statistics to play a major role in acquiring scientific knowledge. For
the most part, data mining, which is void of small-sample theory, is high-
performance pre-Baconian groping in the dark.

6.6 Limitations of Science

While post-Galilean science has from the outset been restricted to mathematical
representation and the ability to perform confirming experiments, the strong
limitations of science, as a form of knowledge, implied by these restrictions has
become clearer with the desire to apply scientific method to complex stochastic
systems. The stumbling block is that the predominant problems in the Twenty-
first Century are very different from Einstein’s £ = hf, which only requires



96 Chapter 6

estimating Planck’s constant. Even modest-sized models in biology contain large
numbers of parameters, dwarfing the complexity of the p53 network considered
herein. Model uncertainty together with stochasticity precludes the possibility of
full-model validation. Partial validation via prediction of some characteristics
(features or properties) of the model may be feasible; however, even accepting
Einstein’s stipulation that “it is only necessary that enough propositions of the
conceptual system be firmly enough connected with sensory experiences,” this
proviso must be applied to such a degree that validation can, at best, be only
fragmentary.

Beyond the impediment of mathematical and computational complexity,
limitations on measurement accuracy and the inability to perform the large
number of experiments required to validate large stochastic systems limit the
degree of validation, and therefore the knowledge carried by a model.

A salient example of experimental limitation on scientific knowledge occurs
in climate science, where model validation can involve various characteristics,
such as mean global temperature and the amount of atmospheric CO,. While
these may be weak compared to full-model validation, application-wise they are
important. Because the system is stochastic, prediction involves distributions and
data must be obtained for constructing empirical distributions. Is this possible? If
a prediction involves the earth and takes place over a long time period, then it
may be hard to draw a sufficient number of points. For a time period of ten years,
even without random initialization and using successive ten-year periods, it
would take a millennium to generate a decent histogram. Reducing validation to
model characteristics does not help; the impediment is that sufficient observation
of the system is impossible.

Tibaldi and Knutti state the problem:

The predictive skill of a model is usually measured by comparing the
predicted outcome with the observed one. Note that any forecast
produced in the form of a confidence interval, or as a probability
distribution, cannot be verified or disproved by a single observation or
realization since there is always a non-zero probability for a single
realization to be within or outside the forecast range just by chance. Skill
and reliability are assessed by repeatedly comparing many independent
realizations of the true system with the model predictions through some
metric that quantifies agreement between model forecasts and
observations (e.g. rank histograms). For projections of future climate
change over decades and longer, there is no verification period, and in a
strict sense there will never be any, even if we wait for a century. The
reason is that the emission scenario assumed as a boundary condition is
very likely not followed in detail, so the observations from the single
climate realizations will never be fully compatible with the boundary
conditions and scenario assumptions made by the models. And even if
the scenario were to be followed, waiting decades for a single
verification dataset is clearly not an effective verification strategy. This
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might sound obvious, but it is important to note that climate projections,
decades or longer in the future by definition, cannot be validated directly
through observed changes. Our confidence in climate models must
therefore come from other sources. [Tibaldi and Knutti, 2007]

Tibaldi and Knutti confront the epistemological crisis of the Twenty-first
Century: the desire for valid scientific knowledge and the inability to get it on
account complexity or experimental limitations. They state that “climate
projections, decades or longer in the future by definition, cannot be validated
directly through observed changes.” Combine this with Schrodinger’s statement
that “there does not seem to be much sense in inquiring about the real existence
of something, if one is convinced that the effect through which the thing would
manifest itself, in case it existed, is certainly not observable.” One might argue
that climate projections are not theoretically impossible, only pragmatically
impossible. But does this matter in practice? Tibaldi and Knutti say that
confidence must come from “other sources,” but this does not produce a
validated scientific theory. There is no scientific truth.

Confronting the limits of verifiability in evolutionary theory, Kauffman calls
for a new scientific epistemology:

What we think of as natural law may not suffice to explain
Nature. We now know for example, that evolution includes
Darwinian pre-adaptations—unused features of organisms that
may become useful in a different environment and thus emerge
as novel functionalities, such as our middle ear bones, which
arose from the jaw bones of an early fish. Could we pre-state all
the possible Darwinian pre-adaptations even for humans, let
alone predict them? It would seem unlikely. And if not, the
evolution of the biosphere, the economy and civilization are
beyond natural law. If this view holds, then we will undergo a
major transformation of science. [Kauffman, 2007]

Kauffman is expressing a desire for knowledge that lies outside the bounds of
science but he wants it to be scientific in character. This can only be achieved if
the requirements for scientific knowledge are weakened.

Regarding the inability to make predictions, in his essay, “Breaking the
Galilean Spell,” Kauffman writes,

This incapacity to foresee has profound implications. In the physicist
Murray Gell-Mann’s definition, a ‘natural law’ is a compact description
beforehand of the regularities of a process. But if we cannot even pre-
state the possibilities, then no compact descriptions of these processes
beforehand can exist. These phenomena, then, appear to be partially
beyond natural law itself. This means something astonishing and
powerfully liberating. We live in a universe, biosphere, and human
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culture that are not only emergent but radically creative. We live in a
world whose unfoldings we often cannot prevision, prestate, or predict—
a world of explosive creativity on all sides. This is a central part of the
new scientific worldview. [Kauffman, 2008]

Standing in opposition to Kauffman’s new scientific worldview is physicist
Lee Smolin, who, in reference to string theory, writes,

A theory has failed to make any predictions by which it can be tested,
and some of its proponents, rather than admitting that, are seeking leave
to change the rules so that their theory will not need to pass the usual
tests we impose on scientific ideas. It seems rational to deny this request
and insist that we should not change the rules of science just to save a
theory that has failed to fulfill the expectations we originally had for it.
[Smolin, 2006]

The conflict between the desire for knowledge concerning complex systems
and the impossibility of testing a model by observing future behavior lies at the
center of the epistemological crisis of the Twenty-first Century. There appear to
be four basic options for science:

1. Dispense with modeling complex systems that cannot be validated.

2. Model complex systems and pretend they are validated.

3. Model complex systems, admit that the models are not validated, utilize them
pragmatically where possible, and be extremely prudent when interpreting
them.

4. Strive to develop a new and perhaps weaker scientific epistemology.

Option three carries the risk of eviscerating science as a result of laziness;
however, option one leaves major problems in medicine, engineering, economics,
etc. that have substantial impact on the human condition outside of systematic
investigation. Option three is certainly better than option two, which appears to
be widespread. Recall Woodcock’s estimate that as much as 75% of published
biomarker associations are not replicable—and although these may be high
dimensional, their complexity is low compared to other systems being
investigated. Pretending that theories are scientifically valid when they are not
inevitably leads to poor policy decisions by political leaders who must put their
faith in science, while at the same time rendering the scientific literature suspect.
Pursuing option three may motivate a serious effort in regard to option four,
which could lead to a multi-level epistemology that would support meaningful
scientific theories at different levels of validation.

If the requirements of science are to be weakened, this needs to be done with
great care, deep philosophic reflection, and in a manner that maintains a rigorous
formal relationship between theory and phenomena. Given the substantial
obstacles confronting the pursuit of scientific knowledge in complex systems, a
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satisfactory resolution could easily be a century or more away, if at all. Human
beings are limited in their capacity for knowledge. It took three centuries from
the birth of modern science until quantum theory to fully clarify the
epistemological revolution of Galileo, during which time the greatest minds took
up the challenge. Perhaps we have reached our limit and the rules of the game
cannot be relaxed without collapsing the entire enterprise into a Tower of Babel.
Whatever the case, the issue is too important to ignore and let science aimlessly
become “primitive and muddled.”






Chapter 7

Translational Science under
Uncertainty

7.1 Translational Science

Modern engineering begins with a scientific model but in addition to the model
there is an objective, such as making a decision based on observations, filtering a
signal to reduce noise or accentuate particular frequencies, or intervening in a
natural system to force its behavior in a more beneficial direction. The situation
changes from modeling behavior to affecting behavior. In medicine, engineering
is popularly called translational science, which accurately describes modern
engineering. A scientific model, whose purpose is to provide a conceptualization
of some portion of the physical world, is transformed into a model characterizing
human action in the physical world. Scientific knowledge is translated into
practical knowledge by expanding a scientific system to include inputs that can
be adjusted to affect the behavior of the system and outputs that monitor the
effect of the external inputs and feed back information on how to adjust the
inputs [Dougherty, 2009a]. For example, in biomedical science models are
created with the intention of using them for diagnosis, prognosis, and therapy.

If one is going to transform a physical process, then the conceptualization of
that physical transformation takes the form of a mathematical operator on some
mathematical system, which itself is a scientific model for the state of Nature
absent the transformation. It may be that one cannot obtain a model that can be
validated via prediction—that is, a model that has scientific validity—but one
may nevertheless find a model that can be used to determine a beneficial
operator. The product of pure science is a validated model, whereas the product
of translational science is an operator that transforms some aspect of Nature in a
quantifiably useful manner. When modeling a cell, the endpoint for pure science
is a representation of the dynamical interaction between its macromolecules; for
translational science the endpoint might be determination of a drug that will
block a signal activating unwanted cellular proliferation. For translation, the
scientific model is an intermediate construct used to facilitate control of Nature;
its descriptive power is of concern only to the degree that it affects the operator
designed from it. For translational science, the epistemological requirements for
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accepting the model as scientifically valid are replaced by requirements regarding
the performance of the operator derived from it. The epistemology of pure
science is replaced by the epistemology of practical science [Dougherty, 2016].

The aim of the present chapter is to discuss the basic aspects of translational
science in the classical framework of a fully known model and then to examine
the situation where the model is uncertain. It is in the presence of uncertainty that
the epistemology of translational science confronts operator design in the context
of Twenty-first Century complexity. Optimal operator design under uncertainty
will be considered in three settings: therapeutic intervention in gene regulatory
networks, pattern classification, and signal filtering. Each of these requires some
mathematics, but only in the case of signal filtering is some special knowledge
required, and we have tried to keep that to a minimum so that the basic ideas are
accessible to most readers.

7.2 Anatomy of Translational Science

There are two basic operator problems concerning systems. One is analysis:
given a system, characterize the properties of the transformed system resulting
from the operator in terms of the properties of the original system. Often it is not
mathematically feasible to characterize completely the transformed system, or
only certain properties of the original system may be known, so that the best one
can do is to characterize related properties of the transformed system. This is fine
so long as one can characterize those properties of interest to the application. As
an example, for a linear operator on a stochastic process, it is usually sufficient to
characterize the output covariance function in terms of the input covariance
function.

The second basic operator problem is synthesis: given a system, design an
operator to transform the system in some desirable manner. Synthesis represents
the critical act for intervention and forms the basis of modern engineering
(translational science). One could grope in the dark, trying one operation after
another and observing the result; however, since groping is not grounded in
scientific knowledge, we do not consider it to be translational science. In the
context of translational science, synthesis begins with the relevant scientific
knowledge constituted in a mathematical theory that is used to arrive at an
optimal (close to optimal) operator for accomplishing a desired transformation
under the constraints imposed by the circumstances. A criterion, called a cost
function (objective function) is defined to judge the goodness of the response—
the lower the cost, the better the operator. The objective is to find an optimal way
of manipulating the system, which means minimizing the cost function.

Translational-scientific synthesis originated with optimal time series filtering
in the classic work of Andrey Kolmogorov [Kolmogorov, 1941] and Norbert
Wiener [Wiener, 1949]—although published in 1949, an unpublished version of
Wiener’s work appeared in 1942. In the Wiener—Kolmogorov theory, the
scientific model consists of two random signals, one being the true signal and the
other being an observed “noisy” variant of the true signal. The translational aim
is to linearly operate on the observed signal so as to transform it to be more like
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the true signal. Being that a linear operator is formed by a weighted average, the
synthesis problem is to find an optimal weighting function for the linear operator
and the goodness criterion is the mean-square difference between the true and
filtered signals (for a detailed account of the translational nature of the Wiener—
Kolmogorov theory, see [Dougherty, 2009b]).

For translational science, synthesis generally involves four steps:

1. Construct the mathematical model.

2. Define a class of operators.

3. Define the optimization problem via a cost function.
4. Solve the optimization problem.

One might prefer a valid scientific model when synthesizing an operator
because design would then be based on a system that accurately reflects Nature
and thus would portend a better performing operator; however, there is no
requirement that the model provides a predictive representation of Nature when
application is the goal. With translation, one approaches Nature with the aim of
achieving a practical benefit, which is contextual, relative to the cost function and
the conditions of application. A translational perspective may be the only viable
option when only a targeted objective can reduce the scale of the problem to one
that is experimentally, mathematically, and computationally tractable. The
predictive capacity of the scientific model is not primary because it is merely a
tool and the relevant knowledge applies to the objective, not to the tool. The
objective is an optimally performing operator, where performance is measured by
the cost function.

In practice, optimality will not be achieved because a physical realization of
the mathematical operator must be constructed. Moreover, since there is no
assumption of validity regarding the scientific model, one cannot expect that a
translationally optimal operator will perform optimally relative to a validated
model, although it might. Thus, while the theoretical objective is an optimal
mathematical operator, the practical objective is a close-to-optimal physical
operator. The actual performance can be evaluated by applying the designed
physical operator and estimating the cost function from the data. This is often
less burdensome than model validation; nevertheless, there may still be
insufficient data for obtaining a good estimate, depending on the complexity of
the cost function and the difficulty of testing.

7.2.1 Structural intervention in gene regulatory networks

When every gene in a Boolean network (or PBN) has a positive perturbation
probability, then for any state x the probability that the network is in state x in the
long run (in the limit) is independent of the initial state. This limiting probability
is called a steady-state probability and the collection of all such probabilities is
called the steady-state distribution. Not every network possesses a steady-state
distribution. For instance, consider a 3-gene deterministic Boolean network with
two basins: 100 - 010 — 001 — 000 and 110 — 011 — 101 — 111. Then the
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long-run probability of 000 is 1 if the network is initialized at 100 and is O if it is
initialized at 110. There is no steady-state distribution.

Assuming the existence of a steady-state distribution, structural intervention
in a gene regulatory network involves a one-time change of the regulatory
structure to reduce the steady-state probabilities of undesirable (pathological)
states [Qian and Dougherty, 2008]. This means minimizing the sum of the
steady-state probabilities corresponding to the undesirable states. Following
[Yoon et al., 2013], to illustrate structural intervention we consider a mammalian
cell cycle Boolean network with perturbation (»p = 0.01) based on a regulatory
model proposed by [Faure et al., 2006]. Intervention is based on the fact that in
molecular biology there are techniques for “pathway blockage.” We employ a
structural intervention that models small interfering RNA (siRNA) interference
in regulatory relationships: an intervention blocks the regulation between two
genes in the network.

The cell cycle involves a sequence of events resulting in the duplication and
division of the cell. It occurs in response to growth factors and under normal
conditions it is a tightly controlled process. The model contains 10 genes: CycD,
Rb, p27, E2F, CycE, CycA, Cdc20, Cdhl, UbcH10, and CycB, with genes
numbered in this order. The cell cycle in mammals is controlled via extra-cellular
stimuli. Positive stimuli activate Cyclin D (CycD) in the cell, thereby leading to
cell division. CycD inactivates the Rb protein, which is a tumor suppressor.
When gene p27 and either CycE or CycA are active, the cell cycle stops, because
Rb can be expressed even in the presence of cyclins. States in which the cell
cycle continues even in the absence of stimuli are associated with cancerous
phenotypes. For this reason, states with down-regulated CycD, Rb, and p27 (x| =
x2 = x3 = 0) are undesirable.

The regulatory model, shown in Fig. 7.1, has blunt arrows representing
suppressive regulations and normal arrows representing activating regulations.
Genes are assumed to be regulated according to the majority vote rule. At each
time point, a gene takes the value 1 if the majority of its regulator genes are
activating and the value 0 if the majority of the regulator genes are suppressive;
otherwise, it remains unchanged. A structural intervention removes an arrow
from the regulatory graph because it blocks a regulation between two genes. By
the optimization methods of [Qian and Dougherty, 2008] it is determined that the
structural intervention that maximally lowers undesirable steady-state probability
blocks the regulatory action from gene CycE to p27 and reduces total undesirable
steady-state probability from 0.3405 to 0.2670. The steady-state distributions for
the original network and the treated network are shown in Fig. 7.2.

The translational character of structural intervention is reflected in how the
four aspects of synthesis are manifested:

1. Model the cell cycle by a Boolean network with perturbation.

2. An intervention operator blocks a single regulation between two genes.

3. The cost is the total steady-state probability of the undesirable states.

4. An optimal action is found via the method of [Qian and Dougherty, 2008].
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Figure 7.1 Mammalian cell cycle network (adapted from [Yoon et al., 2013]).
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Figure 7.2 Steady-state distribution for mammalian cell cycle network (states listed
numerically): (a) original and (b) after optimal structural intervention. (Part (a) adapted
from [Yoon et al., 2013]).
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In practice, basing the optimization on a cost function alone may not be
satisfactory and constraints on the optimization may need to be imposed. In the
case of gene regulation optimization can be phenotypically constrained, meaning
that when altering steady-state probabilities one may wish to constrain where the
probability is moved [Qian and Dougherty, 2012]. For instance, while lowering
steady-state probability for undesirable states, one may wish to keep it from
being moved to states known to be associated with carcinogenesis or to states
that do not typically occur in healthy cells. In general, the optimization problem
should be set up with input from cancer biologists.

7.3 Operator Design in the Presence of Model Uncertainty

To formulate optimization when there is model uncertainty, consider a stochastic
model M with uncertainty class ®. For example, M might be a gene regulatory
network with some unknown regulations, so that ® consists of all possible
parameter vectors corresponding to the unknown regulations. Let C be a cost
function and ¥ be a class of operators on the model whose performances are
measured by the cost function. This means that for each operator y € W there is a
cost Co(y) of applying y on model 6 € ®. For example, suppose ¥ consists of 5
drugs, meaning that each operator acts by applying a drug. Suppose the goal of
the drug treatment is to reduce the expression of a particular gene g associated
with metastasis in breast cancer and that the gene regulatory network being used
is uncertain, so that there is an uncertainty class ® of models. The cost function
might be the average gene expression for g over some time interval after the drug
has had time to take effect. Then Co(y) is the average gene expression over the
time interval when drug v is applied to model 6. Since the full network model is
unknown, there being uncertain parameters, one would like to choose a drug
whose performance works well over the uncertainty class.

An intrinsically Bayesian robust (IBR) operator on M is an operator ygr €
Y such that the expected (average) value over ©® of the cost Co(y) is minimized
by wisr, the expected value being with respect to a prior probability distribution
n(0) over ® [Dalton and Dougherty, 2014]. An IBR operator is robust in the
sense that on average it performs well over the whole uncertainty class. Since
each parameter vector 0 € ® corresponds to a model, a probability distribution
on the space of possible models quantifies our belief that some models are more
likely to be the actual full model than are others. Such a distribution reflects prior
knowledge. If there is no prior knowledge beyond the uncertainty class itself,
then the prior distribution is taken to be uniform, meaning that all models are
assumed to be equally likely.

Denoting the expected value over ® by Ee, an IBR operator minimizes the
expected value of the cost:

Eo[Co(yisr)] = min{Ee[Co(y)], y € ¥} (7.1)
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If the uncertainty class is finite, say, ® = {01, 0-,..., 0,,}, then the expected cost
over the uncertainty class is a weighted average, the costs being weighted by the
prior distribution:

Eo[Co(w)] = Cy (W)n(01) + Co, (W02 + ..+ Cy (W)n(0).  (72)

If © is infinite, then the expected value over O is given by the integral of the cost
over ® with respect to the prior distribution:

Eo[Co(w)] = [ C,(w)n(6)do. (7.3)
(€]

The basic idea is straightforward: find an operator that minimizes the average
cost when applied to all models in the uncertainty class. Based on existing
knowledge, which is captured in the known parameters and the prior probability
distribution over the uncertainty class, an IBR operator provides the best robust
performance across the uncertainty class. When one possesses no knowledge
concerning the likelihoods of the models in the uncertainty class and the prior
distribution is uniform over @, then n(0:) = n(6,) = ... = 1(6,,) = I/m in Eq. (7.2).

7.3.1 IBR structural intervention in gene regulatory networks

We return to the mammalian cell cycle network but now consider intrinsically
Bayesian robust structural intervention. Uncertainty occurs because there are D
pairs of genes for which the existence of a regulatory relationship is known but
the type of relationship, activating or suppressing, is unknown. Consequently, the
network uncertainty class ® consists of 2° possible networks, where each 6 € ®
corresponds to a specific assignment of regulation types to the D uncertain edges.
The uncertainty class is governed by a uniform prior distribution, meaning that
we have no knowledge concerning model likelihood and all uncertain parameters
have prior probability 1/2°. As previously assumed, a structural intervention
blocks the regulatory action between a pair of genes in the network. Once gain,
the cost function is the total undesirable steady-state probability. Based on the
given mammalian cell cycle network, simulations have been run in [Yoon et al.,
2013] that incrementally increase the number of edges with unknown regulation
from D =1 to D = 10. In each case, 50 uncertain networks are created by
randomly selecting uncertain edges while keeping the regulatory information for
the remaining edges.

Grouping the models with 1 to 5 uncertain edges, 54.0% of the time the IBR
structural intervention is the actual optimal intervention, which blocks the
regulation from CycE to p27. As seen in Section 7.2.1, when applied to the full
model, this reduces total undesirable steady-state probability to 0.2639. The
second most selected IBR intervention blocks the regulation from CycE to Rb. It
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is chosen 41.6% of the time and reduces total undesirable steady-state probability
to 0.2643. Four other interventions are chosen a total of 4.4% of the time.

Since the optimization provides the intervention that works best on average
over the uncertainty class, it may choose an intervention that performs poorly on
the full network. In this simulation, blocking regulation between CycB and p27 is
selected 2.0% of the time and only reduces undesirable steady-state probability to
0.3244. When the simulation is run with 6 to 10 uncertain edges, blocking CycE
to p27 or blocking CycE to Rb accounts for 88.8% of the IBR interventions, as
opposed to 95.6% of the IBR interventions for 1 to 5 uncertain edges. This
change reflects the greater uncertainty.

7.4 Pattern Classification

Pattern classification is used in every applied discipline because it is the
mathematical formulation of decision making and every discipline requires
decisions. In cancer medicine, classification can be between different kinds of
cancer, stages of tumor development, or prognoses. This section considers
optimal binary classification when the model is known and when it is uncertain.

7.4.1 Optimal classification for a known feature-label distribution

The basic idea for classification is that features are calculated on objects from
two different populations, and based on a vector of features a classifier decides
which population an object belongs to. For instance, gene expressions are
measured for & genes, and based on the measurements it is decided which drug
should be administered. A feature vector belongs to one of two classes, labeled 0
and 1. The model is stochastic and consists of feature-label pairs (X, Y), where X
= (X1, X5,..., Xx) and Y =0 or Y = 1. A classifier y is a decision function on the
set of feature vectors: y(X) = 0 or y(X) = 1. It partitions the feature space into
two regions, Ry and R;.

For classification, the scientific model consists of two distributions, called
class-conditional distributions: f(x|0) and f(x|1) are the probability distributions
governing the behavior of feature vectors in class 0 and class 1, respectively. The
model also requires the probability ¢ that a randomly selected object comes from
class 0, which automatically gives the probability ¢ that it comes from class 1
since ¢1 + ¢o = 1. Taken together, f(x|0), f(x|1), and ¢o provide the feature-label
distribution f(x, y) governing the feature-label vectors. For simplicity, we assume
that co = ¢ = %4, so that the classes are equally likely.

The error of any classifier y is the probability of erroneous classification,
e[y] = P(y(X) # Y), which can be found from the feature-label distribution.
Letting ¥ denote the set of all classifiers on the model, an optimal classifier is
called a Bayes classifier and is denoted by Wgay. It has minimum error among all
classifiers in ¥ and need not be unique. Given ¢y = ¢1 = %, a Bayes classifier is
defined by a simple rule: for a given feature vector x,
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Lif f(x|1) 2 f(x|0)

. . (7.4)
0,if £(x|1)< f(x]0)

WBay(X) = {

This is equivalent to ygay(X) = 1 if and only if f(x, 1) > f(x, 0), which intuitively
means that (x, 1) is more likely than (x, 0). The error of a Bayes classifier is
known as the Bayes error. It is denoted by egpay and is the minimum among the
errors of all classifiers on the feature-label distribution. While there may be many
Bayes classifiers for a feature-label distribution, the Bayes error is unique.

Consider a single measurement X of a system that has a normal distribution
with mean 0 and standard deviation o when the system is in the unperturbed
state, but when the system is perturbed in a particular way the normal distribution
shifts so that its mean becomes 0 > 0, while maintaining the same standard
deviation. We desire a classifier to predict the state of the system (unperturbed or
perturbed) based on the measurement X. Assuming equal likelihood for the two
states, Fig. 7.3 shows that a Bayes classifier is defined by

Lifx>0/2

5 7.5
0,if x<0/2 (7-3)

WBay(X) = {

and the error is the area of the shaded region.

For a more visual example, consider the two normal two-dimensional class-
conditional distributions in Fig. 7.4. They have different mean vectors in the
plane and have the same covariance matrix (which determines the shape of the
surfaces). A Bayes classifier is defined by the straight line that separates the
plane into regions Ry and R;. If X € Ry, then ygqy(x) = 0; if X € Ry, then ygay(X) =
1. If the covariance matrices were not equal, then the class-conditional
distributions would not have the same shape and the decision boundary would be
quadratic instead of linear.
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Figure 7.3 Bayes classifier for one-dimensional normal class-conditional distributions.
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Figure 7.4 Bayes classifier for two-dimensional normal class-conditional distributions.

Considering features and labels as physical measurements, the feature-label
distribution represents knowledge of the variables Xi, X,..., Xi, Y. The Bayes
error is intrinsic to the model and quantifies the separability of the classes
relative to the features. We desire features that separate well the class-conditional
distributions. Given a feature-label distribution, one can in principle find a Bayes
classifier and the Bayes error; however, for important models, only in rare cases
have these been analytically derived from the feature-label distribution, but they
can be approximated by numerical methods.

Corresponding to the four generic steps for optimal operator synthesis are the
following four steps for classification:

1. Construct the feature-label distribution.

2. The operators consist of classifiers on the feature-label distribution.
3. The cost is classifier error.

4. An optimal operator is given by a Bayes classifier.

7.4.2 Intrinsically Bayesian robust classification

Model uncertainty arises when full knowledge of the feature-label distribution is
lacking. Knowledge must come from existing scientific knowledge regarding the
features and labels or be estimated from data. Since accurate estimation of
distributions requires a huge amount of data, the amount increasing rapidly with
dimension and distributional complexity, full knowledge of the feature-label
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distribution is rare. With model uncertainty, there is an uncertainty class ® of
parameter vectors corresponding to feature-label distributions. In this setting, an
intrinsically Bayesian robust classifier is defined by minimizing the expected
error across the uncertainty class. Letting €o[y] denote the error of classifier y on
model 0 and recalling Eq. (7.1), an IBR classifier satisfies

Eo[so[wisr]] = min{Eo[so[w]], v € ¥} = min{jse[\y]n(ﬁ)de,\y c ‘P} (7.6)
®

where 1(0) is the prior distribution over ® and where the integral has the same
dimensionality as the parameter vectors in ©.

We return to the classification problem of Fig. 7.3 with the supposition that 6
is unknown but is known to lie in the interval [0, b]. Then the uncertainty class ®
= [0, b] corresponds to an infinite number of feature-label distributions. Absent
other knowledge of 0, it is assumed to be uniformly distributed over [0, b],
meaning that it is described by the prior distribution (0) = 1/b if 6 € [0, b] and
n(0) =01if 0 ¢ [0, b]. For each value of 6 € [0, b], a Bayes classifier is defined
by Eq. (7.5) and its error is found as in Fig. 7.3. Then, according to Eq. (7.6), an
IBR classifier satisfies

b
Eo[so[wisr]] = min {%jge[w]de,w e \P} (7.7)
0

where the integral is one-dimensional.

The minimization of Eq. (7.6) is analogous to the minimization for
determining a structural intervention in a gene regulatory network except that,
whereas for structural intervention as defined for the mammalian cell cycle
network one can compute a finite number of operator costs (undesirable steady-
state probabilities) and take the least, for IBR classification there is an infinite
number of operators (classifiers) to consider. As expressed in Eq. (7.6), and
exemplified in Eq. (7.7), one is left with the problem of finding a minimizing
classifier when the collection of classifiers is infinite. A formula is needed that
produces an IBR classifier.

This problem is solved in [Dalton and Dougherty, 2013] under very general
conditions. The method uses effective class-conditional distributions for the
uncertainty class. These are defined by the expected values of the individual
class-conditional distributions over the uncertainty class. Formally, let {x|0; 0)
and f(x|1; 6) denote the class-conditional distributions for 6 € ®. Then the
effective class-conditional distributions are defined by the expected values
(averages) of these over the uncertainty class:
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Ax|0; ©) = Eolf(x10; 0)] = [ /(x| 0:0)m(0) o, (7.8)
(C]

fix|1; ©) = Eo[fix|1; 0)] = j £(x]1;0)m(0)d0 . (7.9)
®

Continuing to assume that c¢o = ¢; = %, an IBR classifier is found in exactly the
same manner as a Bayes classifier, except that the effective class-conditional
distributions are used:

Lif 7(x|1,©) 2 f(x]0,0)

, . (7.10)
0,if f(x|0)< f(x]0;0)

WiBr(X) = {

7.5 Posterior Distribution

In addition to a prior distribution coming from existing knowledge, suppose one
has a data sample S independently sampled from the full model. Then a posterior
distribution is defined by n'(0) = m(0|S), which is the prior distribution
conditioned on the sample. The posterior distribution is derived using standard
statistical techniques, although, depending on the prior distribution, it may not be
mathematically feasible to obtain an exact expression for n'(0) and numerical
methods may be used to approximate it. Once the posterior distribution has been
found, the IBR theory can be used with n'(8) in place of m(8), the resulting
operator being known as an optimal Bayesian operator. As illustrated in Fig. 7.5,
under appropriate conditions, as the sample grows, the posterior distribution
becomes more tightly centered about the parameter vector for the full model.

Collect data Collect data

HFull HFull gF'ull

Figure 7.5 Tightening of the posterior distribution with increasing data.
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7.5.1 Optimal Bayesian classification

For classification, the sample data consist of feature-label pairs and these are
used to find the posterior distribution [Dalton and Dougherty, 2011]. Effective
class-conditional distributions are defined by Egs. (7.8) and (7.9) with 7'(0) in
place of 1(0), and an optimal Bayesian classifier (OBC) is defined by Eq. (7.10)
[Dalton and Dougherty, 2013]. An OBC has minimum expected error relative to
the posterior distribution 7'(0), which contains all of our knowledge, prior
knowledge as interpreted via the prior distribution and experimental data.

Owing to the growing concentration of the posterior distribution around the
full model, as illustrated in Fig. 7.5, as the sample size grows ever larger, the
OBC typically converges to a Bayes classifier for the full model (Fig. 7.6). While
this is an attractive property and is common for optimal Bayesian operators
defined via posterior distributions, its practical significance is limited because the
basic problem is lack of data.

Figure 7.7 illustrates OBC behavior. There is an uncertainty class of feature-
label distributions, each possessing normal class-conditional distributions with
equal covariance matrices. The dotted lines are level curves for the normal class-
conditional distributions corresponding to the average means and covariance
matrices relative to a given posterior distribution. The dashed straight line is the
decision boundary for the Bayes classifier corresponding to average mean and
covariance parameters. The solid line is the boundary for the OBC. Note that
every feature-label distribution in the uncertainty class and the average feature-
label distribution have linear (straight line) Bayes classifiers; however, the OBC
has a more complex decision boundary. This results from the fact that all class-
conditional distributions in the uncertainty class are normal but the effective
class-conditional distributions are not normal.

Bayes Bayes Bayes
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Figure 7.6 Convergence of the OBC to the Bayes classifier.
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Figure 7.7 Comparison of OBC and Bayes classifier for an average model.

N




114 Chapter 7

7.5.2 Distribution-free classification

In pattern recognition it is common to assume no prior knowledge concerning the
feature-label distribution, so that classifier design is distribution-free. Hence, the
subject has grown around the notion of a classification rule, which is some
procedure applied to the sample data to construct a classifier, such as a support
vector machine, neural network, or a host of other procedures. The particularities
of classification rules are not of interest here. For our purposes, one need only
recognize that a classification rule uses sample data to construct a classifier, and
individual performance depends on the unknown feature-label distribution and
sample size. The rules are heuristic, in the sense that their formulation is based on
some guiding principle rather than optimization.

Once a classifier is designed, the salient issue is its error. The problem is that,
given a sample, we cannot find the error of the resulting classifier because the
feature-label distribution is not known. The problem then is to find an estimate of
the error. In general, this can be approached in two ways.

If there is an abundance of sample data, then the data can be split into two
disjoint sets: a training set used to design the classifier and test set used to
estimate the error of the classifier. Once the classifier is designed, the test error is
the proportion of errors it makes on the test set. This error is called the hold-out
error owing to the fact that the test set has been held out from the training
procedure. How good is the hold-out estimate? The obvious answer would be to

quantify goodness by |€ — €|, where ¢ and £ are the true and estimated errors,
respectively; however, this is impossible because the true error is unknown.
Instead, we consider how well the estimation procedure works on average. This

performance measure is given by the root-mean-square (RMS) error, which is the

square root of the expected value of |&€ — &, namely, RMS = E[|€ — g[*]"?

which is the square root of the mean-square error (MSE) and where the
expectation (average) is taken with respect to the sampling procedure.

As it stands, the RMS cannot be found because it requires knowledge of the
feature-label distribution. Nevertheless, it is known that, irrespective of the
feature-label distribution, RMS < 1/(2m'?), where m is the size of the test set
[Devroye, et al., 1996]. This is a good result since it is distribution-free and for a
test sample of the modest size m = 100, RMS < 0.05. It does not depend on
dimension (number of features) or classifier complexity. Even though the
accuracy of the specific estimate is not known, there is a precise bound on
estimation performance. While the RMS bound for classification error estimation
is encouraging, one should keep in mind that a classifier is a very simple model,
just a binary function.

Because classifier error quantifies the predictive capacity of a classifier, error-
estimation accuracy is the salient epistemological issue for classification. Hence,
the bound on the hold-out estimate is a fundamental epistemological measure.

Hold-out error estimation requires a sufficiently large sample so that there
are enough data to design the classifier (a problem we will not consider) and
enough independent data for error estimation. Based on the RMS bound, 100 test
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points provides reasonably good error estimation. If sample data are limited, say,
to a sample size of 100, then hold-out error estimation cannot be employed and
the error must be estimated using the training data. Numerous methods have been
proposed for training-data-based error estimation, each possessing different
properties [Braga-Neto and Dougherty, 2015]. The simplest method is known as
resubstitution, where the error estimate is the proportion of errors made by the
designed classifier on the training data. Resubstitution is usually optimistically
biased (often strongly) and therefore rarely used. Error-estimation methods in
which the training data are re-sampled for design and testing within the training
data include cross-validation and bootstrap. These tend to perform poorly on
small samples owing to large variance and lack of regression with the true error.
There are very few known distribution-free RMS bounds for training-data error
estimation. For the few cases in which distribution-free RMS bounds are known,
they are very weak and a large sample is required to obtain an acceptable bound,
which renders the bound useless because training-data error estimation methods
are being used precisely because the sample is too small to split into training and
test data. In sum, the salient epistemological issue for small-sample classification
is that quantifiable distribution-free error estimation is virtually impossible.

If one has distributional knowledge in the form of an uncertainty class and a
prior distribution, then a posterior distribution can be derived using the sample
data, in which case the error of a designed classifier can be estimated as the
expected error over the posterior distribution. The resulting estimate is known as
the Bayesian error estimate (BEE) [Dalton and Dougherty, 2011]. This can be
done because the true error of the classifier can be evaluated for each model in
the uncertainty class, after which these errors are averaged with respect to the
posterior distribution. It can be proven that the resulting error estimate is optimal
relative to the expected (average) RMS over the uncertainty class. It may not be
best for all models in the uncertainty class, but it is best on average, which means
it is best relative to all of our knowledge, prior distribution plus sample data.

In sum, given a prior distribution on the uncertainty class and sample data, the
OBC is the optimal classifier and the BEE is the optimal error estimate. Absent
prior knowledge, small-sample classification is essentially pointless owing to the
impossibility of obtaining an error estimate whose accuracy can be quantified.

7.6 Translational Science under Model Uncertainty

When the uncertainty class is finite, an intrinsically Bayesian robust operator can
be found by computing a finite number of costs, as in Eq. (7.2); however, for
infinite uncertainty classes, some other approach must be found. In the case of
classification, for each model in the uncertainty class the individual class-
conditional distributions are considered as characteristics of the full model that
define an optimal operator (Bayes classifier) for that model. The methodology of
[Dalton and Dougherty, 2013] is to construct effective characteristics and then
prove that an IBR operator, which in this case is an IBR classifier, can be
constructed in the same way as an individual optimal operator (Bayes classifier)
by replacing the individual model characteristics with effective characteristics.
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Thus, with model uncertainty we have the following IBR synthesis protocol,
which will be illustrated in subsequent subsections:

1. Construct the mathematical model.

2. Define a class of operators.

3. Define the basic optimization problem via a cost function.

4. Solve the basic optimization problem via characteristics of the model.

5. Identify the uncertainty class.

6. Construct a prior distribution.

7. State the IBR optimization problem.

8. Construct the appropriate effective characteristics.

9. Prove that the IBR optimization problem is solved by replacing the model
characteristics by the effective characteristics.

7.6.1 Wiener filter

Wiener filtering involves two random signal processes, an unobserved true signal
and an observed signal, with the aim being to apply a linear filter on the observed
signal to estimate the true signal. For details, see Section 4.7.2 in [Dougherty,
1999]. Here, for those with some background in filtering, we provide highlights
without supporting theory to illustrate how the various steps for translational
synthesis apply. The true signal and observation processes, Y(f) and X(7),
respectively, are jointly wide-sense stationary (WSS) and possess zero means.
The autocorrelation function for the observation process is denoted by rx(t) and
the cross-correlation function between the signal and observation processes is
denoted by ryx(1).
A linear filter with weighting function g takes the form

Y(s) = [&(s—0)X(t)dt, (7.11)
T

where the integral is over an observation window 7. The objective is to obtain an
estimate of the true signal that minimizes the mean-square error (MSE) at a given
point s, which is defined as

MSE(Y(s))= E[| Y(s)-Y(s)']. (7.12)

For any WSS random process, the power spectral density of the process is
the Fourier transform of the autocorrelation function. For the observation
process, it is given by Sx(®) = #rx](®), where F denotes the Fourier transform.
The cross power spectral density is Syx(®) = Fryvx](®), the Fourier transform of
the cross-correlation function between the signal and observation processes.
Sx(®) and Syx(w) are characteristics of the model, and under rather general
conditions it is well-known that the Fourier transform of the optimal weighting
function is
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Syy (®)

G(o) = S, () .

(7.13)

The optimal weighting function, which defines the Wiener filter, is obtained by
taking the inverse Fourier transform. This is the major classical result of signal
filter theory. It applies to images by performing all operations in two dimensions.

Figure 7.8 illustrates Wiener filtering with a digital image process consisting
of random grains. Parts (a), (b), and (c) of the figure show an image generated by
the process, that image degraded by both blurring and random point noise, and
the noisy image filtered by the Wiener filter for the random process, respectively.
The filtering problem is made more difficult when there is both blurring and
point noise because for blurring alone the image can be “sharpened” and for
point noise alone it can be “smoothed.” Mixed blurring and point noise is tricky
because sharpening makes point noise worse and smoothing makes blurring
worse. Without a mathematical approach to the problem it would be virtually
impossible to find a close-to-optimal weighting function.

(c)
Figure 7.8 Wiener filtering of blurred and noisy image: (a) original image, (b) degraded

image, (c) optimally filtered image, (d) IBR filtered image (adapted from [Dalton and
Dougherty, 2014]).
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Notice the basic four steps of translational synthesis in the present context:

1. The model consists of two jointly WSS random processes.

2. The operator class consists of linear filters over an observation window.

3. Optimization: minimize the MSE as defined in Eq. (7.12).

4. The optimization problem is solved by the Fourier transform of the weighting
function in terms of the power spectra Sx(®) and Syx(®).

7.6.2 IBR Wiener filter

Model uncertainty arises in Wiener filtering when either the autocorrelation or
cross-correlation function is unknown. For 6 € ©®, the signal and observation
processes are Yo(s) and Xo(f), respectively, and the autocorrelation and cross-
correlation functions are rox(t) and royx(t), respectively. The effective power
spectra are the Fourier transforms of the expected autocorrelation function,
Seox(®) = FEe[rox]](®), and the expected cross-correlation function, Se yx(®) =
FHEo[ro,yx]](). While it is easy to write these down abstractly, the difficulty of
evaluating them depends on how the observation process is modeled because
they can involve complicated integrals.

With model uncertainty, the optimal linear filter has to minimize the
expected mean-square error over the uncertainty class, Eo[ MSE( fe(s) »]. Under

rather general conditions the Fourier transform of the weighting function for the
IBR Wiener filter is given by

A _ So,yy (@)

Gy () @ (7.14)

[Dalton and Dougherty, 2014]. The form of the filter is the same as when the
model is known, except that the characteristics Sx(®) and Syx(®) are replaced by
the effective characteristics Se x(®)and Se yx(®).

For the Wiener filter, the second part of the IBR synthesis protocol takes the
following form:

5. The uncertainty class is defined in terms of the uncertain parameters in the
autocorrelation and cross-correlation functions.

A prior distribution is constructed for these parameters.

IBR optimization: minimize the expected MSE.

The effective characteristics are the effective power spectra.

Prove that the IBR optimization problem is solved by replacing the model
characteristics by the effective characteristics.

Lo

The fundamental part of the protocol is the last step: find conditions under which
the solution to the IBR optimization is solved by replacing the characteristics in
the ordinary solution with effective characteristics—and prove it.
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A suboptimal Bayesian approach to filtering under model uncertainty was
first taken in the case of nonlinear filtering of digital binary images [Grigoryan
and Dougherty, 1999] and then for linear filtering of random signals as
considered here [Grigoryan and Dougherty, 2001]. These solutions were
suboptimal because they restricted filter selection to a filter that is optimal for at
least one model in the uncertainty class. An intrinsically Bayesian robust linear
filter, where there is no such constraint, was solved more recently. Interestingly,
full optimization via the IBR paradigm is mathematically less complex than the
suboptimal solution—once conditions are found so that ordinary characteristics
can be replaced by effective characteristics. As is often the case in mathematics,
framing a problem “correctly” makes the solution transparent.

7.6.3 A more general synthesis protocol

There is a long history of robust Wiener filtering under model uncertainty. The
problem was first treated in the form of minimax optimization, where the aim was
to find a filter having best worst-case performance: if possible, find a linear filter
that has the minimum maximum MSE over all models in the uncertainty class
[Kuznetsov, 1976; Kassam and Lim, 1977; Poor, 1980]. Minimax robustness is
conservative. The drawback is that it can be overly conservative, especially if the
uncertainty class is large. From a probabilistic perspective, a minimax robust
filter can be overly influenced by outlier models because it does not take into
account a prior (or posterior) distribution on the uncertainty class. To place
minimax robust filtering into a translational synthesis framework, step 6 of the
IBR synthesis protocol is omitted and the optimization of step 7 becomes
minimization of the maximum MSE instead of the expected MSE.

Considering translational synthesis from a general perspective, a cost
function is introduced based on minimization of the original full-model cost
function relative to the uncertainty. In this view, IBR optimization has cost
function Ce(y) = Ee[Ce(W)] and minimax robust optimization has cost function
Co(y) = maxe{Co(y)}. From a completely general perspective, steps 6 through 9
of the IBR synthesis protocol reduce to

6'. Choose a cost function on the uncertainty class.
7'. Optimization: minimize the cost function over the uncertainty class.
8'. Find conditions under which the optimization problem can be solved.

The IBR synthesis protocol is a special case of this general synthesis
protocol. As stated, the IBR protocol assumes that IBR optimization will take the
form of effective characteristics. While this has been the case thus far, it may turn
out that for some synthesis problems an IBR operator will not be defined in terms
of effective characteristics. Then IBR synthesis will fall into the more general
paradigm with cost function Ce(y) = Ee[Co(y)].
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7.7 Objective Cost of Uncertainty

The IBR principle is to find an operator (classifier, filter, structural intervention,
etc.) that, based on a cost function, is optimal over an uncertainty class relative to
a prior (or posterior) distribution reflecting the state of our knowledge regarding
the underlying physical processes. While an IBR operator is optimal over the
uncertainty class 0, it is likely to be suboptimal relative to the full model. This
loss of performance is the cost of uncertainty.

To quantify this cost, for 8 €0, let Cp be the cost function applied on model
0 and let o be an optimal operator for 6. Then Co(ye) < Co(\y) for any operator
v. Let yisr be an IBR operator for ®. Owing to the optimality of the IBR
operator over the uncertainty class, Fo[ Co(Wisr)] < Eo[Co(y)] for any operator .
An IBR operator is optimal over ®; however, there is a cost to this choice
relative to applying the optimal operator for 6 on 6 because Co(ye) < Co(yisr) for
all® € O.

For any 0 € O, the objective cost of uncertainty (OCU) relative to 0 is the
cost differential between an IBR operator and an optimal operator for 6 applied
on O:

OCU(0) = Co(yisr) — Co(Wo). (7.15)

The cost of uncertainty relative to the full model is OCU(6su1), where Oy is the
value of 0 for the full model; however, since the full model is unknown, this
quantity cannot be calculated. Thus, as the basic quantification of uncertainty we
use the mean objective cost of uncertainty (MOCU):

MOCU(®) = Eo[OCU(0)] = Eo[ Co(yisr) — Co(yo)] (7.16)

[Yoon, et al., 2013]. If there is no uncertainty, then the uncertainty class contains
only one model and MOCU(®) = 0; however, the converse is not true.

From a scientific perspective, one might prefer to use the entropy of the prior
(or posterior) distribution because it measures uncertainty with respect to the
model; however, entropy does not focus on the translational objective. There may
be large entropy but with most (or all) of the uncertainty irrelevant to the
objective. For instance, in controlling a network there may be much uncertainty
in the overall network but a high degree of certainty regarding the mechanisms
involved in the control. In this case, the entropy might be large but the MOCU be
small, which is what matters from a translational perspective. Because the
MOCU is intrinsic to the translational system, given our knowledge and objective
(cost function), it quantifies the uncertainty in our knowledge with respect to our
objective and therefore is an epistemological parameter.

Knowledge can be increased by generating data to produce a new posterior
distribution. If there is a collection of possible experiments that can supply
information relating to the unknown parameters, which experiment should be
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performed first? (Here we ignore time and cost but these can be factored in if
desired.) Since the MOCU quantifies the average lack of optimality owing to
uncertainty, a reasonable course of action is to choose an experiment from the
space of possible experiments that yields the minimum expected MOCU given
the experiment [Dehghannasiri, et al., 2015]. This requires, for each possible
experiment, computing the MOCU for every possible outcome of the experiment,
averaging these MOCU values, and then taking the minimum of these averages
over all possible experiments. The result is optimal experimental design relative
to the objective uncertainty. This can be done in an iterative fashion, at each
stage choosing an optimal experiment, running the experiment, updating to a new
posterior distribution, re-computing the MOCUs, determining an optimal
experiment, and so on.

Figure 7.9 illustrates the benefit of optimal experimental design in the
context of IBR structural intervention (Section 7.3.1). Five parameters in a
mammalian cell cycle network are randomly selected to be unknown; two
sequences of five experiments are simulated, one in which the experiments are
randomly chosen and another in which they are chosen via an optimized
iteration; at each step of each sequence the total undesirable steady-state
probability is computed for the IBR structural intervention; this procedure is
repeated a number of times; and the average undesirable probabilities are
computed and plotted on the vertical axis. The advantage of optimal experimental
design is clear: on average, the objective knowledge gained from the first two
optimally chosen experiments is equivalent to that gained via four randomly
chosen experiments.
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Figure 7.9 Random versus optimal experimental design (adapted from [Dehghannasiri et
al., 2015]).
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7.8 Small-Data Epistemology

The current crisis in scientific epistemology results from a severe lack of data in
relation to the complexity of the systems that people wish to model. Although
“Big Data” is the buzzword, the profound problem for science and engineering is
small data. There is insufficient data for validation and insufficient data for
estimating model parameters. In the present chapter we have taken the view that
insufficient data for estimation can be framed in terms of uncertainty classes with
prior knowledge represented via a prior distribution over the uncertainty class
and translational operator design optimized relative to the posterior distribution.

What kind of knowledge is this prior knowledge? Consider a numerical (not
a vector) model parameter 0 and suppose, based on an accepted scientific theory,
it is deduced that a < 6 < b. For instance in a multi-dimensional normal model, 6
might represent the correlation between two features and in the physical system
from which the features are constructed it may be that 0 < 0 < 0.5. Absent more
knowledge concerning 0, we have taken the view that a uniform distribution over
the interval [a, b] is a suitable form of prior knowledge. 0 is what it is, and that
we do not know. True, we know that it is between a and b, but it is not uniformly
distributed over [a, b]. Saying that 8 possesses a uniform prior distribution over
[a, b] is not a statement pertaining to the actual value of 6.

Essentially, a prior distribution is a pragmatic construct based on belief as to
where a parameter is located. It is clearly advantageous to have scientific
knowledge that constrains the parameter and thereby constrains its prior
distribution. Since a prior is a construct, not validated scientific knowledge, the
more it is constrained by scientific knowledge and the more experience one has
with the physical system, the more confident one can be that the prior distribution
is concentrated around the full model. If one has confidence, then a tight prior is
preferable because tighter priors require less data for good performance;
however, there is risk because a prior distribution whose mass is concentrated
away from the true parameter will perform worse than one that is uniform. These
issues have long been discussed in the Bayesian literature.

In 1946, Harold Jeffreys proposed a uniform prior, referred to as Jeffiey’s
prior [Jeffreys, 1946]. Objective-based methods were subsequently proposed, a
few early ones being [Kashyap, 1971], [Bernardo, 1979], and [Rissanen, 1983].
The principle of maximum entropy can be seen as providing a method of
constructing least-informative priors [Jaynes, 1957, 1968]. These methods are
general and do not target any domain-specific type of prior information. More
targeted approaches can be constructed that integrate scientific knowledge
specific to the problem at hand. For instance, in relation to the pathway
knowledge we have utilized in the p53 and mammalian cell cycle networks, one
can construct a prior distribution quantifying and integrating prior knowledge in
the form of signaling pathways [Esfahani and Dougherty, 2014]. In 1968, E. T.
Jaynes remarked, “Bayesian methods, for all their advantages, will not be entirely
satisfactory until we face the problem of finding the prior probability squarely.”
[Jaynes, 1968] The problem remains.
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Yet we must remember that for translational science the prior distribution is a
construct to facilitate operator design. Given a cost function, an IBR operator is
optimal on average relative to the prior (or posterior) distribution but our real
interest is an operator that is optimal relative to O, the value of 0 for the full
model. Only rarely will an IBR operator be optimal for Oy Can an IBR operator
somehow be “validated” on the model corresponding to Oxu? Strictly speaking,
the question makes no sense if it means to show that an IBR operator is optimal
for Bsn; indeed, we expect it not to be optimal for Osy, which we do not know.
An IBR operator has no direct connection to the full model. It is only related via
the prior (or posterior) distribution.

Intrinsically Bayesian robust operators cannot cure the small-data
epistemological problem for the complex systems that modern engineering
wishes to study and control. What they can do is place operator design under
uncertainty in a rigorous optimization framework grounded in an infrastructure
utilizing prior knowledge and data, while providing uncertainty quantification
relative to a translational objective at the level of the underlying processes. The
deep problem is that there appears to be no way to objectively transform existing
knowledge into a prior distribution. Although there are ways to construct a
mathematically rigorous transformation, these ultimately involve subjective
considerations.

Within the bounds set by existing scientific knowledge, the formalization of
uncertainty, which is the prior distribution, must be constructed via subjectively
imposed criteria. This is similar to the basic epistemology of prediction, since in
the latter, even though the model and experimental protocol are inter-subjective,
the decision whether to accept or reject a theory depends on subjective criteria;
nevertheless, with model uncertainty the situation is more unsettling because it is
not even clear that the notion of predictive validation can be tied to observations.
If, however, we take the perspective that when application is primary and doing
nothing is, in fact, a decision, then at least if one follows a formal translational
science optimization protocol the overall procedure will be inter-subjective even
though there may be disagreement regarding the criteria imposed for construction
of the prior distribution. Subsequent to that construction, the prior distribution
and cost function jointly form a hypothesis from which an optimal operator can
be deduced.

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

But are all men mortal?
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