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Preface

Science and engineering deal with temporal, spatial, and higher-dimensional
processes that vary randomly from observation to observation. While one
might study a specific observation for its algebraic or topological content,
deterministic analysis does not provide a framework for understanding the
ensemble of observations, nor does it provide a mechanism for prediction of
future events. A system that functions over time needs to be designed in
accordance with the manner in which input processes vary over time. System
performance needs to be measured in terms of expected behavior and other
statistical characteristics concerning operation on random inputs. There is an
input random process, a transformation, and an output random process.
System analpsis begins with the input process and, based on the
transformation, derives characteristics of the output process; system synthesis
begins with an input process and a desired output process, and derives a
transformation that estimates the desired output from the input.

Image and (one-dimensional) signal processing concern the analysis and
synthesis of linear and nonlinear systems that operate on spatial and
temporal random functions. As areas of applied science, image and signal
processing mark off a region within the overall domain of random processes
that suits the set of applications they encompass. Because our major concern
is algorithm development, our major interest is operator synthesis. We focus
on three basic problems: representation, filter design, and modeling. These
are not independent; they form a unity that is the key to algorithm
development in a stochastic framework. The end goal is design of a filter
(operator). If the input process is given in terms of a representation that is
compatible with the form of the desired filter, then design is enhanced.
Ultimately, the filter is to be used on some class of real-world images or
signals.  Therefore we need models that fit real processes and whose
mathematical structure facilitates design of filters to extract desired structural
information.

My goal is not just to present the theory along with applications, but also
to help students intuitively appreciate random functions. Were this a
mathematics book, [ would have taken the mathematical approach of stating
general theorems and then giving corollaries for special situations. Instead, I
have often begun with special cases in which probabilistic insight is more
readily achievable. Moreover, I have not taken a theorem-proof approach.
When provided, proofs are in the main body of the text and clearly
delineated; sometimes they are either not provided or outlines of conceptual
arguments are given. The intent is to state theorems carefully and to draw
clear distinctions between rigorous mathematical arguments and heuristic
explanations. ~ When a proof can be given at a mathematical level
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xvi Preface

commensurate with the text and when it enhances conceptual understanding,
it is usually provided; in other cases, the effort is to explain subtleties of the
definitions and properties concerning random functions, and to state
conditions under which a proposition applies. Attention is drawn to the
differences between deterministic concepts and their random counterparts,
for instance, in the mean-square calculus, orthonormal representation, and
linear filtering. Such differences are sometimes glossed over in method
books; however, lack of differentiation between random and deterministic
analysis can lead to misinterpretation of experimental results and misuse of
techniques.

My motivation for the book comes from my experience in teaching
graduate-level image processing and having to end up teaching random
processes. Even students who have taken a course on random processes have
often done so in the context of linear operators on signals. This approach is
inadequate for image processing. Nonlinear operators play a widening role in
image processing, and the spatial nature of imaging makes it significantly
different from one-dimensional signal processing. Moreover, students who
have some background in stochastic processes often lack a unified view in
terms of canonical representation and orthogonal projections in inner product
spaces.

The book can be used for courses in a number of ways. For students with
a strong background in probability and statistics, it can form a one-semester
course on random processes, with the obvious necessity of omitting a number
of sections. Since the first chapter provides the essential probability and
estimation theory that would normally be taught in a one-semester
undergraduate course, the book can be used for a full-year course for students
who lack a good undergraduate probability course. The book is structured
with this use in mind. My experience shows me that very few engineering
students come to graduate school having an adequate background in
probability theory. Finally, owing to the large number of imaging
applications, with the addition of some supplementary papers, the book can
be used for a graduate course on image processing; indeed, I have taken such
an approach here at Texas A&M. 1 suspect that a similar approach can be
used for signal processing. For research-oriented departments, cookbook-style
texts are totally inadequate and future researchers receive significant benefit
from learning their specialty in the proper mathematical framework.

The first chapter covers basic probability theory, with attention paid to
multivariate distributions and functions of several random variables. The
probability theory concludes with a section on laws of large numbers. There
follows a general section on parametric estimation. Maximum-likelihood
estimators are covered and applied to a constant signal corrupted by various
noise models. Estimation plays an important role throughout the book
because it is not enough to know the probabilistic theory behind algorithm
design; one also needs to be aware of the problems associated with estimating
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Preface xvii

an optimal filter from sample signals. The chapter concludes with sections on
entropy and coding.

The second chapter covers the basic properties of random functions
typically found in general texts on engineering random processes. Differences
are mainly in orientation, but this is important. The stochastic problems of
image processing differ substantially from those of one-dimensional signal
processing. Because the latter is more mature as a discipline, books on
random processes tend to orient their image-signal processing applications
toward signals. Historically, such an approach is natural; nevertheless, it is
often not sufficient to give a definition, property, or application for signal
processing and then say that, as presented, it is suitable for image processing.
Many stochastic problems that are straightforward in one dimension become
either very difficult or intractable in two dimensions. I try to take a balanced
approach with the basic theory and continue to pay attention to both one-
and two-dimensional processes throughout the text.

The third chapter treats canonical representation in the natural context of
Fourier expansions in inner product spaces. The Karhunen-Loeve expansion
is covered in detail: the meaning of the expansion, its relation to
deterministic Fourier representation, and the role played by the
eigenfunctions resulting from the covariance function. There follow sections
on noncanonical representation, trigonometric representation of wide-sense
stationary processes, and the role of canonical expansions as transforms.
There is a substantial section on transform coding. It is placed in the context
of the Karhunen-Loeve expansion, so that transform efficiency for other
transforms, such as the discrete cosine and Walsh-Hadamard transforms, can
be better understood. The text then goes into the general theory of discrete
canonical expansions whose coefficients are generated by linear functionals.
Properties of the coefficients and related coordinate functions are discussed.
Because a canonical expansion of a random function can be derived from a
canonical expansion of its covariance function, covariance expansions are
discussed. Integral canonical expansions are theoretically more difficult and
rely on the theory of generalized functions. Therefore the subject is treated
formally with the understanding that we often consider random functions
whose covariance functions are distributions. Integral canonical expansions
provide an appropriate framework for discussion of the power spectral
density and the Wiener-Khinchin theory. We are not merely concerned with
the power spectral density as the Fourier transform of a covariance function;
we are also concerned with white-noise representation of random functions.
Representation is discussed in the context of necessary and sufficient
conditions for an integral canonical expansion. The next section introduces
vector random functions and their canonical representation. The chapter
closes with an algorithm that produces a canonical representation over a
discrete set that can be applied in very general circumstances.

The fourth chapter treats filter design. The basic theory of optimal mean-
square-error filters is covered first. The next eight sections are committed to
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optimal linear filters. Coverage begins with application of the orthogonality
principle to find the optimal linear filter for a finite number of observations.
A number of examples are provided to explain both the algebraic and
statistical aspects of the theory. The steepest-descent and LMS iterative
algorithms are covered next, including convergence. Vector estimation begins
with least-squares-estimation of a nonrandom vector, with the best estimator
given in terms of the pseudoinverse of the design matrix. Because we assume
that the columns of the design matrix are linearly independent, the
pseudoinverse takes a simple form. The next section treats random vectors
and requires the pseudoinverse of an autocorrelation matrix that may be
singular. The main theorem follows directly from a basic theorem on finding
projections into subspaces spanned by linearly dependent vectors in a Hilbert
space. It is the main result for optimal finite-observation linear filters. The
last section on finite-observation filters discusses recursive linear filters,
concluding with the Kalman filter. Recursive linear filters are based on the
fact that projections into direct sums of subspaces can be decomposed into
sums of projections. This principle is introduced and both static and
dynamic recursive filtering follow from it. The last three sections on optimal
linear filtering involve infinite observations. The Kolmogorov theory places
optimal linear filtering into the context of projections into subspaces
generated by operators (in our case, integral operators). The Wiener-Hopf
equation is derived and the Wiener filter for wide-sense stationary processes
is covered. The next section considers optimal linear filtering in the context
of a linear model. This approach can lead to an optimal filter being derived
from a system of linear equations; in other cases, it leads to the solution of
Wiener-Hopf-like equations that are simpler than the original equation.
Optimal linear filtering culminates with the derivation of optimal filters in
the framework of canonical expansions. Because it provides a general method
for design, it may be considered the main section on optimal linear filtering.
Having concluded coverage of linear filters, the chapter turns to nonlinear
filters. There is extensive coverage of optimal binary filters, which are a key
concern of digital image processing. For discrete binary images, optimization
stays close to the probabilistic nature of the processes and optimal versus
suboptimal design is appreciable at a very low level. Next, pattern
classification is treated in the context of filter design and the Gaussian
maximum-likelihood classifier is obtained under the appropriate model
conditions. The chapter concludes with neural networks. Error back-
propagation is discussed in the context of sum-of-squares error and adaptive
networl design. Overall, the chapter emphasizes the fundamental role of
filter representation. This begins with the integral representation of linear
filters and canonical decomposition of random functions, continues with the
morphological representation of binary filters, and concludes with the
representational power of neural-network filters.

The final chapter treats random models. A major portion is devoted to
discrete- and continuous-time Markov chains. The range of application for
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these models is extensive, including engineering, computer science, and
operations research. The key role of the Chapman-Kolmogorov equations is
emphasized. Steady-state and stationary distributions are covered for both
finite and infinite state spaces. Conditions for existence are given and
methods for finding stationary distributions are explored. Special treatment
is given to the birth-death model, random walks, and queues. Passing to two
dimensions, Markov random fields and Gibbs distributions are discussed.
Next comes the random Boolean model, which is fundamental to coverage
processes, filtering, and texture analysis. Vacancy and hitting are discussed,
and the simple linear Boolean model is discussed in some detail.
Granulometries are treated in the following section, which describes
granulometric classification and adaptive design of openings to filter clutter
in the signal-union-noise model. The final section of the book provides
elements of the theory of random closed sets and is at a higher mathematical
level than the rest of the text. Its goal is twofold: to explain how the hit-or-
miss topology arises naturally from the probabilistic requirements of a
random closed set and to present the capacity theorem.

For those who wish to use the text without following the given order, I
will outline the essential logical order of the book. Except for Sections 1.10
and 1.11, which are independent from the remainder of the book, one should
be familiar with the first chapter before proceeding to random processes.
Chapter 2 should be read in its entirety. The remaining three chapters are
close to being independent. Except for Section 4.9, Chapter 4 does not
depend on Chapter 3. In Chapter 4, one can go directly from Section 4.3 to
Section 4.7; indeed, if desired, one can go from Section 4.1 to Section 4.10;
however, I do not recommend reading Section 4.12 prior to Sections 4.2 and
4.3. Chapter 5 can be studied after completing Chapter 2. The last three
sections of Chapter 5 can be read before the first four sections (exceptions
being reference to Gaussian-maximum-likelihood classification in Section
5.6.2 and random walks in Section 5.6.3).

I hope readers find this book both instructive and enjoyable, and that it
provides them with insight and knowledge useful to the pursuit of ground-
breaking research. For me, a person trained in analysis, it represents a
growing appreciation of the profound differences between deterministic and
stochastic scientific epistemology.

Edward R. Dougherty

College Station, Texas
July 1998
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