
P
c

X
C
D
3
1
N

K
U
D
1
A

J
A
C
D
3
1
N

C
D
C
6
N

1

I
m
l
o
i
t
b
t
r
m
p
p
o
d
a
s
t
g
w
i
i
f

A
p
A
E

Journal of Biomedical Optics 14�6�, 064003 �November/December 2009�

J

arametric image reconstruction using the discrete
osine transform for optical tomography

uejun Gu
olumbia University
epartment of Biomedical Engineering
51 Engineering Terrace, MC8904
210 Amsterdam Avenue
ew York, New York 10027

ui Ren
niversity of Texas at Austin
epartment of Mathematics
University Station, C1200
ustin, Texas 78712

ames Masciotti
ndreas H. Hielscher
olumbia University
epartment of Biomedical Engineering
51 Engineering Terrace, MC8904
210 Amsterdam Avenue
ew York, New York 10027

and
olumbia University
epartment of Radiology
ollege of Physicians & Surgeons, MC28
30 W 168th Street
ew York, New York 10027

Abstract. It is well known that the inverse problem in optical tomog-
raphy is highly ill-posed. The image reconstruction process is often
unstable and nonunique, because the number of the boundary mea-
surements data is far fewer than the number of the unknown param-
eters to be reconstructed. To overcome this problem, one can either
increase the number of measurement data �e.g., multispectral or mul-
tifrequency methods�, or reduce the number of unknowns �e.g., using
prior structural information from other imaging modalities�. We intro-
duce a novel approach for reducing the unknown parameters in the
reconstruction process. The discrete cosine transform �DCT�, which
has long been used in image compression, is here employed to pa-
rameterize the reconstructed image. In general, only a few DCT coef-
ficients are needed to describe the main features in an optical tomog-
raphic image. Thus, the number of unknowns in the image
reconstruction process can be drastically reduced. We show numeri-
cal and experimental examples that illustrate the performance of the
new algorithm as compared to a standard model-based iterative im-
age reconstructions scheme. We especially focus on the influence of
initial guesses and noise levels on the reconstruction results. © 2009
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3259360�

Keywords: optical tomography; equation of radiative transfer; discrete cosine
transform.
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Introduction

n optical tomographic �OT� imaging, one attempts to deter-
ine the spacial distribution of optical properties inside a bio-

ogical tissue, based on measurements taken on the boundary
f the tissue. This type of inverse problem is in general highly
ll-posed. This means that many different optical property dis-
ributions inside the medium can lead to the same light distri-
ution on the surface of the medium. One of the reasons for
his problem is that the number of unknown parameters to be
econstructed often by far exceeds the number of boundary
easurements available. Therefore, the number of known data

oints is substantially smaller than the number of unknown
arameters in the resulting system of algebraic equations. To
vercome this problem, one can try to increase the number of
ata points. To this end, researchers have suggested, for ex-
mple, multispectral methods1 as well as multifrequency mea-
urement systems.2 In addition, or alternatively, one can seek
o reduce the number of unknowns. In this direction, various
roups have suggested combining optical tomography �OT�
ith other imaging modalities, such as magnetic resonance

maging �MRI�3 or ultrasound �US�.4 In these cases, the other
maging modalities provide the prior structural information
or optical imaging. Furthermore, Schweiger and Arridge5
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artment of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam
venue, New York, 10027. Tel: 212-854-5080; Fax: 212-854-8725;
-mail: ahh2004@columbia.edu
ournal of Biomedical Optics 064003-
have tested different local basis functions to convert spatial
optical properties to certain local basis coefficients. In this
way, an image is described by a “small” number of coeffi-
cients, rather than by each pixel value in the image.

In this paper, we propose a substantially different ap-
proach. We hypothesize that the number of unknowns can be
drastically reduced by parameterizing the spatial distribution
of optical properties via a globe basis transform and then re-
construct the coefficients of this global basis transform. As the
global basis function, we employ in this work the DCT, which
has long been used in the field of image compression.6,7 It has
been shown that using the DCT, one can achieve high com-
pression ratios for smooth images without losing much infor-
mation. Optical tomographic images are typically very
smooth due to the strong scattering of light in most biological
tissues. It can be expected that only a few DCT coefficients
are needed to recover the spatial variations seen in these im-
ages. By reconstructing the DCT coefficients, rather than each
pixel value of an image, the number of unknown parameters
can be greatly reduced as compared to conventional optical
tomographic image reconstruction schemes.

To illustrate the performance of the parametric-DCT recon-
struction technique, we employ in this paper the frequency-
domain equation of radiative transport �FD-ERT�. In Sec. 2,
the pertinent aspects of the FD-ERT and related conventional
reconstruction schemes are reviewed. Section 3 is devoted to

1083-3668/2009/14�6�/064003/11/$25.00 © 2009 SPIE
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he DCT and its application to OT. In Sec. 4, two numerical
econstruction examples, one containing a capsular perturba-
ion and the other with the uniform distribution in one direc-
ion, are presented. The influence of varying initial guesses
nd noise levels on parametric reconstruction will be dis-
ussed. In Sec. 5, we present reconstruction results obtained
ith experimental data from a tissue-like phantom. Through-
ut the paper, we compare the performance of the novel
arametric-DCT method to more conventional approaches to
he reconstruction problem in OT.

Frequency Domain Optical Tomography with
the ERT

e implemented the parametric-DCT reconstruction method
y adapting an existing model-based iterative image recon-
truction �MOBIIR� algorithm that uses the frequency domain
RT.8 In the following, we briefly review some pertinent de-

ails of this MOBIIR algorithm.

.1 The Forward Problem
frequency-domain ERT describes the photon density in

hase space, i.e., as a function of position x�D�R3 and
irection ��S2 �unit sphere of R3�, and can be expressed as:

� i�

v
+ � · �+ �t�x��u�x,�� − �s�x��

s2
k�� · ���u�x,���d��

= 0 in D � S2

u�x,�� = q�x,�� on �−, �1�

here i=�−1, v is the speed of light in the medium, and � is
he source modulation frequency. The parameter �t=�a+�s,
ith �a�cm−1� and �s�cm−1� being the absorption and scat-

ering coefficient, respectively. u�x ,�� is the radiance at po-
ition x�x�D� traveling in direction � with the unit of

cm−2 sr−1. Note that u�x ,�� is frequency dependent.
�x ,�� is a source with the unit of W cm−3 sr−1 defined on

he boundary set:

�� ª ��x,�� � �D � S2 s.t. � � · ��x� � 0� . �2�

ere, ��x� is the outward unit normal to the domain at x
�D. The phase function k�� ·��� �sr−1� describes the prob-

bility that photons traveling in direction �� scattered into
irection �. It is a positive function independent of x and
atisfies the normalization condition: 	S2k�� ·���d��=1. The
cattering kernel for light propagation in tissues is chosen
ere as the Henyey-Greenstein phase function:9

k�� · ��� =
1 − g2

�1 + g2 − 2g cos ��3/2 , �3�

here cos���=� ·��.
Solving the forward problem �1� yields the quantity of

hoton radiance. However, in OT experiments, the quantity
hat one measures is outgoing photon current. This current can
e expressed as
ournal of Biomedical Optics 064003-
J�xd� =�
�+

� · ��xd�u�xd,��d� , �4�

where xd is the position of the detector, and �+= �� :�
�S2 and � ·��xd��0�. The outgoing current J�xd� is a com-
plex function of the optical parameters �a and �s.

With the combination of the discrete ordinates method10

for the angular variable, a finite-volume discretization method
for the space variable,11 and an appropriate boundary condi-
tion, the continuous ERT can be converted to the following
linear algebraic equation:

Au = Su + Q , �5�

where A�CNM�NM and S�CNM�NM are the complex dis-
cretized streaming-collision and the scattering operators, re-
spectively. N denotes the total number of discretized ele-
ments, and M denotes the total number of discretized
ordinates. The boundary source term and the boundary condi-
tion are given by Q. The vector u�CNM�1 describes the dis-
cretized radiance u�x ,��. Equation �5� is solved by a gener-
alized minimal residual �GMRES� method, and the
preconditioner we employ is the zero fill-in incomplete LU
factorization 
ILU�0��. The GMRES algorithm is stopped
when the relative residual is smaller than a preset value. Here
we enforce the stopping criteria as ��A−S�uk−Q�l2 / ��A
−S�u0−Q�l2	10−10, where, u0 is an initial guess and uk is
the u value at the k’th GMRES iteration. Details regarding
discretizing and solving the forward problem can be found in
Ref. 12.

2.2 The Inverse Problem and Conventional MOBIIR
Methods

After discretizing Eq. �1�, one can predict the radiance field
values of all the discretized elements and the photon density
current values of the boundary elements. However, in real OT
experiments, only a limited number of boundary measure-
ments are available, which is typically far less than the num-
ber of the discretized mesh cells. Thus, only an underdeter-
mined system is available to be used to reconstruct optical
property maps. Classically, a least-squares problem is formu-
lated and a regularization term is added to compensate for this
underdetermination. Numerically, this requires the minimiza-
tion of the following objective function:

min 
���a,�s� =
1

2

i=1

Ns



j=d

Nd

�Pi,dui − zi,d�2

+
�

2 

C=1

N



p=a,s

� 

�=x,y,z

�D�
C�p�2 + ��p

C�2� ,

�6�

where �a= ��a
1 , . . . ,�a

C , . . . ,�a
N�T�RN�1 and �s

= ��s
1 , . . . ,�s

C , . . . ,�s
N�T�RN�1 denote absorption coeffi-

cients and scattering coefficients, respectively, and N is the
number of discretized elements. Ns and Nd are the number of
sources and detectors, respectively. Pi,d is the discretized
form of the operator at the detector position xi,d that projects
the photon radiance to the outgoing photon current. z refers
i,d
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o the boundary measurement. The second term is a regular-
zation term, and � is a regularization parameter. D�

C�R de-
otes the discretized partial differential operator at the ele-
ent C in �= �x ,y ,z� direction. We refer interested readers to
ef. 8 for more details concerning the inverse algorithm.

Summarizing the preceding solvers, we plot the flowchart
f a typical MOBIIR algorithm in Fig. 1. The code starts with
n initial guess of the distribution of optical properties inside
he medium. Using the forward solver, the predictions of the
utgoing current on the boundary of the medium are calcu-
ated. The inverse solver compares these predicted detector
eadings with actual measurement data using the objective
unction. Subsequently, the code calculates an update of the
ptical property distribution using a quasi-Newton scheme.
he update is used as an input for the forward solver in the
ext iteration. The updating will continue until the value of
he objective function falls below a preset error threshold 
.

Parametric Reconstruction with the DCT
.1 Image Compression with DCT

arious compression algorithms have been developed to re-
uce the memory needed to store images.13–15 For example,
he DCT is at the core of JPEG image compression.7 The
eneral formula for a two-dimensional �2-D� DCT of an im-
ge with Mx�My pixels is given by:

F�kx,ky� =
1

4
C�kx�C�ky�


x=0

Mx



y=0

My

f�x,y�cos� �2x + 1�kx�

2Mx
�

�cos� �2y + 1�ky�

2My
�

with 0 	 kx 	 Mx − 1; 0 	 ky 	 My − 1,

C�kx� = � 1
�2

kx = 0

1 else
� ,

ig. 1 A flowchart of reconstructing an optical properties map with
he conventional MOBIIR method.
ournal of Biomedical Optics 064003-
C�ky� = � 1
�2

ky = 0

1 else
� , �7�

The values of F�kx ,ky� are called DCT coefficients of f�x ,y�.
The inverse discrete cosine transform �IDCT� can be written
as:

f�x,y� =
1

4 

kx=0

Mx



ky=0

My

C�kx�C�ky�F�kx,ky�cos� �2x + 1�kx�

2Mx
�

�cos� �2y + 1�ky�

2My
�

with 0 	 x 	 Mx − 1;0 	 y 	 My − 1,

C�kx� = � 1
�2

kx = 0

1 else
� ,

C�ky� = � 1
�2

ky = 0

1 else
� . �8�

Equation �8� states that any image �or signal� can be repre-
sented by the expansion coefficients in the spatial frequency
domain. Since only a few coefficients are usually needed to
capture most features of an image, this provides a way to
efficiently store and recover an image. An illustration of this
scheme is shown in Fig. 2. Here, a target with optical proper-
ties that are Gaussian distributed is embedded in a 42
�42 pixels image. A DCT is applied, and the 2-D DCT co-
efficients are plotted in Fig. 2�b�. We see that the main DCT
coefficients are centered at the low-spatial-frequency corner.
Higher frequency coefficients are close to zero. If we use only
one-seventh of the frequency components in each dimension
�hence, only 6�6 low-frequency coefficients� and perform
the IDCT, we obtain Fig. 2�c�. It can be seen that such a
“reconstructed” image is almost identical to the original im-

Fig. 2 �a� A 42�42 pixel absorption coefficient map with a Gaussian
distribution perturbation enclosed; �b� DCT coefficients of the absorp-
tion image �a�; �c� an IDCT recovered image using 6�6 low-
frequency DCT coefficients; and �d� the relative error map of the re-
covered image �c�.
November/December 2009 � Vol. 14�6�3
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ge in Fig. 2�a�. Figure 2�d� illustrates the relative error de-
ned as

�r =
Ar�x,y� − Ao�x,y�

Ao�x,y�
,

ith Ar�x ,y� as the “reconstructed” image 
here Fig. 2�c�� and
o�x ,y� the original image 
here Fig. 2�a��. We find that with
�6 low-frequency coefficients the reconstructed image has
maximum error around 0.2%.
If we attempt to reconstruct an image that contains a sharp-

dge target, more DCT coefficients have to be used. This is
llustrated in Fig. 3�a�, where an image contains a square with
harp edges. The DCT coefficient map of this image is plotted
n Fig. 3�b�. A reconstructed image using 6�6 DCT coeffi-
ients �one-seventh of total number of DCT coefficients� is
resented in Fig. 3�c�. Figure 3�d� shows its corresponding
elative error map. Notice that the error map of the recon-
tructed image reaches 20%, which is substantially larger than
he one shown in Fig. 2�d�. In order to decrease the error
own to 0.2%, we have to use 39�39 DCT coefficients. Fig-
res 3�e� and 3�f� show the IDCT recovered image and the
mage errors, respectively.

.2 OT with Parametric-DCT Method

o accurately calculate the photon propagation requires a
nely discretized mesh. We found that in some cases, up to 10
iscretized elements per photon mean free path are needed.
uch a finely discretized mesh induces images that contain a
ery large number of pixels. The algorithm described in Sec.
.2 treats each discretized element of an image as an indepen-
ent variable. Therefore, the forward discretization results in a
arge number of unknowns for the inverse computation.

ig. 3 �a� A 42�42 pixel absorption coefficient map with a square
erturbation enclosed; �b� DCT coefficients of the absorption image
a�; �c� an IDCT recovered image using 6�6 low-frequency DCT
oefficients; �d� the relative error map of the recovered image �c�; �e�
n IDCT recovered image using 39�39 DCT coefficients; and �f� the
elative error map of the recovered image �e�.
ournal of Biomedical Optics 064003-
The image compression technique with DCT can help to
reduce the number of these unknowns. We write the spatial
distributed optical properties in a three-dimensional �3-D� do-
main as:

�a�s��x,y,z� � 

kx=0

Kx



ky=0

Ky



kz=0

Kz

Aa�s��kx,ky,kz�cos�2x + �x

2Lx
kx��

�cos�2y + �y

2Ly
ky��cos�2z + �z

2Lz
kz�� , �9�

where �a�s��x ,y ,z� is the absorption �or scattering� coeffi-
cients at x= �x ,y ,z�. Aa�s��kx ,ky ,kz� represents DCT coeffi-
cients at spatial frequency kx, ky, and kz in the x, y, and z
directions. Lx, Ly, and Lz are the length in the x, y, and z
directions. Kx, Ky, and Kz are the numbers of DCT coeffi-
cients to be used in reconstruction. �x, �y, and �z are the
discretized resolutions.

With Eq. �9�, the objective function that we want to mini-
mize takes on the following form:

min 
�Aa,As� =
1

2

i=1

Ns



d=1

Nd

�Pi,dui − zi,d�2, �10�

where Aa and As are the DCT coefficients for �a and �s,
respectively. Compared with Eq. �6�, the reconstructed param-
eters changed from optical properties ��a ,�s� to DCT coeffi-
cients �Aa ,As�. Also, the regularization term is left out. Regu-
larization terms, such as the Tikhonov regularization,16 tend to
smooth images by removing high-spatial-frequency compo-
nents. Using a parametric reconstruction technique based on
the DCT expansion, the higher frequency components are au-
tomatically filtered out and hence the use of an extra regular-
ization term is not needed.

To minimize the objective function in Eq. �10�, we employ
a quasi-Newton approach with BFGS updates of the Hessian
matrix.17 The gradient of the objective function �10� can be
written as:

�


�Aa�s��kx,ky,kz�
= 


N
�


��a�s��x,y,z�
cos�2x + �x

2Lx
kx��

�cos�2y + �y

2Ly
ky��cos�2z + �z

2Lz
kz�� ,

�11�

where �
 /��a�s��x ,y ,z� is the derivative of the objective
function with respect to optical properties, and N is the num-
ber of total discretized elements. Details on how to obtain the
derivative with respect to optical properties can be found in
Ref. 8.

The overall flowchart for an image reconstruction algo-
rithm that makes use of the parametric-DCT method is pre-
sented in Fig. 4. By comparing this flow chart with the flow
chart for the conventional MOBIIR approach shown in Fig. 1,
one can easily see the main differences between these two
methods. Both methods employ the same forward solver and
use a quasi-Newton method to update their system param-
eters. However, in the DCT approach, the gradient of the ob-
jective function is calculate with respect to the DCT coeffi-
November/December 2009 � Vol. 14�6�4
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ients, while in the conventional MOBIIR scheme the
radient is calculated with respect to the optical properties.
ubsequently, the updated DCT coefficients are used to up-
ate the optical properties using Eq. �9�; and the new optical
roperty values become input to the forward solver in the next
teration step.

.3 Number of DCT Coefficients
hoosing an appropriate number of DCT coefficients for the

econstruction is an important issue. The number of necessary
CT coefficients used to store and recover an image is deter-
ined by the smoothness of the image. The smoother an im-

ge is, the fewer DCT coefficients are required. As shown in
ig. 2 and Fig. 3, a sharp-edged object in an image requires
ore DCT coefficients. If we have some prior knowledge of

he image features, we can choose a suitable number of DCT
oefficients to represent the image and later use that number
f DCT coefficients to perform the reconstruction. Such prior
nowledge will help to improve the quality of the recon-
tructed images �see Sec. 4.3�.

Some information about the number of DCT coefficients
ecessary for optical tomographic imaging can be gleaned
rom studies of resolution limits and minimal detectable ob-
ect size in OT. These topics have been studied by several
roups.3,18–21 These authors found that the achievable reso-
ution depends on tissues’ size, geometry, optical properties,
maging modality and many other parameters. Pogue et al.22

rgued that standard resolution testing is optimal when infinite
ontrast is used and hardware evaluation is the goal. However,
eep tissue imaging of absorption or fluorescent contrast
gents in vivo requires a more detailed analysis that takes
issue contrast into account. Overall, they found that for most
iological tissues, a good approximation is to assume that the
inimum detectable size is in the range of 1 /10 of the outer

iameter of the object imaged. For our analysis, this finding
an be interpreted as to mean that smallest spatial variations
n reconstructed optical tomographic images are in the range
f 1 /10 of the outer diameter.

Given this degree of spatial variation, we can estimate an
pproximate number of necessary DCT coefficients as fol-
ows. We define Kx �or y ,z� as the maximum number of DCT
oefficients needed in one dimension, �x �or y ,z� as the res-
lution of an OT image along x �or y ,z� direction, and L �or

ig. 4 A flowchart of reconstructing a spatial distribution optical prop-
rties map with the parametric-DCT method.
x

ournal of Biomedical Optics 064003-
y ,z� as the length of an OT image in x �or y ,z� direction.
Then we can write:

Kx�or y,z� =
Lx�or y,z�

�/2
=

Lx�or y,z�

�x�or �y, �z�
. �12�

Here, we define the wavelength �� /2� of a cosine function as
the limit of spatial variability 
�x �or �y , �z��. Assuming
that �x �or �y , �z� is 1 /10Lx�or y,z�, as found by Pogue et
al.,22 we see that one needs approximately 10 coefficients for
each dimensions. We used these considerations as a guide
throughout our studies.

4 Numerical Examples
4.1 Tissue Geometry
We illustrate the performance of the parametric-DCT recon-
struction algorithm by using three-dimensional �3-D� numeri-
cal examples. The geometry of the problems considered in
this work are shown in Fig. 5. First, we consider a cylindrical
computational domain defined as Dª ��x ,y ,z�T � 
�x−2.05�2

+ �y−2.05�2�1/2	2.05 cm;0.0	z	3.0 cm�. Inside this do-
main, a cylindrical capsule �perturbation� is located defined
by Dª ��x ,y ,z�T � 
�x−3.0�2+ �y−3.0�2�1/2	0.7 cm;1.2	z
	2.2 cm� 
see Fig. 5�a��. The scattering coefficients and an-
isotropy factors of the background medium are identical to
those of the cylindrical perturbation ��s=40.0 cm−1, g
=0.73�. The absorption coefficients of the background and
cylindrical perturbation are 0.1 cm−1 and 0.2 cm−1, respec-
tively. The source modulation frequency is set to �
=300 MHz. Using the mesh generating software GID, the
computational domain is discretized into 13,798 elements
with 2723 nodes. The angular domain is discretized into 24
uniformly distributed directions with a full-level symmetry.
This discretization yields a total number of 13,798 unknown
parameters, if we consider to reconstruct the absorption opti-
cal properties on the discretized elements only. In this case,
the measurement data are generated by a synthetic forward
computation rather than real experiments. Two layers of
sources and detectors are placed around the boundary, as il-
lustrated in Fig. 5�a�. The two layers are separated by 1.0 cm.

Fig. 5 A tissue-like phantom and source–detector geometries used in
this study. The numerical phantoms shown in �a� and �b� mimic the
experimental tissue geometry shown in �c�. A cylinder with outer di-
ameters of 4.1 cm contains a cylindrical perturbation of diameter
1.4 cm, which is located slightly off center. The perturbation is either
a capsule of height 1.0 cm or a column with the same height as the
outer cylinder. Optical properties and more details concerning this
phantom are given in the text.
November/December 2009 � Vol. 14�6�5
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n each layer 12 sources �S12� and 12 detectors �D12� are
venly distributed. In totally, we will generate S24�D24
576 measurement data, which is far fewer than 13,798, the
umber of unknown discretized elements.

In a second set of studies, we consider another cylindrical
omain, this time given by Dª ��x ,y ,z�T � 
�x−2.05�2+ �y
2.05�2�1/2	2.05 cm;0.0	z	5.0 cm�. The cylindrical
erturbation is given by Dª ��x ,y ,z�T � 
�x−3.0�2+ �y
3.0�2�1/2	0.7 cm;0.0	z	5.0 cm�. Therefore, in this case
oth the height of the background cylinder and the perturba-
ion are 5 cm 
see Fig. 5�b��. The perturbation has a uniform
istribution along the z direction. The discretization yields
3,221 unknown elements with 4512 nodes. We use 24 full-
evel symmetrical distribution directions as well. The ex-
mples chosen here only reconstruct images of absorption co-
fficients with fixed scattering coefficients. Scattering
oefficients’ reconstruction can be implemented in a similar
ay.

.2 Image Evaluation Metrics
n the following, we will compare reconstruction results of the
arametric-DCT approach to those obtained through the con-
entional MOBIIR algorithm. To quantify the reconstruction
uality and the differences between the two approaches, we
se the following imaging evaluation metrics:

1. Maximum error:

�max = max��1, . . . ,�i, . . . ,�N� with �i = ��i
r − �i

o� . �13�

2. Normalized root mean square error:

�rms = � 1

N

i=1

N ��i
r − �i

o

�i
o ��1/2

, �14�

here �i
o and �i

r are the exact and reconstructed values on the
iscretized element i, respectively. We also employ these met-
ics to quantify the effects of the initial guesses and noise on
econstructed images.

.3 Image Reconstruction Results

.3.1 Reconstruction of a capsular perturbation
n this example, we varied the number of DCT coefficients to
tudy their influence on the reconstruction results. To straddle
he range of 10 coefficients as discussed in Sec. 3.3, we first
x the number of DCT coefficients in the xy cross section

x�Ky =10�10, and vary Kz=5, 10, 15. Next, we fix Kz
10 and vary Kx=Ky =5, 10, 15. The initial absorption coef-
cients are set as �a=0.1 cm−1 �background value�.

Figure 6 shows the results obtained by varying the number
f DCT coefficients in the xy cross section. One can see that
he reconstructed images with Kx�Ky �Kz=5�5�10
Figs. 6�d�–6�f�� reproduce the shape of the perturbation;
owever, the background shows somewhat larger fluctuations
hen compared to the results obtained with Kx�Ky �Kz
10�10�10 
Figs. 6�g�–6�i��. If we further increase Kx
Ky to 15�15 
Figs. 6�j�–6�l��, the image quality deterio-

ates.
Figure 7 shows the reconstruction results obtained by fix-

ng Kx�Ky =10�10 and varying the number of DCT coef-
cients along the z direction. When K =5, we observe 
In
z

ournal of Biomedical Optics 064003-
Figs. 7�d�–7�f�� that there are some fluctuation around the
boundary. For Kz=15, the reconstructed images show more
fluctuation in the background. Table 1 provides the related
maximum error and the normalized mean square error. Over-
all, one can see that the combination of Kx�Ky �Kz=10
�10�10 gives the smallest errors. Therefore, we will use
this number of coefficients Kx�Ky �Kz=10�10�10 in the
following simulations, where we study the influence of the
initial guess and noise levels on the reconstruction results.

Next, we compare the results of the parametric-DCT re-
construction �Kx�Ky �Kz=10�10�10� with those of the
conventional MOBIIR reconstruction �Figs. 8 and 9�. Looking
at Figs. 8�d�–8�f�, we notice that using the conventional MO-
BIIR method the shape of the perturbation is distorted. Using
the parametric-DCT method 
see Figs. 8�g�–8�i��, the shape of
the perturbation is much smoother. The cross-line plots pre-
sented in Fig. 9 give the values of optical properties along the
Cartesian coordinates crossing the center of the capsulized
perturbation. This shows that the cross-line curves of the ab-
sorption values have a smooth bell shape when the
parametric-DCT method is employed. Using the conventional
MOBIIR method results in more fluctuating curves �Table 2�.

4.3.2 Reconstructions of a column perturbation
To compare experimental results with our numerical simula-
tions, we consider a cylindrical medium with a cylindrical
column perturbation 
see Fig. 5�b��. Given the results ob-
tained in the previous section, we performed the reconstruc-
tion with with Kx�Ky �Kz=10�10�10. In addition, as-
suming that we know that there are no variation in the optical

Fig. 6 3-D reconstruction results of the spatial distribution of �a
�cm−1� using the parametric-DCT method with different numbers of
DCT coefficients at xy cross section. The images are extracted at the
planes defined as �a�, �d�, �g�, and �j�: z−1.7=0.0; �b�, �e�, �h�, and
�k�: y−2.05=0.0; �c�, �f�, �i�, and �l�: x−3.0=0.0. Here �a�, �b�, and �c�
are cross-sectional images for the exact setup; �d�, �e�, and �f� for the
parametric-DCT reconstructed images with DCT coefficient numbers
Kx�Ky�Kz=5�5�10; �g�, �h�, and �i� for the parametric-DCT re-
constructed images with DCT coefficient numbers Kx�Ky�Kz=10
�10�10; �j�, �k�, and �l� for the parametric-DCT reconstructed im-
ages with DCT coefficient numbers Kx�Ky�Kz=15�15�10,
respectively.
November/December 2009 � Vol. 14�6�6
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roperties along the z direction, we also performed recon-
tructions with Kx�Ky �Kz=10�10�1. Figure 10 shows
he exact absorption maps 
Figs. 10�a�–10�c��, the recon-
tructed absorption maps using the parametric-DCT method
Figs. 10�d�–10�i��, and the reconstructed absorption maps us-
ng the conventional method 
Figs. 10�j�–10�l��. The cross-
ine plots of the optical properties of the reconstruction im-
ges are presented in Fig. 11.

One can see that employing the prior information enhances
he image quality 
see Figs. 10�d�–10�f��. Fixing Kz=1 leads
o a uniform distribution of absorption coefficients along the z
irection. If we ignore this prior information and reconstruct
ith parameters Kx�Ky �Kz=10�10�10, we are still able

o obtain smooth images. However, along the z direction, the
econstructed perturbation has limited length and locates
round the two source–detector planes. Information from
bove and below these two planes is limited. Last, we observe
hat the reconstructed images using the conventional MOBIIR

ethod are much more noisy than the results obtained with
he parametric image reconstruction method. The related val-

Table 1 Errors of the reconstructed images using
DCT coefficients.

Kx�Ky�Kz 5�5�10 10�10�10

�max 0.0499 0.0484

�rms 0.0784 0.0744

ig. 7 3-D reconstruction results of the spatial distribution of �a
cm−1� using the parametric-DCT method with different numbers of
CT coefficients along the z direction. The images are extracted at the
lanes defined as �a�, �d�, �g�, and �j�: z−1.7=0.0; �b�, �e�, �h�, and
k�: y−2.05=0.0; �c�, �f�, �i�, and �l�: x−3.0=0.0. Here �a�, �b�, and �c�
re cross-sectional images for the exact setup; �d�, �e�, and �f� for the
arametric-DCT reconstructed images with DCT coefficient numbers
x�Ky�Kz=10�10�5; �g�, �h�, and �i� for the parametric-DCT re-
onstructed images with DCT coefficient numbers Kx�Ky�Kz=10
10�10; �j�, �k�, and �l� for the parametric-DCT reconstructed im-

ges with DCT coefficient numbers Kx�Ky�Kz=10�10�15,
espectively.
ournal of Biomedical Optics 064003-
ues for the maximum errors and the root mean square errors
are 0.0803 and 0.1581 for MOBIIR reconstruction and 0.0563
and 0.1601 for the parametric DCT method with 1010�10
coefficients �see Table 2�.

4.4 Effects of the Initial Guess on Reconstruction
Results

At the heart of the inverse reconstruction for both the conven-
tional MOBIIR and the parametric-DCT method is the quasi-
Newton update, which is an optimization scheme for finding a
local minimum. If the initial guess fed into the reconstruction
algorithm is far away from the true minimum, it is difficult for
the algorithm to converge to its real solution.17 To evaluate the
sensitivity of the parametric-DCT reconstruction method to
the choice of the initial guess, we performed numerical stud-
ies using the capsular perturbation. The number of DCT co-
efficients is fixed to Kx�Ky �Kz=10�10�10.

Figure 12 presents the reconstructed cross-sectional im-
ages with initial guesses varying from �a=0.10 cm−1 �back-
ground value� to �a=0.05 cm−1. As expected, we observe
that the stronger the initial guess deviates from the back-
ground value, the worse the images’ qualities are. However,
even an initial guess 50% lower than the actual values still
leads to a reasonable result. This cannot be said when the
conventional MOBIIR scheme is applied. Figures 12�j�–12�l�
show a much more noisy reconstruction than Figs.
12�g�–12�i�. Table 3 shows the errors and mean values of the
reconstructed images. We define the images mean value as

rametric-DCT method with different numbers of

�15�10 10�10�5 10�10�15

0.0632 0.0527 0.0498

0.0936 0.0749 0.0752

Fig. 8 3-D reconstruction results of the spatial distribution of �a
�cm−1� with the conventional MOBIIR method and the parametric-
DCT method. The reconstructed cross-sectional images are extracted
at the plane defined as �a�, �d�, and �g�: z−1.7=0.0; �b�, �e�, and �h�:
y−2.05=0.0; �c�, �f�, and �i�: x−3.0=0.0. Here, �a�, �b�, and �c� are
cross-sectional images for the exact setup; �d�, �e�, and �f� for the
conventional MOBIIR reconstruction; and �g�, �h�, and �i� for the
parametric-DCT reconstruction, respectively.
the pa

15
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¯ a=
i
N�a�i� /N, with N as the number of discretized ele-

ents. Comparing the parametric-DCT method with the con-
entional MOBIIR method at the initial guess �a
0.05 cm−1, one can find that the parametric-DCT method
ields smaller errors and a closer mean value to the exact
mage. We define the mean value offset as ��̄a= ��̄a

r − �̄a
o�,

ith �̄a
r and �̄a

o as the mean values of the reconstructed and
xact images, respectively. We can see the reconstructed mean
alues with the parametric-DCT approach are less offset, as
hown in the last row of Table 3. Overall, these results show
hat the parametric-DCT approach is much less sensitive to
he choice of the initial guess than the conventional MOBIIR
cheme.

.5 Effects of Measurement Noise on Reconstruction
Results

o study the effect of measurement noise on the parametric-
CT reconstructions, we purposely add a certain amount of

andom noise to the synthetically generated data. If Ji,d is a
ynthetic measurement corresponding to the source i and the

etector d, then the noisy data J̄i,d=Ji,d�1+�i,dN�0,1�I
−1,1��.
ere, N�0,1� is a standard normal distribution, and I
−1,1�

s an interval indicator function that is equal to 1 in the inter-
al of 
−1,1� and zero otherwise. The parameter �i,d is the

Table 2 Errors of the reconstructed images us
MOBIIR method.

Capsule

Conventional Parametric-DCT

�max 0.0536 0.0484

�rms 0.0770 0.0744

ig. 9 Cross-line plots of the reconstructed absorption coefficients of
ig. 8 at the line: �a� along the x axis at the plane z−1.7=0.0; �b�
long the y axis at the plane z−1.7=0.0; �c� along the z axis at the
lane x−3.0=0.0.
ournal of Biomedical Optics 064003-
standard deviation of added noise, which we vary from 1% to
5%, which are typical values for OT measurement systems.
We test the effect of this type of noise on the reconstruction
results of a cylindrical domain with a capsulized perturbation
�Fig. 5�. Again, we chose the number of DCT coefficients as
Kx�Ky �Kz=10�10�10.

The reconstruction results are shown in Fig. 13. As ex-
pected, we see that as the standard deviation of the added
noised increases, the quality of the reconstructed images de-
creases. When we add 5% noise, some artificial perturbations
appear in the background area, while the reconstructed ab-
sorption values decrease in perturbation area. However, we
also observe that the parametric-DCT reconstruction approach
outperforms the conventional MOBIIR method at the same
noise level 
see Figs. 13�g�–13�l��. Using the conventional
approach, we see artificial inhomogeneities in background
area and the shape of reconstructed perturbation appears dis-
torted. The maximum errors and normalized standard devia-

parametric-DCT method and the conventional

Column

ntional

Parametric-DCT

�10�10�10� �10�10�1�

803 0.0563 0.0548

581 0.1601 0.1435

Fig. 10 3-D reconstruction results of the spatial distribution of �a
�cm−1� with the conventional MOBIIR method and the parametric-
DCT method for the column perturbation. The reconstructed cross-
sectional images are extracted at the plane defined as �a�, �d�, �g�, and
�j�: z−2.5=0.0; �b�, �e�, �h�, and �k�: y−2.05=0.0; �c�, �f�, �i�, and �l�:
x−3.0=0.0. Here �a�, �b�, and �c� are cross-sectional images for the
exact setup; �d�, �e�, and �f� for the parametric-DCT reconstruction
with Kx�Ky�Kz=10�10�1; �g�, �h�, and �i� for Kx�Ky�Kz=10
�10�10; and �j�, �k�, and �l� for the conventional MOBIIR recon-
struction, respectively.
ing the

Conve

0.0

0.1
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ion errors with varying noise levels are presented in Table 4.
verall, we find that the parametric-DCT method is less sen-

itive to noise.

Image Reconstruction with Experimental
Data

ast, we also tested our new parametric imaging reconstruc-
ion code with experimental data. The experimental data were
cquired with a continuous wave dynamic near-infrared opti-
al tomographic �DYNOT� system.23 In this system, light
rom a laser diode �wavelength �=760 nm is delivered to 24
ource fiber bundles via an optical demultiplexing switch that
llowed light to be sequentially delivered to different posi-
ions. The demultiplexor consists of a mirror mounted on a
otating stepper motor, which reflected light from the incom-
ng laser source into different source fibers depending on the
ngular orientation of the mirror. Twenty-four detector fiber
undles were used to direct light to the detectors. Light was
ollected by silicon photodiodes, which were connected to a
eries of programmable amplifiers and a lock-in filter. Re-
orted signal-to-noise ratio �SNR� is in the range of 0.5% to

ig. 11 Cross-line plots of the reconstructed absorption coefficients of
ig. 10 at the line: �a� along the x axis at the plane z−2.5=0.0; �b�
long the y axis at the plane z−2.5=0.0; �c� along the z axis at the
lane x−3.0=0.0.

Table 3 Errors and mean values of reconstruct
perturbation case.

Exact P

�a
0 N/A 0.10

�max N/A 0.0484

�rms N/A 0.0744

�̄a 0.1019 0.1023

��̄a 0 0.0004
ournal of Biomedical Optics 064003-
5%, depending on the optical properties and tissue geom-
etries. More details concerning this system can be found in
Ref. 23.

The tissue-like phantom used in this study has a similar
geometry compared to the preceding numerical setup with a
column perturbation 
see Sec. 4.3.2, Fig. 5�c��. The back-
ground medium of this phantom consists of a 1% Intralipid
solution. The cylindrical perturbation is made from a mix of
1% Intralipid and ink placed in a transparent straw. The scat-
tering coefficients of the background and the perturbation are
the same �s

b=�s
p�27.0 cm−1 �Ref. 24�. The absorption coef-

ficients of the background and the perturbation are �a
b

�0.023 cm−1 and �a
p�0.1 cm−1, respectively.25 The aniso-

tropic factor g�0.73 is close to water. The diameter of this
perturbation d�0.6 cm is a little smaller than the size of
numerical perturbation used in sections above.

Fig. 12 3-D reconstruction results of the spatial distribution of �a
�cm−1� starting the iterations with different initial guesses. The cross-
sectional images are extracted at the plane defined as �a�, �d�, �g�, and
�j�: z−1.7=0.0; �b�, �e�, �h�, and �k�: y−2.05=0.0; �c�, �f�, �i�, and �l�:
x−3.0=0.0. Here �a�, �b�, and �c� are the parametric-DCT reconstruc-
tion with initial guess �a

0=0.10 cm−1; �d�, �e�, and �f� for the
parametric-DCT reconstruction with initial guess �a

0=0.07 cm−1; �g�,
�h�, and �i� for the parametric-DCT reconstruction with initial guess
�a

0=0.05 cm−1; �j�, �k�, and �l� for the conventional MOBIIR recon-
struction with initial guess �a

0=0.05 cm−1, respectively.

ges with different initial guesses in the capsular

tric-DCT Conventional

7 0.05 0.05

55 0.0625 0.0954

96 0.2457 0.2930

49 0.0903 0.0850

070 −0.0116 −0.0169
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The reconstructed absorption maps and corresponding
ross-line plots are shown in Figs. 14 and 15, respectively.
or the parametric-DCT reconstruction, We used Kx�Ky
Kz=10�10�1 DCT coefficients. We can see that the

arametric-DCT approach outperforms the conventional MO-
IIR method. Both the shape and absolute optical properties
f the inhomogeneity are better recovered with the
arametric-DCT method. This is in agreement with the find-
ngs of our numerical studies.

Discussion and Conclusions
e introduced a parametric image reconstruction approach to

ptical tomographic imaging, which makes use of the
iscrete-cosine transform �DCT� to represent the recon-
tructed images. This approach was implemented by adopting
n existing model-based iterative image reconstruction �MO-
IIR� scheme, which uses the frequency-domain equation of

adiative transfer �ERT� as a forward model. We illustrated
nd analyzed the performance of the new code using synthetic
s well as experimental data. We could demonstrate that the
arametric-DCT reconstruction method allows us to substan-
ially reduce the number of unknown image parameters and

able 4 Errors of reconstructed images with different noise level in
he capsule perturbation case.

Parametric-DCT Conventional

Noise level No noise 2% 5% 5%

�max 0.0484 0.0611 0.1103 0.3111

�rms 0.0744 0.1299 0.1596 0.2655

ig. 13 3-D reconstruction results of the spatial distribution of �a
cm−1� with different noise levels. The cross-sectional images are ex-
racted at the plane defined as �a�, �d�, �g�, and �j�: z−1.7=0.0; �b�,
e�, �h�, and �k�: y−2.05=0.0; �c�, �f�, �i�, and �l�: x−3.0=0.0. Here
a�, �b�, and �c� are the parametric-DCT reconstruction without noise;
d�, �e�, and �f� for the parametric-DCT reconstruction with 2% noise;
g�, �h�, and �i� for the parametric-DCT reconstruction with 5% noise;
j�, �k�, and �l� for the conventional MOBIIR reconstruction with 5%
oise, respectively.
ournal of Biomedical Optics 064003-1
overall results in better quality of the reconstructed images,
when compared to a conventional, nonparametric reconstruc-
tion techniques. In particular, the results show that DCT-based
codes are less sensitive to noise in the data and to the choice
of the initial guess needed in iterative image reconstruction
schemes.

The number of unknowns in the imaging problem is re-
duced by expanding the reconstructed images into spatially
varying 2-D or 3-D cosine functions of increasing order. If a
typical image is discretized into pixels or voxels, the number
of unknowns can be in the thousand and even millions, de-
pending on the level of discretization. However, it has been
shown by several groups that the detection limit of a hetero-
geneity is about 1 /10 of the outer dimensions of the medium
under consideration. This effectively means that variations of
spatial properties in optical tomographic images are limited to
about 1 /10 of the outer dimensions. Our numerical results
show that these variations can be captured with approximately

Fig. 14 3-D phantom experimental data reconstruction results of the
spatial distribution of �a �cm−1� with the parametric-DCT method and
the conventional MOBIIR method. The cross-sectional images are ex-
tracted at the plane defined as �a� and �d�: z−2.5=0.0; �b� and �e�:
y−2.05=0.0; �c� and �f�: x−3.1=0.0. Here �a�, �b�, and �c� are cross-
sectional images for the conventional MOBIIR reconstruction; �d�, �e�,
and �f� for the parametric-DCT reconstruction, respectively.

Fig. 15 Cross-line plots of reconstructed absorption coefficients of Fig.
14 at the line: �a� along the x axis at the plane z−2.5=0.0; �b� along
the y axis at the plane z−2.5=0.0; �c� along the z axis at the plane
x−3.1=0.0.
November/December 2009 � Vol. 14�6�0
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0 coefficients in each dimension, since the largest spatial
requency is proportional to one tenth of the base frequency.
herefore, using the parametric-DCT approach, only 10 un-
nowns �the expansion coefficients� per dimension need to be
etermined instead of the much larger number of pixels in an
mage.

If more and more expansion coefficients are used in the
arametric-DCT algorithm, the images become increasingly
imilar to the images obtained with traditional nonparametric

OBIIR codes. In this case, the number of unknowns in
arametric-DCT reconstruction approaches the number of un-
nowns in the MOBIIR method. Higher frequency compo-
ents that seem to produce artifacts become visible. The rea-
on for that is most likely that an overfitting takes places, and
he many unknowns will “fit” the noise in the data. On the
ther hand, as we use fewer and fewer coefficients in the
arametric code, the images become smoother, and high-
requency components disappear. Since fewer unknowns are
sed, images reconstructed with the parametric-DCT method
ppear in general smoother than images generated with MO-
IIR codes that use a larger number of unknowns.

Another advantage of the parametric DCT approach is that
hese codes converge faster to the final result. For the ex-
mples considered in this paper, we observed up to 50% re-
uction in convergence times. The exact speed-up factor de-
ends on the optical properties, problem geometry, and the
atio of the mesh size to the number of chosen DCT coeffi-
ients.

In this paper, we present results concerning the reconstruc-
ion of the spatial distribution of the absorption coefficients.
owever, the same approach can be applied to reconstruct the

patial distribution of scattering coefficients. As indicated in
q. �9�, the absorption coefficients and the scattering coeffi-
ients of an image can be expanded in the spatial-frequency
omain individually. Thus, the number of DCT coefficients
or the absorption coefficients and for the scattering coeffi-
ients become independent. The number of necessary DCT
oefficients to obtain a good scattering coefficients map will
epend on the expected spatial variations in a reconstructed
mage. It has been shown that the spatial variations in the
cattering images are of the same order as the variations in the
bsorption images �see, e.g., Dehghani et al.21 and Pogue et
l.22�. Therefore, one can expect that a similar number of DCT
oefficients are needed for scattering images, and indeed we
ound the same general trends for scattering images as de-
cribed in the paper for absorption images.

Last, although the examples presented in this paper were
ased on optical tomography using the frequency-domain
RT, the parametric-DCT method by nature is not limited to
ny particular light-propagation model. The parametric-DCT
econstruction techniques can also be applied to diffusion-
heory-based optical tomography and other inverse problems,
uch as impedance tomography and microwave tomography.
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