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Abstract. Phase unwrapping is an indispensable step for many optical imaging andmetrology techniques. The
rapid development of deep learning has brought ideas to phase unwrapping. In the past four years, various
phase dataset generation methods and deep-learning-involved spatial phase unwrapping methods have
emerged quickly. However, these methods were proposed and analyzed individually, using different strat-
egies, neural networks, and datasets, and applied to different scenarios. It is thus necessary to do a detailed
comparison of these deep-learning-involved methods and the traditional methods in the same context. We first
divide the phase dataset generation methods into random matrix enlargement, Gauss matrix superposition,
and Zernike polynomials superposition, and then divide the deep-learning-involved phase unwrapping
methods into deep-learning-performed regression, deep-learning-performed wrap count, and deep-learning-
assisted denoising. For the phase dataset generation methods, the richness of the datasets and the gen-
eralization capabilities of the trained networks are compared in detail. In addition, the deep-learning-involved
methods are analyzed and compared with the traditional methods in ideal, noisy, discontinuous, and aliasing
cases. Finally, we give suggestions on the best methods for different situations and propose the potential
development direction for the dataset generation method, neural network structure, generalization ability
enhancement, and neural network training strategy for the deep-learning-involved spatial phase unwrapping
methods.
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1 Introduction
Estimation of absolute (true) phase is an important but challeng-
ing problem in many imaging or measurement techniques, such
as optical interferometry (OI),1 magnetic resonance imaging
(MRI),2 fringe projection profilometry (FPP),3,4 and interfero-
metric synthetic aperture radar (InSAR)5,6 (see Fig. 1).

The importance lies in that the estimated absolute phase
of the aforementioned applications is directly proportional to
the desired physical quantities such as the distribution of
thickness or refractive index for OI, the distribution of mag-
netic susceptibility or the velocity of blood flow for MRI,

the three-dimensional (3D) distribution of the object surface
for FPP, and the surface height of the topography or ground
deformation for InSAR.

The challenge lies in that the initial phase of the afore-
mentioned applications is limited in the range of ð−π; π� since
it is calculated from the complex amplitude field (CAF) by the
arctangent function. However, in most cases, the phase range
corresponding to the sample exceeds this limitation. Therefore,
to obtain the desired physical quantities, the absolute phase must
be estimated from the initial wrapped phase that is the so-called
phase unwrapping.

The wrapped phase φ and absolute phase ψ have the follow-
ing relationship:

ψðrÞ ¼ φðrÞ þ 2πkðrÞ; (1)
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where r is the vector coordinate and k is the wrap count, which is
an integer.

Spatial phase unwrapping, i.e., getting ψ solely by φ, is
straightforward but ill-posed, because both ψ and k are unknown
in Eq. (1). However, if the absolute phase is continuous, i.e., the
Itoh condition is satisfied, the problem becomes well-posed.7 In
the Itoh condition, ψ and φ satisfy the following relationship:

∇ψ ¼ W½∇φ� ¼

8><
>:

∇φ; j∇φj ≤ π
∇φ − 2π; ∇φ > π
∇φþ 2π; ∇φ < −π

; (2)

where W½·� is the wrap operator that removes multiples of 2π so
that the output is within ½−π; πÞ and ∇ is the difference operator.
Then, the absolute phase can be calculated as

ψðr1Þ ¼ ψðr0Þ þ
Z
L
∇ψdr ¼ ψðr0Þ þ

Z
L
W½∇φ�dr; (3)

where r0 is the starting point, r1 is the current point, and L is an
arbitrary integration path linking the two points. The simplest
integration path is the line-by-line scan.

Unfortunately, in practical applications, noise, discontinuity
and aliasing violate the Itoh condition and fail the phase un-
wrapping. Thus, in the traditional spatial phase unwrapping
methods, the path-following method determines better integra-
tion paths by branch cuts,8 quality maps,9 etc., to avoid the
influence of these invalid pixels, and the optimization-based
method obtains the absolute phase by minimizing the difference
between absolute phase gradients and wrapped phase gradients,
as follows:

ψO ¼ arg min
ψ t

�ZZ
fð∇ψ t −W½∇φ�ÞdA

�
; (4)

where ψ t is the absolute phase field to be optimized, and its
optimal value is denoted as ψO; fð·Þ is an objective function
such as energy functions10 and Lp-norm.11 In addition to
putting all efforts into improving the unwrapping algorithm,
window Fourier transform (WFT) or other filters can be used
to filter the noise pixels, with the result denoted as ψF, before
phase unwrapping.12–14 The filtered phase is then unwrapped
into ψF. Note that ψO from optimization and ψF with prefilter-
ing are not the same as ψ , thus do not satisfy Eq. (1). Thus, the
congruence operation is sometimes applied as14,15

Fig. 1 Phase unwrapping in OI,1 MRI,2 FPP,4 and InSAR.6
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ψC ¼ ψM þW½φ − ψM�; (5)

where ψM represents any successful but not congruent phase
unwrapping results of a particular method, such as ψF and
ψO. More details and comparison of the traditional spatial phase
unwrapping methods can be found in the classic books and re-
view papers.5,16–19

In fact, the purpose of the traditional spatial phase unwrap-
ping methods is to avoid the negative impact of invalid points as
much as possible, and it is mainly suitable for nonserious noise
and some discrete discontinuous or aliasing points. In some ex-
treme cases such as the presence of severe noise or locally iso-
lated discontinuous or aliasing regions, the traditional methods
will become ineffective.

Jin et al.20 first proposed the use of deep learning to solve
illposed inverse problems in imaging. This idea of using a deep
neural network to learn the mapping relationship from input
space to output space from paired datasets makes it possible
to solve phase unwrapping in the aforementioned extreme cases.
Thus, in the past 4 years, many deep-learning-involved methods
have quickly emerged for spatial phase unwrapping that are still
effective in the cases of noise, discontinuity, and aliasing due to
not being constrained by the Itoh condition.21–45

These deep-learning-involved methods use different strate-
gies to achieve phase unwrapping by supervised optimization
of neural networks with specific datasets:

• Deep-learning-performed regression method (dRG) esti-
mates the absolute phase directly from the wrapped phase by
the neural network.22–33 The used dataset contains the paired
wrapped phase as input and absolute phase as ground truth
(GT), as shown in Fig. 2(a).

• Deep-learning-performed wrap count method (dWC) first
estimates the wrap count from the wrapped phase by the neural
network, and then obtains the absolute phase by Eq. (1).34–44 The
used dataset contains the paired wrapped phase as input and
wrap count as GT, as shown in Fig. 2(b).

• Deep-learning-assisted denoising method (dDN) first
denoises the real and imaginary parts of CAF by the neural net-
work, and then unwraps the pure (noise-free) wrapped phase
using a traditional method.45 The used dataset contains the
paired noisy and pure real and imaginary parts of CAF as input
and GT, respectively, as shown in Fig. 2(c).

In addition, the absolute phase dataset generation methods
used in deep-learning-involved methods can be divided into the
following four categories:

• Random matrix enlargement (RME): The absolute phase
of various distributions is obtained by enlarging a small random
matrix of random size and range.24,28,32

• Gaussian functions superposition (GFS): The absolute
phase of various distributions is obtained by weighted superpo-
sition of multiple Gaussian functions with different mean values
and variances.29,35,38,39,42–44

• Zernike polynomials superposition (ZPS): The absolute
phase of various distributions is obtained by weighted superpo-
sition of Zernike polynomials in different orders.36,37,40,41,45

• Real data reprocessing (RDR): The absolute phase of real
samples is obtained by traditional methods.23,27,30,31,33

As shown in Fig. 3, the overall process of these deep-
learning-involved phase unwrapping methods can be summa-
rized as follows:

(a) The datasets including input and GT are generated through
computer simulations or real experiments.
(b) Then through the training process, a one-time effort, the
weights and biases of the neural network are adjusted by min-
imizing the loss function between the neural network output
and GT.46

(c) After the training process, the neural network can perform
phase unwrapping directly or indirectly.

Since these methods are proposed individually using differ-
ent phase unwrapping strategies and dataset generation methods
and applied to different scenarios, a comprehensive cross-
comparison and a comparison with traditional methods are lack-
ing, which obscures the true potential of deep-learning-involved
phase unwrapping and dataset generation methods. In the
present review, Sec. 2 offers a summary and classification of
deep-learning-involved phase unwrapping methods; in Sec. 3,
the dataset generation methods are summarized and classified,
their performance and characteristics are compared, and the
rules and tips of dataset generation are given; in Sec. 4, using
the same dataset, the performance of the deep-learning-involved
and traditional phase unwrapping methods in ideal, noisy, dis-
continuous, aliasing, and mixed cases is compared and summa-
rized; in Sec. 5, the advantages and limitations of the existing
deep-learning-involved phase unwrapping methods are summa-
rized, and a deep learning phase unwrapping idea with joint
supervision of dataset and physical-model is further proposed
and demonstrated.

To give interested readers a quick start, we present a step-by-
step guide to applying deep learning to phase unwrapping in the
Supplemental Material, with dRG and RME as an example.

2 Phase Unwrapping Methods with Deep
Learning

2.1 Deep-Learning-Performed Regression (dRG)
Method

Phase unwrapping can be treated as a regression problem in
which a neural network directly learns the mapping relationship
between the wrapped phase and the absolute phase.22–33 As illus-
trated in Fig. 4, after being fed with a wrapped phase, the trained
network directly outputs the unwrapped (absolute) phase. Such
a mapping relationship is most straightforward and intuitive, but

Fig. 2 Datasets of the deep-learning-involved phase unwrapping
methods, for (a) dRG, (b) dWC, and (c) dDN. “R” and “I”
represent the real and imaginary parts of CAF, respectively.
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the unwrapped phase does not strictly follow the relationship
in Eq. (1). In other words, the unwrapped phase is incongruent,
i.e., each pixel has a small error. The congruence operation in
Eq. (5) can be applied if necessary.

Dardikman et al.22,47 introduced the dRG method for simu-
lated steep cells directly through a residual-block-based convo-
lutional neural network (CNN), verified the dRG method with
the congruence for real cells and compared the dRG method
with the deep-learning-performed wrap count method.23 In 2019,
we proposed a phase dataset generation method in which we
tested the trained network on real samples, analyzed the network
generalization ability by the middle layer visualization, and
verified the superiority of the dRG method in noisy and aliasing
cases by comparing it with the traditional methods.24,48 He et al.25

and Ryu et al.26 tested the phase unwrapping performance of the
bidirectional recurrent neural network (RNN) and 3D-ResNet
with MRI data. Dardikman-Yoffe et al.27 open-sourced their real
sample dataset and verified that the congruence could improve
the accuracy and robustness of the dRG method in the case of a
small number of wrap counts. Qin et al.28 used a larger-capacity
Res-UNet to obtain higher accuracy and proposed two evalu-
ation indices. Perera and De Silva29 and Park et al.30 tested the
phase unwrapping performance of the long short-term memory
(LSTM) network and generative adversarial network (GAN).
Zhou et al.31 improved the robustness and efficiency of deep

learning phase unwrapping by adding preprocessing and post-
processing. Xu et al.32 improved the accuracy and robustness of
phase unwrapping in an end-to-end case by using a composite
loss function and adding more skip connections to Res-UNet.
Zhou et al.33 used the GAN in InSAR phase unwrapping.

2.2 Deep-Learning-Performed Wrap Count (dWC)
Method

According to Eq. (1), if the wrap counts kðx; yÞ are successfully
determined, the phase unwrapping is also fulfilled by adding
2πkðx; yÞ to the wrapped phase, as illustrated in Fig. 5.
Although the phase values are different from pixel to pixel,
the wrap count is the same in one fringe period. Thus, phase
unwrapping can be interestingly treated as a classification/
segmentation problem in which a neural network predicts the
wrap count for each pixel from the wrapped phase.34–44 Such
a mapping relationship is polarized, i.e., it is either correct or
incorrect for each pixel.

This idea was introduced by Liang et al.34 and Spoorthi et al.35

Spoorthi et al.35 proposed a phase dataset generation method and
used the generated dataset to train a SegNet to predict the wrap
count, which was postprocessed by clustering-based smooth-
ness to alleviate the classification imbalance. Zhang et al.36 per-
formed phase unwrapping by three networks sequentially for
wrapped phase denoising, wrap count predicting, and postpro-
cessing, respectively. Zhang et al.37,49 verified the performance
of the network DeepLab-V3+ in the dWC method and proposed
using refinement for postprocessing. Wu et al.38,50 enhanced the
simulated phase dataset by adding the noise from real data and
used the multiscale context and the full resolution residual block
(FRRes-UNet) to further optimize the UNet in the Doppler op-
tical coherence tomography. Also, Spoorthi et al. improved the
prediction accuracy of the wrap count of the method in Ref. 35
by introducing the priori-knowledge of absolute phase values
and gradients into the loss function.39 Zhao et al.40 used a
residual autoencoder network (RAEN) to predict the wrap

Fig. 3 Overall process of deep-learning-involved phase unwrapping methods.

Fig. 4 Illustration of the dRG method.
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counts, used an image-analysis-based postprocessed method to
alleviate the classification imbalance, and adopted iterative-
closest-point phase data stitching method to realize dynamic
resolution. Zhu et al.41 used the dWC method with postprocess-
ing to do phase unwrapping in inertial confinement fusion
target interferometric measurement. Vengala et al.42,43,51 used
the Y-Net to reconstruct the wrap count and pure wrapped phase
at the same time. Zhang and Li44 added atrous spatial pyramid
pooling, positional self-attention, and edge-enhanced block to
the neural network to get a higher accuracy and stronger ro-
bustness.

2.3 Deep-Learning-Assisted Denoising (dDN) Method

As mentioned in Sec. 1, in the traditional methods, we can either
use complicated algorithms to directly unwrap or circumvent the
invalid pixels or filter the invalid pixels before using the simplest
algorithm to do phase unwrapping.7,13,14 For the latter approach,
the neural network can also be used for the invalid pixels
filtering.45

Yan et al.45 proposed using a neural network to denoise the
real and imaginary parts of CAF for FPP. Then they used the
line-scanning method to do phase unwrapping on the noise-
filtered wrapped phase. In their work, denoising was performed
by extracting the noise components from the noisy real and
imaginary parts. After verification, we found that using neural
networks to directly extract the pure real and imaginary compo-
nents had the same performance. Thus, here, we adopt the direct
way as shown in Fig. 6. In addition to this way of denoising

directly using the neural network, the input of the neural network
(the noisy real and imaginary parts) can also be semantically
segmented to distinguish the sample area and the background
area. Then the semantic segmentation results can be used as prior
knowledge to make the neural network focus on the sample area.

2.4 Summary of the Deep-Learning-Involved Methods

For clarity, we summarize all the deep-learning-involved phase
unwrapping methods mentioned above in Table 1, where
“RME,” “GFS,” “ZPS,” and “RDR” indicate the dataset gener-
ation methods, which will be introduced in Sec. 3. In this table,
except for the phase unwrapping methods introduced above
(column 1), we also include the network structures (column 5),
the training datasets (column 6), and the loss functions (column
7), which directly affect the final effect of phase unwrapping.

The network structure is not within the scope of the compari-
son of this paper, so we choose Res-UNet as a unified network
structure that has been widely used in different optical applica-
tions with excellent performance.51–77 Furthermore, the loss
functions can be incorporated into the networks as a variable.
The dRG and dDN methods usually use mean squared error
(MSE) or mean absolute error (MAE) as whole or main com-
ponents of the loss function, while the dWC method usually
uses cross-entropy (CE) as the whole or main component of
the loss function. Thus, we use MAE as the loss function of
the dRG and dDN, and use CE and MAE as the composite loss
function, since which can effectively improve the network
accuracy.39

Fig. 5 Illustration of the dWC method.

Fig. 6 Illustration of the dDN method.
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It is well-known that training datasets will affect network
performance. Simulation is another convenient and important
option for dataset generation, in addition to using real samples
to obtain absolute phases. Thus, we will evaluate the effective-
ness of the dataset generation methods as a preparation work in
Sec. 3, and then compare different phase-unwrapping methods
in different cases such as noise, discontinuity, and aliasing in
Sec. 4.

In all these comparisons, the following three indices are used
for accuracy estimation:

(i) RMSE: the traditional root mean squared error, including
the mean of RMSE (RMSEm) and the standard deviation of
RMSE (RMSEsd). RMSEsd is used to indicate the stability of
performance.
(ii) PFS: the proportion of failed samples. A failed sample is

one for which there is at least one pixel with an absolute error
greater than π. The congruence operation cannot correct such
pixels.
(iii) PIP: the mean proportion of incorrect pixel for the failed
samples. The incorrect pixel is one whose error is nonzero or
greater than π.

2.5 Implementation of the Deep-Learning-Involved
Methods

For dRG and dWC, the Res-UNet is selected from Ref. 72 (see
Sec. S1 in the Supplemental Material), in which the inception

module is introduced into the residual block.24,47,51,78 For dDN,
ResNet is obtained by removing the max-pooling and trans-
posed-convolution layers from Res-UNet and changing the
channel number of all middle layers to 64. The dWC method
is regarded as a classification/segmentation problem of eight
categories, including the wrap counts from 0 to 7.

We use the adaptive moment estimation based optimization
to train all the networks. The batch size is 16 and the learning
rate is 0.01 (85% drop per epoch if the learning rate is >10−6).
The epoch size is 100 for all the datasets. The MAE loss func-
tion is used for dRG and dDN, while the composite loss function
is used for dWC, which can be expressed as

Composite lossðrÞ

¼ 1

M

�
−XM

m¼1

kGðrÞ log½kðrÞ� þ
XM
m¼1

jψðrÞ − ψGðrÞj
�
; (6)

where kGðrÞ is the GT wrap counts, kðrÞ is the network-output
wrap counts, ψGðrÞ is the GT absolute phases, ψðrÞ is the ab-
solute phases obtained from the network-output wrap counts
and the network inputs by Eq. (1), and M is the amount of data.

All the networks are implemented by Pytorch 1.0 based
on Python 3.6.1, which is performed on a PC with Core i7-
8700K CPU, 16 GB of RAM, and NVIDIA GeForce GTX
1080Ti GPU.

Table 1 Summary of deep-learning-involved phase unwrapping methods. “—” indicates “not available.”

Method Date Author Ref. Network Dataset Loss function

dRG 2018 Dardikman and Shaked 22 — — —

Dardikman et al. 23 ResNet RDR MSE

2019 Wang et al. 24 Res-UNet RME MSE

He et al. 25 3D-ResNet — —

Ryu et al. 26 RNN — Total variation + error variation

2020 Dardikman-Yoffe et al. 27 Res-UNet RDR MSE

Qin et al. 28 Res-UNet RME MAE

2021 Perera and De Silva 29 LSTM GFS Total variation + error variation

Park et al. 30 GAN RDR MAE + adversarial loss

Zhou et al. 31 UNet RDR MAE + residues

2022 Xu et al. 32 MNet RME MAE and MS-SSIM

Zhou et al. 33 GAN RDR MAE + adversarial loss

dWC 2018 Liang et al. 34 — — —

Spoorthi et al. 35 SegNet GFS CE

2019 Zhang et al. 36 UNet ZPS CE

Zhang et al. 37 DeepLab-V3+ ZPS CE

2020 Wu et al. 38 FRRes-UNet GFS CE

Spoorthi et al. 39 Dense-UNet GFS MAE + residues + CE

Zhao et al. 40 RAENet ZPS CE

2021 Zhu et al. 41 DeepLab-V3+ ZPS CE

2022 Vengala et al. 42,43 TriNet GSF MSE + CE

Zhang and Li 44 EESANet GSF Weighted CE

dDN 2020 Yan et al. 45 ResNet ZPS MSE
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3 Phase Dataset Generation Methods
Due to the fundamental importance of datasets in deep learning,
we introduce the absolute phase generation methods (Sec. 3.1)
to prepare the datasets for deep-learning-involved phase un-
wrapping (Sec. 3.2) and evaluate their richness (Sec. 3.3).

3.1 Absolute Phase Generation Methods

We review three absolute phase generation methods, all of
which undergo two steps: generate a random phase and then
linearly scale it into a range of ½0; h� in radians. For the com-
parison, here the value range of h is uniformly set from 10
to 40. In practical applications, the range of h can be appropri-
ately enlarged as required. The first step makes these methods
different and will be described below, while the second step is
the same for all the methods.

3.1.1 Random matrix enlargement (RME)

The RME method first generates small square matrices with dif-
ferent sizes (randomly set from 2 × 2 to 8 × 8), different data
distribution types (uniform or Gaussian), and then enlarges them
into a size of 128 × 128 by different interpolation methods
(nearest, bilinear, or bicubic interpolation).24,28,32 As an example,
shown in Fig. 7, an initial small matrix is interpolated and
enlarged into a big matrix, which is then linearly mapped to
absolute phase with a higher h. In RME, the continuity is guar-
anteed by interpolation, while the randomness is introduced by
the parameter selection of the initial small matrices.

3.1.2 Gaussian functions superposition (GFS)

The GFS method generates a random number of Gaussian func-
tions (from 1 to 20) with different means (randomly set from
2 to 127 for x and y directions), variances (randomly set from
100 to 1000) and amplitudes (randomly set from 0 to 1), and
then superposes them by addition or subtraction.29,35,38,39,42–44

As an example, shown in Fig. 8, three 128 × 128Gaussian func-
tions are superposed by addition or subtraction, which are then
linearly mapped to absolute phase with a higher h. In GFS, the
continuity is guaranteed by using Gaussian functions, while the
randomness is introduced by variations of Gaussian parameters
and random function superposition.

3.1.3 Zernike polynomials superposition (ZPS)

The ZPS method generates a random number of matrices by
the Zernike polynomials with different coefficients (randomly
set from 0 to 1) of the first 30 orders (the first coefficient is
set to zero), and then superposes these matrices by addition or
subtraction.36,37,40,41,45 The ZPS method is similar to the GFS
method except that the Gaussian functions are replaced by
Zernike polynomials in which the continuity is guaranteed by
Zernike polynomials, while the random strengths of these poly-
nomials introduce the randomness.

3.1.4 Real data reprocessing (RDR)

The RDR method obtains the absolute phases of real samples
and then reprocesses them. The typical ways include: (i) using
successful unwrapped results from a traditional phase unwrap-
ping method23,27,30,31,33; (ii) using optical methods offering abso-
lute phase, such as dual-wavelength (or even multiwavelength)
digital holography method79; (iii) using phase-unwrapping-
free methods such as the transport of intensity equation (TIE)
method.80

3.2 Dataset Generation

Now that the absolute phase ψ has been generated, both the real
and imaginary parts of the CAF are calculated as

Rðx; yÞ ¼ cos½ψðrÞ�; (7)

Iðx; yÞ ¼ sin½ψðrÞ�; (8)

from which, the wrapped phase φ is calculated as

φðrÞ ¼ arctan½IðrÞ∕RðrÞ�; (9)

and the wrap count is calculated as

kðrÞ ¼ round

�
ψðrÞ − φðrÞ

2π

�
: (10)

We thus obtain the complete dataset as D ¼ fψ ;φ; R; I; kg,
from which fφ;ψg, fφ; kg, and {R and I, R and I} are used
as the input-GT pairs for dRG, dWC, and dDN, respectively.

Accordingly, we generate the respective datasets denoted as
D_RME, D_GFS, and D_ZPS for three different absolute phase
generation methods. The simulated datasets in this section do
not contain any invalid pixels. As for the real dataset (the fourth
dataset, D_RDR), after being obtained by the digital holography
and the least squares (LS) phase unwrapping method,11 the ab-
solute phases of real samples are shifted so that the minimum
value is equal to zero as the network GT. The wrapped phases
are then calculated by Eqs. (7)–(9) as the network input. The real
samples contain candle flames, pits of different arrangements,
grooves of different shapes, and tables of different shapes. The
sizes of the datasets are as follows: for D_RME, D_GFS, and
D_ZPS, each contains 20,000 pairs for training and 2000 pairs
for testing; D_RDR contains 421 pairs for testing. Given that
a higher h corresponds to a more complex wrapped phase,
we produce a larger proportion of the data with a higher h.
Specifically, for the training part of these three datasets
(D_RME, D_GFS, and D_ZPS), the h of 50% data is randomly
selected from 10 to 30, 20% from 30 to 35, and 30% from 35 to
40; for the testing part of these three datasets, the h of all data isFig. 8 An example of the GFS method.

Fig. 7 An example of the RME method.
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randomly selected from 10 to 40. The specific information of the
datasets can be found in Table 2. Further, we compare the ac-
curacy of the neural networks trained on D_RME and the data-
set with a uniform distribution of h (called D_RME0) and find
that the former is better (see Sec. S2 in the Supplemental
Material).

3.3 Dataset Selection

3.3.1 Initial richness indication of different datasets

Shannon entropy,81,82 as a measurement of the uncertainty of a
random variable, can quantitatively characterize the amount of
information contained in a dataset, which affects the generali-
zation ability of the trained neural network. We compute the
Shannon entropy of the absolute phases from the D_RME,
D_GFS, and D_ZPS, as shown in Fig. 9. The means of the
entropy from high to low are from RME (mean 4.41), GFS
(mean 4.24), and ZPS (mean 4.03). This result gives an initial
indication of the better information richness in D_RME and
D_GFS.

3.3.2 Statistical gradient distribution of different datasets

The gradient (difference) distribution of absolute phases can
also reflect the richness of the dataset. Thus, we first calculate
the sum of the absolute values of the horizontal difference and
vertical difference for each absolute phase in the dataset, and
then obtain the statistical average gradient distribution (SAGD)

of the dataset. Figure 10 shows the SAGD maps of different
datasets, from which we can see that the SAGD values of the
four corners of D_RME and D_GSF are low as shown by the red
arrow, D_ZPS only has high SAGD value in the four corners
as shown in the red circle, and the SAGD value of D_RDR
is higher in the lower middle region as shown in the red circle.

3.3.3 Comparison with network’s performance trained
by different datasets

We train the same Res-UNet by D_RME, D_GFS, and D_ZPS.
As a result, we have three trained networks named RME-Net,
GFS-Net, and ZPS-Net, respectively. These three networks are
then tested by all the testing datasets and the results are shown in
Table 3. We observe that the networks trained with a single type
of dataset (RME-Net, GFS-Net, and ZPS-Net) perform best on
the test data from the same dataset, and slightly worse on those
from other datasets including RDR. This is the so-called gen-
eralization problem. For generalization capability, RME-Net
is similar to GFS-Net and better than ZPS-Net, which is consis-
tent with the Shannon entropy. What’s more, the congruence
operation can significantly improve the accuracy of the networks
(see Sec. S3 in the Supplemental Material).

To further analyze the error distribution of the neural network
and explore its relationship with the SAGD of the dataset, we
calculate the mean error map for each network on each testing
dataset. As shown in Fig. 11, RME-Net generalizes well to all
testing datasets, GSF-Net generalizes poorly to D_RME, and

Fig. 9 Entropy histogram of absolute phases from the D_RME, D_GFS, and D_ZPS.

Table 2 Summary of datasets. “—” indicates “not available.”

Datasets Size
Proportion of h
from 10 to 30

Proportion of h
from 30 to 35

Proportion of h
from 35 to 40

Training part of D_RME 20,000 50% 20% 30%

Testing part of D_RME 2000 2/3 1/6 1/6

Training part of D_GSF 20,000 50% 20% 30%

Testing part of D_GSF 2000 2/3 1/6 1/6

Training part of D_ZPS 20,000 50% 20% 30%

Testing part of D_ZPS 2,000 2/3 1/6 1/6

D_RDR for testing 421 — — —
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Table 3 RMSEm, RMSEsd, and PFS of phase unwrapping results of RME-Net, GFS-Net, and ZPS-Net.

D_RME D_GFS D_ZPS D_RDR

RMSEm RME-Net 0.0910 0.0982 0.1336 0.1103

GSF-Net 0.2263 0.0985 0.1133 0.1184

ZPS-Net 2.5148 0.4221 0.0821 0.8245

RMSEsd RME-Net 0.0507 0.1037 0.2320 0.1003

GSF-Net 0.4571 0.0234 0.1077 0.1557

ZPS-Net 2.8249 0.6252 0.0220 1.1405

PFS RME-Net 0.0010 0.0085 0.1270 0.0594

GSF-Net 0.1485 0.0020 0.0560 0.0333

ZPS-Net 0.6525 0.4075 0.0010 0.4679

Fig. 11 Mean error maps for each network. Red circles indicate high mean error value.

Fig. 10 SAGD maps of different datasets. Red arrows and circles indicate low and high SAGD
values, respectively.
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ZPS-Net generalizes poorly to all non-ZPS testing datasets. This
is consistent with the results in Table 3. Furthermore, since the
SAGD value on the four corners of D_RME and D_GSF is low
but the SAGD value on the four corners of D_ZPS is high, the
mean error of RME-Net and GSF-Net on D_ZPS is higher on
the four corners as indicated by the small red circles. Similarly,
since D_ZPS has a low SAGD value in the regions where the
SAGD value of D_RDR is high, the mean error of ZPS-Net on
D_RDR is larger in the corresponding regions as indicated by
the large red ellipses.

Therefore, the best performing RME method is selected and
further improved to obtain a dataset with a uniform SAGD.
Specifically, based on the RME method, we enlarge the small
square matrices into a size of 160 × 160 and then intercept the
central 128 × 128 part as the absolute phase, which can avoid
a lower SAGD value at the four corners. Using this modified
RME method, we generate a dataset of 20,000 pairs of data,
called D_RME1, and use it to train the neural network to obtain
REM1-Net. As shown in Fig. 12(a), the SAGDmap of D_RME1
is more uniform than that of D_RME. Correspondingly, as
shown in Fig. 12(b), compared with RME-Net, the mean error
of RME1-Net decreases overall, and phase unwrapping can also
be performed well for the four corners of the D_ZPS. Likewise,
RMSE of RME1-Net is much lower than that of RME-Net (see
Sec. S4 in the Supplemental Material).

For more visualization, in Fig. 13, we show the results of
RME1-Net for the four testing datasets with the maximum,
medians, and minimum RMSEm. Each pixel of the RME1-Net
results has a small error, most of which can be corrected by the
congruence. The phase unwrapping task is indeed successfully
fulfilled by a trained network.

Based on the above evaluation, we select the RME as the
dataset generation method to do the following testing for differ-
ent phase unwrapping methods. Furthermore, the congruence
operation is always considered due to its high effectiveness. To
facilitate the reader to further understand the deep-learning-
involved phase unwrapping, we present a step-by-step example

in Sec. S5 of the Supplemental Material, which includes dataset
generation, neural network making, training, and testing.

4 Comparison of Deep-Learning-Involved
Phase Unwrapping Methods

4.1 Dataset Preparation

We generate the absolute phase by the RME method. Then
Eqs. (7) and (10) are used to get the ideal datasetD ¼ fφ;ψ ; kg.
The pairs fφ;ψg and fφ; kg are used as input-GT pairs for dRG
and dWC, respectively.

To generate the noisy dataset, we add the noise of different
degrees to ψ from which other necessary fields are computed.
The complete noisy dataset is Dn ¼ fψ ;φn; R; I; Rn; In; kg,
where the subscript n is used to denote that the fields are noisy,
and ψ , R, I, and k remain noiseless. The pairs fφn;ψg, fφn; kg
and {Rn and In, R and I} are used as input-GT pairs for dRG,
dWC, and dDN, respectively.

To generate the discontinuity-containing dataset, we place
a rectangular area with a random size and phase value of π in
ψ from which all other fields are generated in the same way
described above. Accordingly, the complete dataset with a dis-
continuity isDd ¼ fψd;φd; kdg, where the subscript d is used to
denote that the fields are discontinuous. The pairs fφd;ψdg and
fφd; kdg are used as input-GT pairs for dRG, and dWC, respec-
tively. dDN is not involved in the comparison.

To generate the aliasing-containing dataset, we simply in-
crease h and the size of the small square matrices to obtain
the absolute phase with a steeper distribution. Accordingly,
the complete dataset with aliasing is Da ¼ fψa;φa; kag, where
the subscript a is used to denote that the fields are aliasing. The
pairs fφa;ψag and fφa; kag are used as input-GT pairs for dRG,
dWC, respectively. dDN is not involved in the comparison.

To generate the mixed dataset (containing all three of noise,
discontinuity, and aliasing), first, we simply increase h and the
size of the small square matrices to obtain the absolute phase

Fig. 12 (a) SAGD maps for D_RME and D_RME1, (b) mean error maps for RME-Net and RME1-
Net. Red arrows indicate low SAGD value. Red circles indicate high mean error value and orange
circles indicate the comparison part.
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with a steeper distribution, then place a rectangular area with a
random size and phase value of π in ψ , and then add the noise
of different degrees to ψ . Accordingly, the mixed dataset is
Dm ¼ fψm;φm; kmg, where the subscript m is used to denote
that the fields are mixed with all three of noise, discontinuity,
and aliasing. The pairs fφm;ψmg and fφm; kmg are used as in-
put-GT pairs for dRG, dWC, respectively. dDN is not involved
in the comparison.

For each noise-containing case, the Gaussian noise with a
random standard deviation σn ranging from 0 to 1.8 is added
to the pure ψ in which only the data with the wrapped phase
SNR ≥ −3 is kept to eliminate invalid data caused by excessive
noise. For each aliasing-free case, when generating datasets,
there are 22,000 absolute phases with uniformly distributed h
from 10 to 40 in which 20,000 for training and 2000 for testing.
For each aliasing-containing case, we set the size of the initial
random matrix from 8 × 8 to 12 × 12 and set h from 45 to 60.
For each discontinuity-containing case, a square area with three
random variables is simulated, including the x axis starting point
(random value from 1 to 64), the y axis starting point (random
value from 1 to 64) and the square size (random value from
20 × 20 to 50 × 50); in the square, the phase is set as 2π.

For clarity, Table 4 summarizes the different cases (column
1), the datasets (column 2), the networks (column 3), and the

Table 4 Summary of networks and corresponding datasets. The
form of the dataset is {Input, GT}. The last letter of the network
name is the case (“I” for ideal, “N” for noisy, “D” for discontinuous,
“A” for aliasing, and “M” for mixed).

Cases Datasets Networks
Loss

functions

Ideal case
(Sec. 4.2)

fφ;ψg dRG-I MAE

fφ; kg dWC-I CE + MAE

Noisy case
(Sec. 4.3)

fφn ;ψg dRG-N MAE

fφn ; kg dWC-N CE+MAE

{Rn and In ;
R and I}

dDN-N MAE

Discontinuous
case (Sec. 4.4)

fφd ;ψdg dRG-D MAE

fφd ; kdg dWC-D CE + MAE

Aliasing case
(Sec. 4.5)

fφa ;ψag dRG-A MAE

fφa ; kag dWC-A CE + MAE

Mixed case
(Sec. 4.6)

fφm ;ψmg dRG-M MAE

fφm ; kmg dWC-M CE + MAE

Fig. 13 Partial display of results from RME1-Net. “Max”, “Med,” and “Min” represent specific re-
sults with maximal, median, and minimal RMSEm, respectively. “-C” represents the congruence
results.

Wang et al.: Deep learning spatial phase unwrapping: a comparative review

Advanced Photonics Nexus 014001-11 Sep∕Oct 2022 • Vol. 1(1)



used loss functions (column 4). Due to the increase in h, for each
aliasing-free case, the categories number of the network for
dWC is increased from 8 to 10, including the wrap counts from
0 to 9. All information about neural network training can be
found in Sec. 2.5.

4.2 Comparison in the Ideal Case

After training, we test the dRG-I and dWC-I. The accuracy
evaluation of the networks is shown in Table 5 and Fig. 14.
Both dRG with congruence and dWC provide high success

Table 5 RMSEm, RMSEsd, PFS, and PIP of the deep-learning-
involved methods in the ideal case. “-C” represents the congru-
ence results.

dRG-I dRG-I-C dWC-I

RMSEm 0.0989 0.0005 0.0008

RMSEsd 0.0515 0.0157 0.0251

PFS 0.0015 0.0015 0.0025

PIP 0.0044 0.0044 0.0054

Fig. 14 Results for the (a) dRG-I and (b) dWC-I in the ideal case. “Max,” “Med,” and “Min”
represent specific results with maximal, median, and minimal RMSEm, respectively. “-C” repre-
sents the congruence results.
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rates, with PFS as low as 0.0015 and 0.0025. It should be noted
that all three traditional methods, such as line-scanning, congru-
ence of LS, quality guided (QG),10 can get completely correct
results, i.e., their PFS is 0. Therefore, on one hand, the deep-
learning-involved methods do provide satisfactory results just
by some training, and prompt us to further examine and com-
pare them in other more challenging cases; on the other hand,
the presence of failed results is annoying, although it is already
the state-of-the-art results that we have tried to achieve by now.
Ensuring that the neural network can correctly unwrap the
wrapped phase with any shape is the focus of future research.

To test the accuracy and adaptation of the neural network to
samples with different heights, a testing dataset with h from 1 to
50 is generated by RME to test dRG-I (dRG-I-C) and dWC-I,
whose RMSEm is shown in Fig. 15. Note that the networks can
successfully complete the phase unwrapping of samples with
h < 40, but performance degradation occurs for samples with
h > 40. Further, we train other neural networks by the datasets
with h in the range of [10, 80] and perform similar tests, and
the height adaptive range of the neural network to h is also in-
creased accordingly (see Sec. S6 in the Supplemental Material),
which means that in practical applications, the height range of
the training dataset should be appropriately expanded, espe-
cially for the upper limit of h.

4.3 Comparison in the Noisy Case

After training, 2000 pairs of samples in the testing datasets are
used to test the corresponding networks, whose accuracy evalu-
ation is shown in Table 6 and Fig. 16. We have the following
observations:

i. After congruence, RMSEm of dRG and dDN becomes al-
most the same as that of dWC, which proves the good effect of
congruences.

ii. For dRG without congruence, the RMSEm is only slightly
higher than that of the ideal case, which is because that dRG
implicitly includes denoising when it is trained by the noisy
wrapped phase as input and the pure absolute phase as GT.
This result shows that the implicit denoising in dRG is almost
as effective as dDN.
iii. For dWC, the neural network only predicts the wrap count,

with which the noisy wrapped phase is unwrapped. Thus, the
unwrapped phase is also noisy. The noise will also be included

if the pure absolute phase (GT) is used to calculate the unwrap-
ping error. Thus, we use the noisy absolute phase (GT1) to cal-
culate the unwrapping error, as shown in the red enlarged boxes
in Fig. 16(b). This consideration is also incorporated in Table 6
and Fig. 17.
iv. For dDN without congruence, the RMSEm is the lowest,

since dDN is specifically designed for denoising. However, if
only one pixel is not well filtered, it could result in error propa-
gation in the subsequent line-scanning method, as shown in
the red enlarged boxes and arrows in Fig. 16(c). This is also
the reason why the PFS of dDN-N-C is smaller than that of
dRG-N-C, but the PIP of dDN-N-C is larger than that of
dRG-N-C. With interest, we also train a neural network to
denoise the wrapped phase directly, whose result is far worse
than dDN (the RMSEm is 26 times higher). It thus is not rec-
ommended because the denoised wrapped phase generally has
minor errors where the wrapped fringe jumps, resulting in the
error propagation in the subsequent line-scanning method (see
Sec. S7 in the Supplemental Material).

To test the performance under different noise levels, we gen-
erate another noise-increasing dataset by adding Gaussian
noise to five pure absolute phases in which the SNR of the
wrapped phase gradually decreases from 20 to −3 in 0.5 inter-
vals. As a comparison, the traditional line-scanning, LS, QG,
and window-Fourier-transform-preceded quality guided (WFT-
QG) methods are also tested.7,13,14 The WFT parameters are
selected from a series of values in a range: σx ¼ σy ¼ ½3∶2∶7�
for window sizes, ξxl ¼ ξyl ¼ ½−0.2∶ − 0.1∶ − 3.0� for low-
frequency bounds, ξxh ¼ ξyh ¼ ½0.2∶0.2∶3.0� for high-frequency

Fig. 15 RMSEm of the deep-learning-involved methods for absolute phase in different heights.

Table 6 RMSEm, RMSEsd, PFS, and PIP of the deep-learning-
involved methods in the noisy case. “GT” represents the pure
GT (pure absolute phase), while “GT1” represents the noisy GT
(noisy absolute phase). “-C” represents the congruence results.

dRG-N
(GT)

dRG-N-C
(GT1)

dWC-N
(GT1)

dDN-N
(GT)

dDN-N-C
(GT1)

RMSEm 0.1367 0.0285 0.0435 0.0883 0.0229

RMSEsd 0.1154 0.1148 0.1197 0.2915 0.3056

PFS 0.2525 0.2525 0.2840 0.1976 0.1976

PIP 0.0013 0.0013 0.0014 0.0108 0.0088
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bounds and thr ¼ ½0.2∶0.2∶6.0� for threshold, where ½x∶y∶z�
represents an arithmetic sequence with interval y from x to z;
ξxi ¼ 1∕σx and ξyi ¼ 1∕σy are accordingly determined for
the increasement of frequency.83 This setting produces many

parameter combinations, i.e., for each wrapped phase, WFT is
applied multiple times with different parameters, and the onewith
the smallest RMSEm is chosen as the final result. The average
RMSEm of these five groups are plotted at different noise levels

Fig. 16 Results for (a) dRG-N, (b) dWC-N, and (c) dDN-N in the noisy case. “GT” represents the
pure GT (pure absolute phase), while “GT1” represents the noisy GT (noisy absolute phase).
“Max,” “Med,” and “Min” represent specific results with maximal, median, and minimal RMSEm,
respectively. “-C” represents the congruence results.
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in Fig. 17. For intuition, we select an example and show the
wrapped phase, the absolute phase, the absolute error maps of
all the methods in the lower part of Fig. 17. The SNR of each
column wrapping phase corresponds to the x axis. We have the
following observations:

i. All methods are satisfactory when the SNR of the wrapped
phase is >10.

ii. The errors of line-scanning, LS, QG start to increase
rapidly after the SNR of the wrapped phase is <10.
iii. The performance of dWC and WFT-QG begins to degrade

rapidly after the SNR of the wrapped phase is <0.

iv. The dRG and dDN do not show a significant performance
degradation until the SNR in the wrapping phase is ≤ − 2.

v. When the SNR of the wrapped phase is >0, the RMSEm

of dWC and WFT-QG is the lowest, and the RMSEm of dRG is
the highest. It should be noted that the congruence can signifi-
cantly reduce the RMSEm of dRG and dDN (see Sec. S8 in the
Supplemental Material).

Deep-learning-involved methods and WFT-QG can cope
with the noise level with the wrapped phase SNR as low as 0
or even lower, but WFT-QG needs to be premised on suitable
manually found hyperparameters that usually require several

Fig. 17 Results in different noise levels. Solid and dashed lines represent the deep-learning-in-
volved and traditional methods, respectively.
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attempts. Other traditional methods can only maintain high ac-
curacy in low to medium noise where the SNR of the wrapped
phase is >10. It should be noted that dDN-N can also complete
the phase unwrapping of ideal samples and obtain an accuracy
comparable with dRG-I.

4.4 Comparison in the Discontinuous Case

After training, we use the testing datasets to test the correspond-
ing networks and traditional methods, whose accuracy evalu-
ation is shown in Table 7 and Fig. 18. All the indices in

Table 7 RMSEm, RMSEsd, PFS, and PIP of the deep-learning-involved and traditional methods in the discontinuous case.
“-C” represents the congruence results.

dRG-I dRG-D dRG-D-C dWC-I dWC-D Line-scanning LS QG

RMSEm 2.0230 0.1230 0.0261 1.2209 0.0219 3.8054 1.3655 2.4204

RMSEsd 1.7817 0.1636 0.1827 1.3777 0.1543 3.7172 1.0408 2.5014

PFS 0.8120 0.0770 0.0770 0.7385 0.0785 0.9405 0.7120 0.8565

PIP 0.2407 0.0112 0.0112 0.1128 0.0077 0.4400 0.1073 0.2789

Fig. 18 Results for (a) dRG-I, (b) dWC-I, (c) dRG-D, (d) dWC-D, (e) line-scanning, (f) LS, and
(g) QG methods in the discontinuous case. “Max,” “Med,” and “Min” represent specific results with
maximal, median, and minimal RMSEm, respectively. “-C” represents the congruence results. The
last columns of each result are discontinuous maps, where 1 (white) represents the position of
the discontinuous pixels.
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Table 7 are calculated from pixels outside the square area. We
have the following observations:

i. Overall, deep learning methods (dRG-D and dWC-D) sig-
nificantly outperform traditional methods for phase unwrapping
of discontinuous samples.

ii. As shown in Figs. 18(a) and 18(b), the pixels in the square
area for the dRG-I and dWC-I are not unwrapped correctly, but
most pixels outside the area are unaffected. Further, as shown in
Fig. 18(c) and 18(d), after being trained by the discontinuity-
enhanced dataset, the dRG-D and dWC-D can correctly unwrap
each area.
iii. As shown in Figs. 18(e)–18(g), the three traditional meth-

ods get completely correct phase unwrapping results in the last
row, where the square area does not introduce discontinuity.
However, once the discontinuity appears in the first two rows,
they all produce serious error propagation. Note that for LS and
QG, this error propagation can be avoided by shielding square
areas with a mask prior.

4.5 Comparison in the Aliasing Case

After training, we test the dRG-A, dWC-A, line-scanning, LS,
and QG methods, whose accuracy evaluation is shown in
Table 8 and Fig. 19. We have the following observations:

i. Overall, deep learning methods significantly outperform
traditional methods for phase unwrapping of aliasing samples.

ii. dRG and dWC do not have large errors due to aliasing,
but their performance is slightly degraded compared with that
in the ideal case.
iii. As shown in Figs. 19(c)–19(e), the three traditional meth-

ods get completely correct phase unwrapping results in the last
row, where aliasing points do not appear in the wrapped phase.
However, once aliasing points appear in the first two rows, for
the line-scanning and QG methods, the aliasing-caused error
propagates on the integration path, resulting in the worst results.
Even for the LS method, the phase unwrapping results near the
aliasing pixels are also greatly affected.

Table 8 RMSEm, RMSEsd, PFS, and PIP of the deep-learning-involved and traditional methods in the aliasing case. “-C” represents
the congruence results.

dRG-A dRG-A-C dWC-A Line-scanning LS QG

RMSEm 0.1958 0.0078 0.0107 40.5128 6.7199 39.8846

RMSEsd 0.1390 0.1503 0.1612 21.0695 3.1294 23.0389

PFS 0.0075 0.0075 0.0120 0.9820 0.9895 0.9895

PIP 0.0765 0.0765 0.0467 0.9102 0.5705 0.8369

Fig. 19 Results for (a) dRG-A, (b) dWC-A, (c) line-scanning, (d) LS, and (e) QG methods in the
aliasing case. “Max,” “Med,” and “Min” represent specific results with maximal, median, and
minimal RMSEm, respectively. “-C” represents the congruence results. The last columns of
each result are aliasing maps, where 1 (white) represents the position of the aliasing pixels.
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4.6 Comparison in the Mixed Case

After training, we test the dRG-M, dWC-M, line-scanning,
LS and QG methods, whose accuracy evaluation is shown in
Table 9 and Fig. 20. We have the following observations:

i. Overall, deep learning methods significantly outperform
traditional methods.

ii. Even if noise, discontinuity, and aliasing are present at
the same time, dRG and dWC still maintain high accuracy.
Moreover, the dRG after congruence is slightly more accurate
than the dWC.
iii. All three traditional methods fail, whose PFS is 1, because

of the presence of discontinuous or aliasing points in the
wrapped phase of all samples. In contrast, the LS results have
a better phase, but their RMSEm is still about 49 times higher
than that of dWC.

4.7 Performance Summary

Overall, each pixel of the unwrapped phase obtained by dRG
and LS has a small error, which can be eliminated by the con-
gruence operation, while the error of the unwrapped phase
obtained by dWC, dDN, line-scanning, and QG is either 0 or
integer multiples of 2π.

For the ideal case, all traditional methods (line-scanning,
LS, and QG) can achieve perfect results, while deep-learn-
ing-involved methods (dRG, dWC, and dDN) cannot guarantee
perfect completion of phase unwrapping of any shape due to
their noninfinite generalization ability. The line-scanning
method is most recommended due to its lowest computational
cost.

With the introduction of invalid points (noise, discontinuities,
and aliasing), the accuracy of deep-learning-involved methods

Fig. 20 Results for (a) dRG-M, (b) dWC-M, (c) line-scanning, (d) LS, and (e) QG methods in the
mixed case. “Max,” “Med,” and “Min” represent specific results with maximal, median, and minimal
RMSEm, respectively. “−C” represents the congruence results. The last columns of each result are
aliasing or discontinuous maps (called “A and D”), where 1 (white) represents the position of
the aliasing or discontinuous pixels.

Table 9 RMSEm, RMSEsd, PFS, and PIP of the deep-learning-involved and traditional methods in the mixed case. “-C” represents
the congruence results.

dRG-M dRG-M-C dWC-M Line-scanning LS QG

RMSEm 0.2362 0.1266 0.2206 38.4389 10.8350 39.4653

RMSEsd 0.3101 0.3790 0.4618 21.0695 3.6269 18.1084

PFS 0.3740 0.3740 0.4810 1.0000 1.0000 1.0000

PIP 0.0106 0.0106 0.0107 0.9569 0.7600 0.9107
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has a corresponding slight drop but is basically lower than that
of traditional methods.

For slight noise (SNR > 10), all methods can achieve satis-
factory results. For moderate and heavy noise (SNR is <10 or
even 0), the errors of line-scanning, LS, and QG methods be-
come intolerable, and some errors of the neural network result
of dDN will further cause the error propagation of the sub-
sequent line-scanning method. Therefore, dRG, dWC, and
WFT-QG are recommended. It should be noted that the un-
wrapped phase obtained by dWC is noise-containing, while
dRG and WFT-QG can first obtain the pure unwrapped phase
and, if necessary, the unwrapped phase with noise can be ob-
tained by the congruence operation. The precondition for
WFT-QG to obtain the best result is suitable manually found
hyperparameters which usually require several attempts.

For discontinuous, aliasing, and even mixed cases, dDN and
all traditional methods become powerless due to the Itoh con-
dition, while dRG and dWC can still achieve satisfactory results
after targeted training. Therefore, dRG and dWC are recom-
mended as the only options.

To sum up, in Table 10, we present the performance of differ-
ent methods in the different cases mentioned above.

5 Conclusion and Outlook
We have reviewed and compared the phase datasets generation
methods (RME, GFS, and ZPS) and deep-learning-involved
phase unwrapping methods (dRG, dWC, and dDN). When com-
paring deep-learning-involved phase unwrapping methods, the
traditional methods were also tested for reference. For the data-
set selection, the modified RME method is more recommended.
The traditional phase unwrapping methods are more reliable
and efficient in ideal, slightly, and moderately noisy cases, ex-
cept WFT-QG, which can get satisfactory accuracy in all noisy
cases. The deep-learning-involved methods are more suitable
for situations when most of the traditional methods are power-
less, such as severe noisy, discontinuous, and aliasing cases.

We aim to provide a relatively uniform and fair condition
for different dataset generation methods and phase unwrapping
methods. In actual use, the parameter ranges of the three dataset
generation methods (such as the initial matrix size in the RME
method, the number of Gaussian functions in the GFS method,
and the order number of the Zernike coefficient in the ZPS
method) can be further expanded for more richness. For the
fairness of comparisons and the efficiency of network training,
we selected 20,000 as the number of training samples. More
samples in practical applications will surely bring further

improvement in network performance. In addition to the dataset
generation methods mentioned above, the GAN is expected to
generate more data based on a small amount of reliable data,
thereby further increasing the richness of the dataset.84 Once
the training is complete, the size of the neural network input
is fixed to the size of the training data. In practical applications,
the size of the data to be unwrapped is generally different from
that of the neural network input. To dynamically adapt the res-
olution, we propose to first divide the entire data into multiple
overlapping subregions of fixed size, then do phase unwrapping
for each subregion by the neural network, and finally use the
stitching algorithm to obtain the entire absolute phase.40,85,86

The neural networks used in the above comparations are all
based on Res-UNet. Some other types of network structures
(such as Bayesian network,87 dynamic convolution,88 and atten-
tion UNet89) may further improve the accuracy of phase un-
wrapping.

All the deep-learning-involved methods mentioned in this
paper rely on dataset supervision to learn the mapping relation-
ship from input to GT. The wrapped phase can be unwrapped
by passing through the trained neural network only once, but
its generalization ability for samples with different shapes is
not infinite.

Different types of objects contain different shape features in
their phase distributions. For example, as a common object of
interferometry, the phase distribution of the lens surface has a
style of slow fluctuation and low-frequency information. As a

Table 10 Performance statistics in the ideal, noisy, discontinuous, and aliasing cases. “✓” represents “capable.” “✓✓” represents “best
and recommended.” “×” represents “incapable.” “—” indicates “not applicable.”

Cases dRG dWC dDN Line-scanning LS QG WFT-QG

Ideal ✓ ✓ ✓ ✓✓ ✓ ✓ —

Slight noise ✓ ✓ ✓ ✓ ✓ ✓ ✓

Moderate noise ✓✓ ✓✓ ✓ × × × ✓✓

Severe noise ✓✓ ✓✓ ✓ × × × ✓✓

Discontinuity ✓✓ ✓✓ — × × × —

Aliasing ✓✓ ✓✓ — × × × —

Mixed ✓✓ ✓✓ — × × × —

Fig. 21 Schematic diagram of pretraining and retraining.
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common object of InSAR, the phase distribution of mountain-
ous terrain has a style of obvious tortuous and high-frequency
information. As a common object of holographic microscopy,
the phase distribution of cells usually has a style that considers
both high-frequency and low-frequency information. Therefore,
we believe that a promising way to solve the problem of gen-
eralization ability is transfer learning.90 The transfer learning
way is, first, pretraining a standard neural network with a simu-
lated dataset; then, for a specific target object, using the real
dataset of this type of object to fine-tune the neural network;
finally, unwrapping the wrapped phase through the fine-tuned
neural network at one time.

But what if there is no real dataset of the target object?
Different from the dataset-supervision method, inspired by deep
image priori,91 Yang et al.92 used the Itoh condition to guide the
convergence of the neural network as a physical-model super-
vision method, without GT and with stronger generalization
ability for samples with different shapes. However, the initial-
ized network does not include any mapping relationship from
the wrapped phase to the absolute phase, leading to a large num-
ber of iterations for each phase unwrapping. Similar to transfer
learning, we propose to combine the dataset supervision with
physical-model supervision, which can significantly reduce the
number of iterations. That is, pretraining the neural network by
the simulation-generated dataset, and then fewer iterations are
required for the physical-model supervision method.

Here, we show the preliminary results of this idea. To make
the input and the neural network related, we change the input
of the neural network in Ref. 92 from a random vector to a
wrapped phase. We use the method in Sec. 4.1 to generate a
training dataset containing 50,000 pairs of data, D ¼ fφ;ψg,
and then randomly take out 5000, 500, and 50 pairs as the other
three training datasets.

As shown in Fig. 21, by the pretrain loss function,

Pretrain loss ¼ k∇½fðφÞ� − ∇½ψ �k; (11)

we use the four training datasets to pretrain Res-UNet. Then, the
four pretrained Res-UNets are used to unwrap a wrapped phase
by the physical-model supervision with the following retrain
loss function:

Retrain loss ¼ kW½∇φ� − ∇½fðφÞ�k: (12)

For comparison, we also use the physical-model supervision to
train an initialized Res-UNet without pretraining.

From the retrain loss plot of the five networks shown in
Fig. 22, we can find that the convergence speed of the pretrained
networks is significantly faster than the initialized one without
pretraining. Specifically, the initialized network without pre-
training requires 500 epochs to converge, while the pretrained
neural networks can converge in <100 epochs with higher pre-
cision. It is more interesting that with only one pretraining by
the dataset of 50 pairs, the epoch required to achieve the same
accuracy can be reduced from 500 to 32; further, by increasing
the pretraining datasets of 50 pairs to 50,000 pairs, the required
epoch also reduces from 32 to 17.

This idea of pretraining with dataset supervision and then
retraining with physical-model supervision also has great poten-
tial in other fields, such as phase imaging,93 coherent diffractive
imaging,94 and holographic reconstruction.95
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