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Abstract. The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant
segmented mirror telescopes (GSMTs) to characterize terrestrial—potentially habitable—planets orbiting nearby
stars with direct imaging. This will require continued development and implementation of optimized adaptive
optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding
of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with
a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system.
We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow tur-
bulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller,
which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ∕D on bright
stars, and more than a factor of 30 gain on an I ¼ 7.5 mag star such as Proxima. More sophisticated predictive
control can be expected to improve this even further. Assuming a photon-noise limited observing technique such
as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large
factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies
that will enable ground-based telescopes to characterize terrestrial planets. © The Authors. Published by SPIE under a
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1 Introduction
The quest to characterize Earth-like planets was brought into
sharp focus by the discovery of a terrestrial exoplanet orbiting
the nearest star, Proxima Centauri.1 With a maximum projected
separation of around 36 mas, Proxima b could in principle be
characterized with current generation instruments,2 and will be
readily studied with next-generation giant segmented mirror tele-
scopes (GSMTs) such as the 25-m Giant Magelllan Telescope
(GMT), 30-m Thirty Meter Telescope, and 39-m Extremely
Large Telescope. Indeed, such observations are recognized as
one of the key science goals of the GSMTs,3,4 and Proxima b
will not be the only target. Results from the Kepler mission5

have made it clear that small planets occur frequently around
low-mass stars.6,7 In addition to Proxima b, the recent discov-
eries of Ross 128 b,8 LHS 1140 b,9 and the seven terrestrial plan-
ets orbiting TRAPPIST-110 likewise point to a high frequency of
terrestrial planets in low-mass star systems near the Earth.

While some nearby planets, such as those orbiting
TRAPPIST-1 and LHS 1140 b, will be amenable to atmospheric
characterization with the transit spectroscopy technique, the low
a priori transit probability means that the majority of nearby
planets will have to be characterized with resolved direct
imaging. Low-mass stars present unique challenges and oppor-
tunities. With lower stellar luminosity, planets with the same
equilibrium temperature occur closer to the star. This results

in a significant improvement in contrast between the planet
and the star, but also results in needing large diameter telescopes
to resolve planets at such small separations.4 This places such
observations in the realm of ground-based telescopes equipped
with adaptive optics (AO) and coronagraphs.

The analysis presented here is motivated by the question:
what are the fundamental limits of ground-based high-contrast
coronagraphic imaging of terrestrial exoplanets? Here we attack
one part of this complicated issue: finding the fundamental limit
imposed on coronagraphic contrast by residual atmospheric
turbulence behind a closed-loop AO control system.

Much previous work has been done modeling AO perfor-
mance in the spatial-frequency domain.11–14 This technique
treats the AO system as a spatial filter, casting time and tempo-
ral-frequency domain processes (such as measurement noise
and control filtering) into the the spatial domain as filters, and
analyzing the effect of the combined AO system on the input
turbulence power spectral density (PSD).

The previous analytic treatment of AO performance most
closely related to our treatment here is Guyon.15 Using the cor-
respondence between Fourier modes and speckle amplitude,
coupled with straightforward scaling from the input PSD, a der-
ivation of the postcoronagraph contrast and its dependence on
various AO system parameters was developed. The resulting
scaling laws are readily applicable to system design and analysis
and have proven to be useful in placing results from RV and
transit surveys in context.16

The goal of this study is to present a way to analyze the
achievable contrast in a closed-loop AO system, including*Address all correspondence to: Jared R. Males, E-mail: jrmales@email.
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both current generation telescopes and future GSMTs. To do this
we develop a semianalytic framework in the temporal frequency
domain. That is, we explicitly calculate temporal PSDs rather
than using the spatial-filtering approach. At least in the frozen-
flow regime, these should produce nearly identical results.
Our exploration of this method was motivated by the fact that
actual AO systems must be optimized and controlled in the time
and temporal-frequency domains.

The paper is organized as follows. In Sec. 2, we state our
entering assumptions. In Sec. 3, we lay out our notation and
physical description of the problem, including the statistics of
the Fourier basis. In Sec. 4, we derive a coronagraph model
and deal with a subtle detail depending on how residual variance
is calculated. In Sec. 5, we calculate the temporal PSDs of
Fourier modes assuming von Kármán turbulence in frozen flow.
In Sec. 6, we review the standard model of AO control with
optimal gains and present a predictive controller based on the
linear prediction formalism. Then, in Sec. 7, we use the previous
results to predict the postcoronagraph contrasts for 6.5- and
25.4-m telescopes for a range of guide star magnitudes and
compare optimal integrator and linear predictive controllers.
We discuss our results in Sec. 8 and conclude in Sec. 9.

2 Assumptions
This analysis is concerned with AO in the “extreme” regime:
high actuator counts (∼2000 on a 6.5-m aperture, ∼21;000
on a 25.4 m) and high loop speeds (∼2000 Hz or more).
Furthermore, we are mainly interested in the coronagraphic
raw contrast, that is the ratio of the intensity of the point spread
function (PSF) at some separation from the star, to the intensity
at the peak of the star’s image or the PSF. Such extreme-AO
(ExAO) systems are typically constructed for the purpose of
high-contrast imaging of exoplanets and other narrow-angle
circumstellar targets.

We do not seek to describe any particular ExAO system, nor
address the details of design. Rather, our goal is to assess what
can be achieved with an ideal system limited only by the reality
of atmospheric turbulence. As such, our main assumptions are
as follows:

1. We consider only on-axis guide stars and neglect
anisoplanatism. This is of minor concern at the small
angular separations we are concerned with for exopla-
net imaging.

2. Our analysis will be monochromatic. We do not con-
sider the effects of atmospheric dispersion or chroma-
ticity of the air index of refraction or scintillation
within the wavefront sensor (WFS) band. We also
assume that the WFS and science wavelengths are
the same, ignoring differential chromatic effects.

3. We ignore WFS aliasing. This is an approximation,
but with justification: we analyze a pyramid WFS
(PyWFS), which is less susceptible to aliasing than
the Shack–Hartmann WFS.17 Furthermore, a spatial
filter18 could be incorporated in a PyWFS essentially
eliminating aliasing from concern.

4. We assume perfect knowledge of the AO system com-
ponents. This means we neglect errors in calibration
(e.g., WFS gain) and assume that we know the spatial
and temporal transfer functions of all components.

5. We will ignore all non-Kolmogorov wavefront error
sources. This means we do not consider static or non-
common path errors within the coronagraph nor ana-
lyze telescope error sources (e.g., vibrations). We also
consider only free atmosphere turbulence, that is, we
do not consider dome seeing. Such error sources are
ultimately important in real systems; however, free
atmosphere turbulence is the dominant term which
must be dealt with first.

6. We will not consider changes in turbulence, e.g.,
changes in the wind velocity or changes in seeing.

7. We will not consider details of coronagraphic architec-
ture. However, we do show that our idealized model is
representative of real-world coronagraphs.

Thus, what follows can be taken as goal setting: we desire to
know how well a coronagraph could perform if limited only by
atmospheric turbulence.

3 Incoming Wavefront
We begin by introducing our notation and physical description
of the problem. We summarize our notation in Table 1.

3.1 Coordinate System

Wewill describe the incoming wavefront at the entrance pupil of
the telescope. The position vector ~q in this plane is defined by
the unit vectors ðû; v̂Þ, such that

EQ-TARGET;temp:intralink-;e001;326;431~q ¼ uûþ vv̂: (1)

We will restrict our analysis to the unobstructed circular
aperture of diameter D defined by

EQ-TARGET;temp:intralink-;e002;326;378Að~qÞ ¼
�

4
πD2 ; if q ≤ D

2

0; if q > D
2
:

(2)

Spatial-frequency is a vector quantity

EQ-TARGET;temp:intralink-;e003;326;321

~k ¼ kuûþ kvv̂: (3)

Wavefront control is inherently a discrete problem, and the
aperture defines the discrete spatial-frequency sampling

EQ-TARGET;temp:intralink-;e004;326;267Δk ¼ 1

D
: (4)

Hence, we will often discretize spatial-frequency as

EQ-TARGET;temp:intralink-;e005;326;217

~kmn ¼
m
D
ûþ n

D
v̂; (5)

where m and n are integer indices.

3.2 Spatial Power Spectral Densities

The spatial PSD of the phase at the observation wavelength λ in
the von Kármán model19 is
EQ-TARGET;temp:intralink-;e006;326;115

PvKð~k;λÞ¼0.0218

�
λ0
λ

�
2 1

r5∕30

1

ðk2þk20Þ11∕6
ðrad2∕m−2Þ; (6)
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where r0 is Fried’s parameter20 and λ0 is the wavelength at
which r0 is reported. The outer scale, L0, is included in the
parameter

EQ-TARGET;temp:intralink-;e007;326;719k0 ¼
1

L0

: (7)

The mean value over the aperture, or the piston term, has no
effect on our problem. However, the amplitude of the piston
mode is nonzero in the above PSD, so we should subtract
the power in piston from the PSD. The spatial PSD of a
mode on the aperture is given as21,22

EQ-TARGET;temp:intralink-;e008;326;621Pmodeð~kÞ ¼ Poð~kÞjQmodeð~kÞj2; (8)

where Poð~kÞ is the input PSD ignoring the aperture, and Qmode

denotes the Fourier transform of the mode on the aperture.
As a Zernike polynomial, piston is simply Zpiston ¼ 1, and its
Fourier transform on Að~qÞ is23

EQ-TARGET;temp:intralink-;e009;326;539Qpiston ¼ 2
J1ðπDkÞ
πDk

: (9)

So the piston subtracted phase PSD is

EQ-TARGET;temp:intralink-;e010;326;486PvK;subð~k; λÞ ¼ PvKð~k; λÞf1 − ½2JiðπDkÞ�2g; (10)

where the Jinc function is

EQ-TARGET;temp:intralink-;e011;326;438JiðxÞ ¼ J1ðxÞ
x

(11)

and J1 is the cylindrical Bessel function of the first kind.
We model atmospheric turbulence as occurring in discrete

layers. To account for the Fresnel propagation among these
layers, we use the functions15

EQ-TARGET;temp:intralink-;e012;326;356

Xðk; λÞ ¼
X
i

C2
nðziÞcos2ðπzik2λÞ;

Yðk; λÞ ¼
X
i

C2
nðziÞsin2ðπzik2λÞ; (12)

where C2
nðzÞ is the normalized turbulence strength profile as

a function of altitude z. With these corrections, we have the
PSD of the phase

EQ-TARGET;temp:intralink-;e013;326;255PΦð~kÞ ¼ PvK;subð~k; λÞXðk; λÞ (13)

and the PSD of the amplitude

EQ-TARGET;temp:intralink-;e014;326;208PAð~kÞ ¼ PvK;subð~k; λÞYðk; λÞ (14)

at the aperture of the telescope.

3.3 Representing the Wavefront

3.3.1 Fourier basis

Here, we develop a real-valued form of the Fourier basis.
Consider the complex exponential form of the basis24

EQ-TARGET;temp:intralink-;e015;326;93Mmn ¼ heið2π~kmn·~qÞ; (15)

Table 1 Summary of notation.

Symbol Units Parameter

~q m Position vector in the pupil plane

u; v m Position coordinates in the pupil plane

u
;̂
v̂ Coordinate unit vectors in the pupil plane

~k m−1 Spatial frequency vector in the pupil plane

Δk m−1 Discrete spatial frequency sampling

ku; kv m−1 Spatial frequency components in
the pupil plane

m; n Integer indices of discrete spatial
frequencies

D m Telescope diameter

Að~qÞ Aperture function

λ m Wavelength of observation and wavefront
sensing

P rad2 m2 Spatial power spectrum of the wavefront

λ0 m Reference wavelength for turbulence
parameters

r 0 m Fried parameter for atmospheric
turbulence strength

Q Denotes the Fourier transform of a mode

z m Height above the observatory

C2
nðzi Þ Normalized turbulence strength for layer i

Mmn Denotes a Fourier mode

hmn m Amplitude of a mode describing
the wavefront phase

amn Amplitude of a mode describing
the wavefront amplitude

Φð~q; tÞ rad The phase of the wavefront

Að~q; tÞ The amplitude of the wavefront

σ2mn rad2 The variance of the amplitude of a mode

V m∕s Wind speed

Θ rad Wind direction

τ s Denotes a time delay

~r λ∕D Position vector in the image plane

I photons∕s∕ðλ∕DÞ2 Intensity in the image plane

PSF photons∕s∕ðλ∕DÞ2 Point-spread function

S Strehl ratio

C Contrast ratio

f Hz Temporal frequency

T mn rad2 ∕Hz Temporal power spectrum of a single
mode

HðsÞ Denotes a transfer function
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where we have included a complex-valued coefficient h to
illustrate the form of this function. Decomposing this into
sines and cosines, we have
EQ-TARGET;temp:intralink-;e016;63;719

Mmn ¼ Refhg½cosð2π~kmn · ~qÞ þ i sinð2π~kmn · ~qÞ�
þ Imfhg½i cosð2π~kmn · ~qÞ − sinð2π~kmn · ~qÞ�; (16)

where Ref·g and Imf·g denote the real and imaginary parts,
respectively. This suggests a real-valued Fourier basis defined as

EQ-TARGET;temp:intralink-;e017;63;644Mp
mnð~qÞ ¼ cosð2π~kmn · ~qÞ þ p sinð2π~kmn · ~qÞ; (17)

where p ¼ �1 (in the superscript we will use þ and −). These
modes are neither odd nor even and are normalized

EQ-TARGET;temp:intralink-;e018;63;588

Z
Að~qÞ½Mp

mnð~qÞ�2d~q ¼ 1; (18)

although not orthogonal, on the aperture. For completeness,
we show how the normalization is derived in Appendix A.1.
The Fourier transforms on the aperture are (see Appendix A.2)

EQ-TARGET;temp:intralink-;e019;63;516Qp
mnð~kÞ ¼ ð1þ ipÞJiðπDkþmnÞ þ ð1 − ipÞJiðπDk−mnÞ; (19)

where for notational simplicity, we have defined

EQ-TARGET;temp:intralink-;e020;63;471

kþmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ku þ m

D

�
2 þ

�
kv þ n

D

�
2

r
;

k−mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ku − m

D

�
2 þ

�
kv − n

D

�
2

r
:

(20)

We have chosen this form of the Fourier basis primarily
because it yields the useful result

EQ-TARGET;temp:intralink-;e021;63;380jQþ
mnð~kÞj2 ¼ jQ−

mnð~kÞj2: (21)

This means that each spatial frequency can be described by
a single spatial PSD, and, as we will show a single one-sided
(positive frequencies only) temporal PSD.

3.3.2 The Wavefront in the Fourier basis

We denote the wavefront phase as Φð~q; tÞ, which has units of
radians. The coefficient of a mode is calculated as

EQ-TARGET;temp:intralink-;e022;63;265hpmnðtÞ ¼ λ

2π

Z
Að~qÞMp

mnð~qÞΦð~q; tÞd~q: (22)

These coefficients are real-valued. Poyneer and Veran25

showed that the Fourier basis can be used for analysis and syn-
thesis, even though it is not orthogonal on an aperture. Since our
slightly modified basis is simply a linear combination of the
cosine and sine, their results apply to it as well. This means
that we can write

EQ-TARGET;temp:intralink-;e023;63;156Φð~q; tÞ ¼ 2π

λ

X
mn

½hþmnðtÞMþ
mnð~qÞ þ h−mnðtÞM−

mnð~qÞ�: (23)

Similarly, we represent the wavefront amplitude aberrations as

EQ-TARGET;temp:intralink-;e024;63;103Að~q; tÞ ¼ 1þ
X
mn

½aþmnðtÞMþ
mnð~qÞ þ a−mnðtÞM−

mnð~qÞ�: (24)

3.4 Statistics of the Fourier Basis

Following the recipe of Noll,23 we can write the covariance of
any two modes over the aperture as

EQ-TARGET;temp:intralink-;e025;326;712hhp�mnh
p 0
m 0n 0 i ¼

Z
∞

0

Z
2π

0

Qp�
mnQ

p 0
m 0n 0PðkÞdθk dk: (25)

We now make use of this expression to analyze the statistics
of the Fourier basis under von Kármán turbulence.

3.4.1 Ignoring the aperture

In Eq. (25), the Fourier transform Q describes how the PSD is
sampled by the modes. If we were to ignore the spatial effect of
the aperture, we would have

EQ-TARGET;temp:intralink-;e026;326;584Qmn ∼ δðj~k − ~kmnjÞΔk; (26)

where δðxÞ is the Dirac delta distribution, which is the Fourier
transform of the sine and cosine on an infinite domain. With this
approximation, we have the variance of a mode

EQ-TARGET;temp:intralink-;e027;326;517σ2mn ¼ PΦð~kmn; λÞðΔkÞ2 ¼
PΦð~kmn; λÞ

D2
ðradÞ: (27)

3.4.2 Modal variance

Including the aperture, the variance of a mode in radians is
given as

EQ-TARGET;temp:intralink-;e028;326;430σ2mn ¼
�
2π

λ

�
2

hjhpmnj2i ¼
Z

∞

0

Z
2π

0

jQp
mnj2PðkÞdθk dk:

(28)

Now since

EQ-TARGET;temp:intralink-;e029;326;361jQp
mnj2 ¼ Qp�

mnQ
p
mn ¼ 2½Ji2ðπDkþmnÞ þ Ji2ðπDk−mnÞ�; (29)

independent of p, it follows that hjhþmnj2i ¼ hjh−mnj2i. From now
on, we will drop the p superscript except where it is explicitly
needed.

In Fig. 1, we show the modal variance versus spatial fre-
quency. This was calculated using numerical integration in
double precision with the GNU Scientific Library (GSL26)
routines gsl_integration_qagiu (for the radial integral)
and gsl_integration_qag (for the azimuthal integral).
We found that an absolute tolerance of 10−10 and a relative
tolerance of 10−4 gave good results.

Figure 1 also shows the naive result using Eq. (27). The sim-
ple estimate based on the PSD is significantly below the true
variance.

One might guess that AO correction will reduce or eliminate
this discrepancy. A simple way to estimate the effect of AO con-
trol on these statistics is to assume frozen flow and apply a scal-
ing for the time-delay error. Following Guyon15 (as modified in
Appendix B), the corrected PSD is approximated as

EQ-TARGET;temp:intralink-;e030;326;131Pcorð~k; λÞ ≈
�
PΦð~kÞð2πVkÞ2τ2tl; k ≤ D

2d

PΦð~kÞ; k > D
2d

; (30)

where V is the wind speed, τtl is the total latency in the control
system, and d is the actuator spacing projected on the aperture.
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We next recalculated the modal variances with the corrected
PSD, using V ¼ 10 m∕s, τtl ¼ 1.25 ms, and d ¼ 13.5 cm on
a D ¼ 6.5 m aperture.

The variance with and without the aperture is also shown in
Fig. 1. Though the discrepancy is reduced, the simple estimate
based on the PSD is still below the true variance. This means
that the variance of a Fourier mode is not simply proportional
to the PSD when it is sampled by the aperture.

The discrepancy is due to the aperture: there is a convolution
inherent in Eq. (25) not addressed by Eq. (27). We show how to
address this and discuss its implications for various coronagraph
models, in Sec. 4.

3.4.3 Correlation

We next calculated the covariance of pairs of Fourier modes
according to Eq. (25). The results are shown in Fig. 2 for uncor-
rected von Kármán turbulence, and in Fig. 3 for the corrected

case. In the figure, we show the covariances normalized by
the modal variances, that is the correlation. There is significant
correlation between various modes in the uncorrected case,
but an AO system acts to suppress this. In the following section
we show that this correlation between Fourier modes can be
accounted for by convolving the PSF with the PSD.

4 Postcoronagraph Contrast
We next derive a PSD-based model of a coronagraph fed by
an AO system in the long-exposure limit and assess its validity.

4.1 Coronagraph Model

The intensity in an image plane is given as

EQ-TARGET;temp:intralink-;e031;326;600Ið~r; tÞ ¼ jFfAð~qÞAð~q; tÞeiΦð~q;tÞgj2: (31)

The operator Ff·g describes the propagation of the wave-
front from pupil to final image plane. From here on we assume
this is the Fourier transform defined as in Appendix A.2, though
it could be a series of transforms corresponding to various
coronagraph components.27 We define the system PSF as the
result of the above with no aberrations, that is hmn ¼ 0 and
amn ¼ 0 for all m; n, which is

EQ-TARGET;temp:intralink-;e032;326;490PSFð~rÞ ¼ jFfAð~qÞgj2: (32)

In the case of the circular unobstructed aperture [Eq. (2)], this
is the airy pattern

EQ-TARGET;temp:intralink-;e033;326;437PSFð~rÞ ¼ ½2JiðπDr∕λÞ�2; (33)

where we have used the image plane coordinate ~r ¼ λ~k.
Telescope apertures are typically more complicated, consisting
of secondary mirror obscuration and support structures, possibly
segments, and can be noncircular. Furthermore, it could be posi-
tion dependent due to the coronagraph. The result will be more
difficult to analyze, usually requiring numerical calculation.

Equation (31) can not be evaluated in closed form in the gen-
eral case. However, by assuming small aberrations and an ideal

Fig. 1 Modal variance versus spatial frequency. We compare the
result of Eq. (25) (solid lines) with the simple estimate of PΦ∕D2

(dashed lines). The black curves are for uncorrected turbulence,
and the red curves are for a simple treatment of AO correction.
The discrepancy between the solid and dashed curves is due to
the convolution on the aperture, which is neglected in the simple
estimate.

Fig. 2 Correlations between the Fourier modes in uncorrected von Kármán turbulence. (a) Modes with
p 0 ¼ p and (b) modes with p 0 ≠ p. Each covariance point is normalized to the associated diagonal in (a),
which is the variance of each mode. In uncorrected turbulence, the correlations are high relative to
the modal variances.
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coronagraph, we can use a second-order Taylor expansion28,29 to
approximate the postcoronagraph PSF as30

EQ-TARGET;temp:intralink-;e034;63;505

Ið~r; tÞ ≈
����F

�
Að~qÞ

X
mn
Amnð~q; tÞ

	����2
þ jFfAð~qÞΦð~q; tÞgj2: (34)

Macintosh et al.30 only addressed phase, but the extension to
amplitude is straightforward from their arguments. Dealing with
the phase component first, we have

EQ-TARGET;temp:intralink-;e035;63;412IΦð~r; tÞ ≈
����Xmn

FfAð~qÞΦmnð~q; tÞg
����2: (35)

Evaluating a single term gives

EQ-TARGET;temp:intralink-;e036;63;356FfAð~qÞΦmnð~q; tÞg ¼ 2π

λ
½hþmnðtÞQþ

mnð~kÞ þ h−mnðtÞQ−
mnð~kÞ�:

(36)

Then taking the modulus squared and pulling out the terms
with mn ¼ m 0n 0 gives (we are suppressing the t dependence
of h)
EQ-TARGET;temp:intralink-;e037;63;268

IΦð~r;tÞ≈
�
2π

λ

�
2

2
X
mn

�
½ðhþmnÞ2þðh−mnÞ2�½Ji2ðπDkþmnÞ

þJi2ðπDk−mnÞ�þ8hþmnh−mnJiðπDkþmnÞJiðπDk−mnÞ

þ
X
m0n0

mn≠m0n0

�
½hþmnh

þ
m0n0 þh−mnh−m0n0 �½JiðπDkþmnÞJiðπDkþm0n0 Þ

þJiðπDk−mnÞJiðπDk−m0n0 Þ�
þ½hþmnh−m0n0 þh−mnh

þ
m0n0 �½JiðπDkþmnÞJiðπDk−m0n0 Þ

þJiðπDk−mnÞJiðπDkþm0n0 Þ�
		

; (37)

which is the instantaneous intensity at a position ~r and time t in
the postcoronagraph image plane. Now, we seek the long expo-
sure, or expected, value of this expression. Though this appears
quite intractable, we see that this will require evaluating

covariances of the form hhpmnh
p 0
m 0n 0 i. So, to proceed we make

the ansatz that we can temporarily ignore the aperture as in
Sec. 3.4.1. The effect of this assumption is that all covariances
are 0, which leads directly to

EQ-TARGET;temp:intralink-;e038;326;479hIΦ;mnð~rÞi ¼
PΦð~kmn; λÞ

D2
½PSFð~r − ~kmnλÞ þ PSFð~rþ ~kmnλÞ�

(38)

for a single term in the sum on the first line of Eq. (37). This is
the classic result of a Fourier aberration producing a pair of
symmetric speckles.31 We illustrate this in Fig. 4.

Finally, we perform the sum over all spatial frequencies.
The complete intensity due to Φ at ~r is

EQ-TARGET;temp:intralink-;e039;326;366hIΦð~rÞi ¼
X
mn

hIΦ;mnð~rÞi: (39)

This summation is an unnormalized convolution with the
PSF and can be thought of as adding photons from nearby
speckles. This step accounts for the effect of the aperture.
In the AO corrected regime, it increases the intensity by as
much as 50%, explaining the discrepancies in Fig. 1.

Now we apply the lesson of Sec. 3.4.2 above. If we instead
use the variance calculated with Eq. (28), then we can skip the
convolution and arrive directly at
EQ-TARGET;temp:intralink-;e040;326;236

hIΦð~rÞi ¼
�
2π

λ

�
2

hjhmnj2i½PSFð~r − ~kmnλÞ

þ PSFð~rþ ~kmnλÞ�: (40)

This is an assertion that the the complete evaluation of Eq. (37)
in the long-exposure limit is equivalent to the modal variance
calculation on the aperture with Eq. (28). Acknowledging
that we have not actually proven this, we demonstrate its validity
with numerical experiments in the following section.

The amplitude component of the postcoronagraph long-
exposure intensity, hIAð~rÞi, is evaluated in nearly identical
fashion.

We define the “raw PSF contrast” as the ratio of the intensity
at ~r to the peak intensity of a noncoronagraphic long-exposure

Fig. 3 Same as Fig. 2, but for AO corrected von Kármán turbulence. After AO correction removes
low-spatial-frequency power, the modal correlations are much smaller but not zero.
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image of the star, hINCð0Þi. This is related to the PSF by the
long-exposure Strehl ratio hSi, defined by the relationship

EQ-TARGET;temp:intralink-;e041;63;414hINCð0Þi ¼ hSiPSFð0Þ: (41)

The contrast is then

EQ-TARGET;temp:intralink-;e042;63;370hCð~rÞi ¼ hIΦð~rÞi þ hIAð~rÞi
hSiPSFð0Þ : (42)

4.2 Numerical Verification

We conducted a set of numerical experiments to verify our long-
exposure coronagraph model, compare it to other models, and to
assess its relevance to real-world coronagraphy. Five distinct
model coronagraphs were considered, in each case both for
phase aberrations only and with the amplitude errors included.

The first comparison coronagraph model was the so-called
“perfect coronagraph.”32 In this model, the complex plane
wave that minimizes the energy in the pupil is subtracted,
and the result is propagated to the image plane. It has been
shown that analysis with the perfect coronagraph produces
results that match the real-world four quadrant phase mask
coronagraph.33,34

The second coronagraph model consisted of propagating the
complex wavefronts using Eq. (34) directly, employing the FFT.
The phase and amplitude components were treated separately,
then combined after taking the modulus squared.

The third coronagraph model corresponds to the measure-
ment error and time delay limited contrast C2 of Guyon,

15 com-
bined with the contrast from uncorrected amplitude C1 due to
atmospheric scintillation. In Appendix B, we present a deriva-
tion of C2 utilizing our present notation and generalizing it for

arbitrary parameters. This method uses the residual PSD, as in
Eq. (27), and so requires a convolution. Hence, this tests the
convolution solution for the discrepancy between the true
variance and the simple PSD estimate highlighted above.

The fourth model consisted of directly measuring the vari-
ance of each modal coefficient. The coefficient of each mode
was measured by inner product with the mean-subtracted
phase and amplitude on the aperture for each randomly gener-
ated screen. In this case, the aperture is already taken into
account so Eq. (40) describes the results.

The final comparison coronagraph was an apodized pupil
Lyot complex mask coronagraph (APLCMC35). We included
this as an example of a coronagraph that can be implemented
in the real world. In this case, the focal plane mask was 1.29
λ∕D in diameter at 800 nm, with a complex transmission of
−0.458. The optimum pupil apodization gave a net intensity
throughput of 0.587.

We generated a series of phase screens from the von Kármán
PSD using Fourier-space convolution of the PSD with Gaussian
white noise fields. Scintillation was included by multiplying the
PSD by the X and Y functions, Eq. (12), resulting in phase and
amplitude screens. AO correction of the phase was approxi-
mated as in Eq. (30). We used a Fried parameter of r0 ¼ 0.2 m,
an outer scale L0 ¼ 25 m, and windspeed of V ¼ 10 m∕s. The
total time delay was set to 2.5 frames at 2000 Hz (1.25 ms).
We set telescope diameter to D ¼ 6.5 m and actuator spacing
to d ¼ 13.5 cm (48 across) and assumed a wavelength of
λ ¼ 800 nm. The phase screens were 2048 pixels across, and
we used a circular unobstructed aperture 128 pixels across.
We assumed an arbitrarily bright star so WFS measurement
noise was ignored. The Strehl ratio of a noncoronagraphic
image with these parameters was ∼94%.

10,000 realizations of the AO-corrected phase and uncor-
rected amplitude were generated. For each realization, we

Fig. 4 Illustration of the relationship between a phase aberration defined by a Fourier mode with spatial
frequency ~kmn and coefficient hmn , to the long-exposure contrast of the resultant speckles in the post-
coronagraph image plane. This relationship does not fully define the contrast in the presence of many
speckles.
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applied the five comparison coronagraph models. The results for
these coronagraphs are shown in Fig. 5, where we see that,
in general, these various coronagraph models match the
APLCMC. We note that the “perfect coronagraph” and direct
propagation using Eq. (34) are nearly identical to each other.
The residual-PSD+convolution analysis also matches well, as
does the direct calculation of modal variance.

4.3 Long-Exposure Contrast and the PSD

We can summarize the results of this section with the following
points:

• The postcoronagraph contrast is not simply the residual
PSD, due to the effect of the aperture. This is easily
addressed by an unnormalized convolution with the PSF.

• If the variance is calculated with the aperture included,
then the convolution is not needed.

• Ideal coronagraph models are valid in the regime of
ground-based, well-corrected, AO-fed coronagraphy, and
are useful proxies for real-world coronagraphs.

Our result that the postcoronagraph long-exposure image is a
convolution of the PSF with the residual PSD is nearly identical
to that developed by Herscovici-Schiller et al.27 It is fully equiv-
alent if one uses a position-dependent PSF and includes internal
aberrations, both details we neglect since we are analyzing an
ideal system. The difference between this case, and the case
when the aperture is included, is important when the modal
variances are individually calculated as we do in the following
sections.

5 Temporal Power Spectra
Next, we describe a process for calculating the temporal PSDs of
the Fourier basis in wind-driven von Kármán turbulence.

5.1 Temporal PSD of Fourier Modes in Wind-Driven
Turbulence

Restating Eq. (8), the spatial PSD of a Fourier mode on an
unobstructed circular aperture is given as (as noted above,
we are suppressing p)

EQ-TARGET;temp:intralink-;e043;326;400Pmnð~kÞ ¼ Poð~kÞjQmnð~kÞj2: (43)

We next invoke the Taylor or frozen-flow hypothesis, which
for our purposes states that we can treat the time-domain behav-
ior of turbulence as if fixed turbulent phase screens are blowing
across the telescope in discrete layers. With this assumption we
can calculate the temporal PSD of a turbulent mode with21,22

EQ-TARGET;temp:intralink-;e044;326;307T mnðf;VÞ ¼
2

V

Z
∞

−∞
Pmn

�
f
V
; kv

�
dkv; (44)

where f is temporal frequency, V is the wind-speed, and T mn
denotes the temporal PSD of the mode specified bymn. With no
loss of generality, we have chosen coordinates such that the
wind vector ~V ¼ Vû. We have included a factor of 2 since
we will consider only f > 0.

Now to account for an arbitrary wind direction, let Θ be the
direction of the wind with respect to the û axis. We then derotate
the basis functions by this angle to align with the axes of the
integral in Eq. (44) by defining
EQ-TARGET;temp:intralink-;e045;326;163

m 0 ¼ m cosðΘÞ − n sinðΘÞ
n 0 ¼ m sinðΘÞ þ n cosðΘÞ: (45)

The temporal PSD for arbitrary wind direction is then simply

EQ-TARGET;temp:intralink-;e046;326;103T mnðf;V;ΘÞ ¼
4

V

Z
∞

−∞
Pm 0n 0

�
f
V
; kv

�
dkv: (46)

Fig. 5 Numerical verification of coronagraph models. Here, we compare PSF contrasts for the perfect
coronagraph,32 the coronagraph defined by Eq. (34), the APLCMC,35 the contrasts C1 þ C2 from
Guyon,15 and the variance of the Fourier modes as in Eq. (40). The left graph is for residual atmospheric
phase aberrations only, and the right includes amplitude errors. The bottom graph shows the fractional
errors of the model coronagraph w.r.t. the APLCMC. In general, the analytic coronagraph models match
the physically realizable APLCMC well. This shows that such models are valid for analyzing the potential
of ground-based AO-fed coronagraphs.
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Finally, the temporal PSD of a Fourier mode for a turbulence
profile is the C2

n weighted sum of the single layer profiles

EQ-TARGET;temp:intralink-;e047;63;730T mnðfÞ ¼
X
i

C2
nðziÞT mnðf;Vi;ΘiÞ: (47)

5.2 Numerical Calculation

The improper integral in Eq. (46) does not in general have a
simple closed-form solution, so we must calculate it numeri-
cally. In this work, we used the GSL gsl_integration_
qagi36 routine. We found that a relative tolerance of 10−4

and an absolute tolerance of 10−10 in double precision
gave good results. Though these choices noticeably extend cal-
culation time, less demanding tolerances can produce numeri-
cally unsatisfying results. For example, modes with similar
spatial frequencies should have similar total variance (integral
of the PSD), but setting numerical tolerance too low can intro-
duce occasional 50% jumps.

We also find that temporal frequency sampling is important,
settling on Δf ¼ 0.1 Hz as the largest sampling that should be
used in general. Larger samplings tend to also produce jumps,
caused by moving on and off sharp peaks associated with indi-
vidual wind-layers. If such a peak falls between two frequencies
and the sampling is too coarse, the power in the peak will be
missed.

We illustrate calculations of multilayer turbulence using a
seven layer turbulence model based on the GMT site survey
at Las Campanas Observatory (LCO).37,38 The parameters of
this profile are given in Table 2. The calculated temporal
PSDs for several Fourier modes are shown in Fig. 6. Due to
the identical wind velocities of several layers, we expect only
four distinct peaks. The number of peaks seen at a given spatial

frequency depends on fpk;i ¼ ~Vi · ~km;n. If the frequency of two
peaks is not well separated, they appear blended at the resolution
of the calculations and plots.

5.3 Temporal PSD of Measurement Noise

We also need the PSD of the WFS measurement noise. The vari-
ance at a spatial frequency due to photon noise in the WFS is15

EQ-TARGET;temp:intralink-;e048;63;307σ2ph;mn ¼
β2pð~kmnÞ
Nph

ðrad2 rmsÞ; (48)

where the factor βpð~kmnÞ quantifies the sensitivity of the WFS to
photon noise. Nph is the total number of photons available for
wavefront sensing

EQ-TARGET;temp:intralink-;e049;63;220Nph ¼ Fγτwfs; (49)

where Fγ is the photon rate (photons s−1) sensed by the WFS,
and τwfs is the integration time of the WFS. Fγ depends on star
brightness through

EQ-TARGET;temp:intralink-;e050;63;153Fγ ¼ Fγ;010
−0.4×mag; (50)

where mag is the Vega magnitude of the star in the WFS band-
pass, and Fγ;0 is the photon rate of a 0 mag star in the WFS
bandpass including total system throughput. Here, we expand
this to include background and readnoise. The signal-to-noise
ratio is

EQ-TARGET;temp:intralink-;e051;326;511S∕N ¼ Fγτwfsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fγτwfs þ npxFbgτwfs þ npxσ2ron

q ; (51)

where npx is the number of pixels involved in measuring Nph,
each pixel having readout noise with variance σ2ron, and Fbg is
the photon rate per pixel from the background. Now the WFE
due to photon noise at the WFS wavelength can be written as

EQ-TARGET;temp:intralink-;e052;326;422σ2ph;mn ¼
β2pð~kmnÞ
ðS∕NÞ2 ðrad2 rmsÞ: (52)

This variance is spread over the sampling bandwidth of the
WFS, 1∕2τwfs. We can determine the temporal PSD of measure-
ment noise from

EQ-TARGET;temp:intralink-;e053;326;341

Z
1∕2τwfs

0

T ph;mnðfÞdf ¼ σ2ph;mn; (53)

assuming white noise (a flat PSD) we have

EQ-TARGET;temp:intralink-;e054;326;287T ph;mnðfÞ ¼ σ2ph;mnτwfs: (54)

Note that in the absence of detector noise, T ph;mnðfÞ is
independent of τwfs.

6 Closed-Loop Control
Now that we have established the temporal PSDs of the Fourier
modes and of WFS measurement noise, we can use them to pre-
dict the residual wavefront variance in a closed-loop AO system.
Here, we follow the standard model used throughout the AO
literature and so only briefly introduce the concepts and our
notation. Note that though here we apply the following to the
frozen-flow turbulence PSDs we just derived, the techniques
are general and could be applied to PSDs in any basis set
and to PSDs including additional error sources such as telescope
vibrations and nonfrozen-flow.

Table 2 LCO turbulence profile for median conditions assumed in
this work. Based on the GMT site survey.37,38

Layer no.
Layer

heighta z (m)
Layer

strengthb C2
n

Wind Dirc Θ
(deg)

Wind speed
V (m∕s)

1 250 0.42 60 10

2 500 0.03 60 10

3 1000 0.06 75 20

4 2000 0.16 75 20

5 4000 0.11 100 25

6 8000 0.10 110 30

7 16,000 0.12 100 25

aHeight above the observatory.
bNormalized.
cAngle east of north.
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6.1 Transfer Functions

First, we need the error and noise transfer functions (NTF) of the
AO control system. Here, we closely follow the development of
Poyneer et al.,39 and see also the treatment by Madec.40 Our goal
is to calculate the error transfer function (ETF) of the control
system, which is defined as

EQ-TARGET;temp:intralink-;e055;63;342jETFðfÞj2 ¼ T mn;outðfÞ
T mn;inðfÞ

: (55)

That is, the ETF describes the AO system as a temporal filter
which acts on the input PSD. The NTF is similarly defined,
except that it acts on the measurement noise PSD. The ETF and
NTF are constructed using the frequency responses, or transfer
functions, of the various components of the system, which we
will denote as H.

The WFS measurement is an average of the turbulence over
the integration time. Likewise, the deformable mirror (DM) is
assumed to move in discrete steps, holding its position between
updates. The frequency response of such components is called
a sample and hold, which has the functional form

EQ-TARGET;temp:intralink-;e056;63;176HwfsðsÞ ¼ HdmðsÞ ¼
1 − e−sT

sT
; (56)

where T ¼ 1∕fs, fs being the loop sampling frequency, and
s ¼ i2πf. There will be a delay τ due to sensor readout, data
transfer, calculations, etc. It is common to discuss the “total
delay” including 1/2 the WFS sample and hold (for the midpoint
of the integration) and 1/2 the DM sample and hold. That is the
total delay is T þ τ.40 The transfer function of the pure delay is

EQ-TARGET;temp:intralink-;e057;326;415HτðsÞ ¼ e−sτ: (57)

The system forms an estimate of the coefficient of a mode, h̃.
In closed-loop, the WFS measures the change in the coefficient
of a given mode, Δh. This is combined with the current estimate
of the total coefficient to form a new estimate of h̃, which is then
applied to the DM. At time-step ti, the coefficient is specified
in terms of the current and previous Δh and h̃, by a linear
combination

EQ-TARGET;temp:intralink-;e058;326;312h̃ðtiÞ ¼
XJ
j¼1

ajh̃ðti−jÞ þ g
XL
l¼0

blΔhðti−lÞ; (58)

where g is the loop gain. Below we consider in depth how to
choose the parameters of this control filter. The frequency
response of this general linear filter is41

EQ-TARGET;temp:intralink-;e059;326;238Hconðz; gÞ ¼
g
P

L
l¼0 blz

−l

1þPJ
j¼1 alz

−j (59)

and we can map from the z-domain to the s-domain by the sub-
stitution z → esT .

With the above component frequency responses, we can
write the open-loop ETF as

EQ-TARGET;temp:intralink-;e060;326;152ETFolðs; gÞ ¼ HwfsðsÞHconðs; gÞHτðsÞHdmðsÞ: (60)

From this it follows that the closed-loop ETF is

EQ-TARGET;temp:intralink-;e061;326;113ETFclðs; gÞ ¼
1

1þ ETFolðs; gÞ
: (61)

Fig. 6 Calculated temporal PSDs in a seven-layer turbulence model at four different modes, correspond-
ing to discrete spatial frequencies.
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The closed-loop NTF is

EQ-TARGET;temp:intralink-;e062;63;741NTFclðs; gÞ ¼ HdmðsÞHτðsÞHconðs; gÞETFclðs; gÞ: (62)

The residual PSD in closed-loop control is then the product
of the modulus-squared ETF and the modal PSD, and the modu-
lus-squared NTF and WFS noise PSD

EQ-TARGET;temp:intralink-;e063;63;677

T cl;mnðf; gÞ ¼ T mnðfÞjETFclðs; gÞj2
þ T ph;mnðfÞjNTFclðs; gÞj2: (63)

The residual variance in this mode is just the integral of the
residual PSD

EQ-TARGET;temp:intralink-;e064;63;601jσmnðgÞj2 ¼
Z

fs

0

T cl;mnðf; gÞdf: (64)

Note that, since we started with Eq. (43), this estimate of
the variance explicitly includes the aperture and so directly
describes the postcoronagraph intensity.

To employ these calculations, we next need to determine
the parameters of Eq. (58) and then find the optimum gain.

6.2 Control Laws

Our next step in analyzing a closed-loop AO system is to choose
the control law used to feed WFS measurements back to the
DM. Here we analyze the simple integrator (SI) and the linear
predictor (LP).

6.2.1 Simple integrator

At time step ti, the WFS measures the residual wavefront, Δhi.
We combine this with the last estimate, h̃i−1, which is the result
of the previous cycle. The simplest estimate at the current step is
the SI

EQ-TARGET;temp:intralink-;e065;63;354h̃i ¼ h̃i−1 þ gΔhi: (65)

This corresponds to a choice of J ¼ 1; a1 ¼ 1 and L ¼ 0;
b0 ¼ 1 in Eq. (58). It is also common to choose a1 < 1
(slightly), a so-called leak term, making this the “leaky integra-
tor” control law. Here we will confine our analysis to the SI
control law.

6.2.2 Linear predictor

In general, the estimate formed by the SI controller will be
slightly incorrect when actually applied due to the finite loop
delay. Here, we consider a conceptually straightforward exten-
sion of the integrator to include a prediction. We note that more
sophisticated methods exist, which we discuss after presenting
our results.

One way to improve the accuracy of the estimate formed by
the controller is with a filter of the form

EQ-TARGET;temp:intralink-;e066;63;145h̃i ¼
XN−1

j¼0

cjðh̃i−j−1 þ Δhi−jÞ: (66)

We can determine a set of cj which is optimal in the least-
squares sense from the temporal autocorrelation of the modal

amplitude, RmnðtÞ, where t is the lag, by solving the Normal
or Yule–Walker equations41,42

EQ-TARGET;temp:intralink-;e067;326;730R~c ¼ −~r; (67)

where

EQ-TARGET;temp:intralink-;e068;326;688R ¼

2
666664

Rmnð0Þ Rmnð1Þ · · · RmnðN − 1Þ
Rmnð1Þ Rmnð0Þ ..

.
RmnðN − 2Þ

..

.
· · · . .

. ..
.

RmnðN − 1Þ RmnðN − 2Þ · · · Rmnð0Þ

3
777775
(68)

and

EQ-TARGET;temp:intralink-;e069;326;583~r ¼

2
66664
Rmnð1Þ
Rmnð2Þ

..

.

RmnðNÞ

3
77775: (69)

We can find the autocorrelation of the time-series of a mode
from its PSD using the Wiener–Khinchin theorem,43 which
states that the autocorrelation is the Fourier transform of the
PSD

EQ-TARGET;temp:intralink-;e070;326;462RmnðtÞ ¼ FfT mnðfÞg: (70)

In Appendix C, we give a recipe for calculating the autocor-
relation from a numerical PSD.

The solution vector ~c ¼ ½c0; c1; · · · ; cN−1� contains the opti-
mal LP coefficients, which minimize the least-squares error of
the output of Eq. (66). The matrix R is a symmetric Toeplitz
matrix, and so the Normal equations can be solved very effi-
ciently using Levinson’s recursion44. A nice result of using
Levinson’s recursion to solve the Yule–Walker equations is
that the resultant filter is guaranteed to be stable.42

To apply the LP in closed-loop, we use ~c as the coefficients in
Eq. (58). That is, L ¼ N − 1, bl ¼ cl and J ¼ N, aj ¼ cj−1.
We can then to determine the optimal loop gain g.

6.3 Gain Optimization

All that remains is to describe how to choose the optimum value
of the gain. The first step is to identify the maximum stable gain,
gmax, which is the value of g at which the system becomes unsta-
ble (this is sometimes called the “ultimate gain.”) Following
Dessenne et al.,45 we evaluate stability of the control law
using a Nyquist plot of the open-loop ETF, which plots the
real and imaginary components of Eq. (60). In this plane, as
long as the ETF does not encircle the point ð0;−1Þ, then the
system is stable—a result known as Nyquist’s stability criterion.
We then can find the value of gmax by finding the value of g
which causes the curve to intersect ð0;−1Þ. This is illustrated
in Fig. 7.

From here we follow the standard recipe25,46 for using the
input (or “open-loop”) PSD to optimize the closed-loop gain.
The per-mode variance-minimizing optimum gain is given by
solving
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EQ-TARGET;temp:intralink-;e071;63;456gopt ¼ arg min
0≤g<gmax

jσmnðgÞj2: (71)

This is a straightforward optimization problem, which we
solve using Brent’s method as implemented in the boost c++
library.

Integrator control with optimal gains is implemented in the
SPHERE SAXO system, which uses a Karhunen–Loéve basis
with optimal modal gains.47 The GPI instrument likewise uses
optimal gains but with Fourier modes.39

7 Closed-Loop Contrast Calculations
Given the temporal PSD, the ETF and NTF, and the optimal
gain, Eq. (64) describes the residual variance at a given spatial
frequency in a closed-loop AO system. We showed how this is
related directly to the PSF contrast behind a coronagraph in
Sec. 4. So, calculating the closed-loop long-exposure postcor-
onagraph contrast consists of the following steps:

1. Calculate the temporal PSDs at each ðm; nÞ according
to Secs. 5.1 and 5.2. Due to the Hermitian symmetry of
the Fourier basis, this needs to be done in only half
the plane.

2. Calculate the temporal PSD of measurement noise
according to Sec. 5.3.

3. Determine the optimum controller coefficients per
Sec. 6.2, and the associated optimum gains per Sec. 6.3.

4. Determine the ETF and NTF per Sec. 6.1

5. Populate the residual PSD as follows:

EQ-TARGET;temp:intralink-;e072;63;116σ2mn ¼
� jσmnðgoptÞj2; if gopt > 0:

Pmnð~kÞ∕D2; if gopt ¼ 0:
(72)

6. Calculate the intensity:

a. For the corrected modes, the variance is properly
sampled and directly describes the intensity
according to Eq. (40).

b. For the uncorrected modes, we must use Eq. (38)
and then Eq. (39). Note that we include the cor-
rected-mode variances in the convolution.

7. Calculate the long-exposure Strehl ratio as the sum of
variance over all spatial frequencies to find σ2tot and
use the extended Marechal approximation

EQ-TARGET;temp:intralink-;e073;326;639hSi ¼ e−σ
2
tot : (73)

8. Calculate the contrast according to Eq. (42).

The first four steps are illustrated in Fig. 8. The PSD of
a Fourier mode is shown in Fig. 8(a). The gain-optimized
ETFs and NTFs, for both SI and LP controllers, are shown
in Fig. 8(b). Figure 8(a) also shows the residual PSDs after
applying the ETFs and NTFs to the input turbulence PSD.

We illustrate the complete framework in Fig. 9. The fre-
quency response of each component is applied to the input
PSD, and to the noise PSD, according to the ETF and NTF.
The output residual PSD is then input to the coronagraph.

We applied our method to the cases of a 6.5-m circular aper-
ture, here motivated by the in-development MagAO-X system.48

We also consider a 25.4-m telescope, for which we used the col-
lecting area of the GMT (seven 8.4 m segments), but ignored
details of the aperture in PSD and contrast calculations. The
parameters of our calculations for these telescopes are listed
in Table 3.

Figure 10 shows the Strehl ratio versus guide star magnitude
predicted for the 6.5-m AO system at 800 nm. Only residual
turbulence is accounted for, including the uncorrected power
(a.k.a. fitting error).

In Fig. 11, we show the contrast maps for the 6.5-m system
observing 5th, 8th, and 10th magnitude stars, for both control-
lers at the WFS wavelength. To estimate the PSF contrast at
other wavelengths, all of these results can be scaled by 1∕λ2.
The figure shows, as expected, deeper contrasts on brighter
stars. The SI controller (left-hand column) exhibits the
well known “wind butterfly,” and we see that the gain optimi-
zation process turns off modes on fainter stars, changing the
shape of the dark hole. The LP controller does not show
the “wind butterfly,” rather predictive control essentially
eliminates it. It also results in deeper contrasts. Figure 12 shows
the PSF contrast profiles both along and across the wind
direction.

The same calculations were made for the 25.4 GMT-like
telescope, shown in Figs. 13 and 14. The results are qualitatively
similar, but show a nearly ×10 improvement due to the
larger aperture. This can be understood as the larger diameter
causing the spatial-frequency sampling interval, 1∕D2, to
impose less power per λ∕D, resulting in less residual power
per mode.

For both the 6.5- and the 25.4-m telescopes, the gain in con-
trast at small separations provided by the LP controller is
remarkable. On the 6.5 m observing a 0 mag star, the LP contrast
is over 200 times better at 1 λ∕D and is nearly 10 times better
for an eighth mag star. On the 25.4 m, the LP contrast is over
1400 times better at 1 λ∕D on a 0-mag star and is over 30 times
better for an eighth mag star.

Fig. 7 Nyquist plot demonstrating the stability of our two control laws.
The open-loop ETFs are plotted in the imaginary plane for both the SI
and LP control laws. Note that frequency increases as the lines move
out from the center. The controllers are stable so long as they do not
encircle ð0;−1Þ. The value of gain g which causes them to intersect
ð0;−1Þ, and hence become unstable, is here called the maximum
stable gain gmax. The black circle has a radius of 1. We show the
open-loop ETFs for each controller, with optimum gains for both
a zeroth and an eighth magnitude star.
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8 Discussion

8.1 Predictive Control

Predictive control has been discussed in many other studies.
Here, we used a relatively simple form of it, rather than
more sophisticated options. The LP controller provides a con-
ceptually simple extension of the integrator controller and pro-
vides an efficient and easy to understand method for calculating
its coefficients since we know the open-loop PSD. However, it is
not the most sophisticated method proposed to-date in the liter-
ature and our intent here is not to propose it as the best one.

Dessenne et al.45,50 presented a method using a linear filter,
essentially identical to the technique we used. Their method for
optimizing the parameters was based on an explicit least squares
minimization using past data, rather than the PSD, and allowed
the coefficients a and b to differ. This technique was demon-
strated on sky.

We recently presented a related predictive control strategy,
based on empirical orthogonal functions (EOFs).51 EOFs are
essentially a time-and-space Karhunen–Loève basis, and this
method allows for including non-WFS measurements, such as
accelerometers. Filter optimization is done on past time-domain

Fig. 8 (a) The input turbulent PSD for Fourier mode ðm ¼ 12; n ¼ 12Þ (black), along with the residual
PSDs in closed-loop control for the SI (blue) and LP (red) controllers. The WFS noise PSD (dashed)
corresponds to an eighth mag star on a 6.5-m telescope. (b) The ETF (solid) and NTF (dashed) for
both SI (blue) and LP (red) controllers, optimized for the input PSDs shown in (a).

Fig. 9 Illustration of our framework, using one input PSD as an example. The input wavefront, described
by its temporal PSD, is corrected by the DM. The WFS measures the residual, and noise is added as
described by a temporal PSD. A controller, represented as a linear filter, determines an estimate of
the wavefront at the next time-step. After a delay, this estimate determines the new shape of the DM.
The control loop acts on the input PSD according to the ETF and on the noise PSD according to the NTF.
The resultant residual temporal PSD determines the residual variance of this mode, which is then input to
the coronagraph. Blue curves are for the SI and red curves are for the LP.
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data. We found essentially the same level of improvement in
simulations.

Johnson et al.52 developed a control strategy based on
predicting the wind-driven translation of turbulent layers. With
simulations incorporating on-sky data from the ViLLaGEs
AO system,53 they showed significant increase in Strehl on
fainter stars and predicted large gains in Strehl for larger
telescopes.

Much recent work has been in the area of linear quadratic
Gaussian (LQG) controllers. Poyneer et al.24 proposed a
Fourier-mode by Fourier-mode optimization of a Kalman filter
controller, and using end-to-end simulations showed large gains
in contrast similar to what we have shown. They presented their
method as a control filter much as we did here. They pointed out
that any filter could be cast in the direct form as in Eq. (59),
though it is then subject to errors due to numerical precision
if actually used to implement the filter.

More broadly, the determination of optimum control filters
is of great interest in the AO-related literature. In the context of
AO, this has been studied extensively for LQG controllers.54,55

Table 3 Parameters.

Symbol Parameter Value Units Notes

f s Max sampling frequency 2000 Hz

τ Loop delay 1.5 Frames

d Actuator spacing 0.135 m 48 across 6.5 m

βp WFS sensitivity
ffiffiffi
2

p
For unmodulated pyramid

λ WFS wavelength 800 nm Based on the MagAO WFS49

WFS filter width 357 nm Based on the MagAO WFS49

WFS throughput 0.1 ratio

τwfs WFS exposure time 0.0005 s 2 kHz

σron WFS readout noise 0.1 Electrons

0 mag flux density @ 800 nm 5.0 × 107 Photons∕ sec ∕m2∕nm Vega based

Sky background @ 800 nm 20 mags∕arcsec2

r 0 Fried param. 0.16 m Median 0.62 in. at 0.5 μm38

V̄ Weighted mean wind speed 18.7 m/s 5∕3 moment19

Magellan clay

D Telescope diameter 6.5 m

F γ ; 0 0 mag photon flux 5.9 × 1010 Photons∕s Unobstructed aperture

npx WFS pixels 7280 Pixels Four quadrants with D∕d across

F bg Background flux 0.22 Photons∕pix∕s Assumes 2 in. FOV for WFS

GMT

D Telescope diameter 25.4 m Edge to edge

F γ ; 0 0 mag photon flux 6.6 × 1011 Photons∕s Vega, using GMT aperture

npx WFS pixels 111,208 Pixels Four quadrants with D∕d across

F bg Background flux 0.01 Photons∕pix∕s Assumes 2 in. FOV for WFS

Fig. 10 Strehl ratio versus guide star magnitude with optimized gains
for the two controllers at the WFS wavelength (800 nm). Only residual
modal variance and fitting error are included in this plot. The LP con-
troller improves Strehl at all magnitudes, with the benefit being great-
est between 8th and 10th magnitude.
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Fig. 11 Postcoronagraph long-exposure contrast maps for a 6.5-m telescope at 800 nm. Here, we com-
pare results for the SI and LP controllers, for 5th, 8th, and 10th magnitude stars. As we do not address
chromaticity here, the WFS and observation wavelengths are both 800 nm.

Fig. 12 Contrast profiles for a 6.5-m telescope observing at 800 nm, using the parameters shown in
Tables 2 and 3. As we do not address chromaticity here, the WFS and observation wavelengths are
both 800 nm. (a) is along the main wind direction (up-and-down in Fig. 11), and (b) is perpendicular.
The dashed lines are for the SI controller, standard in current AO systems. The solid lines are for
the LP controller, the form of predictive control we analyze in this work. Since we are conducting
a mode-by-mode analysis in discrete spatial frequencies, the lowest spatial frequency we analyze is
1∕D, so the smallest separation we show is 1 λ∕D.
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Fig. 13 Postcoronagraph long-exposure contrast maps for a 25.4-m telescope at 800 nm, with collecting
area defined by the GMT aperture. Here, we compare results for the SI and LP controllers, for 5th, 8th,
and 10th magnitude stars. Note that the color scale is ×10 lower than in Fig. 11. As we do not address
chromaticity here, the WFS and observation wavelengths are both 800 nm.

Fig. 14 Contrast profiles for a 25.4-m telescope with the collecting area of the GMT aperture, observing
at 800 nm, using the parameters shown in Tables 2 and 3. As we do not address chromaticity here, the
WFS and observation wavelengths are both 800 nm. (a) is along the main wind direction (up-and-down in
Fig. 13), and (b) is perpendicular. The dashed lines are for the SI controller, standard in current AO
systems. The solid lines are for the LP controller, the form of predictive control we analyze in this
work. Since we are conducting a mode-by-mode analysis in discrete spatial frequencies, the lowest spa-
tial frequency we analyze is 1∕D, so the smallest separation we show is 1 λ∕D.
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See also the review of various system identification strategies
presented by Kulcsár et al.56

While this paper was under review, Correia et al. presented
an analysis of predictive control using the distributed Kalman
filter method.14 Their analysis employed the spatial filtering
method (as opposed to our temporal frequency method) and
showed postcoronagraph contrast gains for the Keck AO system
at least as large as we show here.

Any of these control methods can be represented by their
temporal transfer functions, and so could be included in further
studies using our technique. In summary, the LP is not the only,
nor the most advanced, technique we have available, but it is
apparent that predictive control offers significant gains for
high-contrast imaging of exoplanets.

8.2 Sensitivity to Frozen Flow

Our model of input turbulence was based on the frozen flow
model. However, our semianalytic method does not require fro-
zen flow. That is, any source of the temporal PSDs could be used
as input to the analysis. We could incorporate boiling or disturb-
ances derived from telescope models (e.g., vibrations due to
wind shake). This could also be extended to assess the impact
of time-variable turbulence profiles.

It should be expected that inclusion of additional sources of
error will reduce projected performance. In the case of, e.g., tele-
scope vibrations this is simply because there is more variance in
the system. In the case of time-variable turbulence, i.e., chang-
ing wind and seeing, the reduced performance will result from
suboptimality of the filter coefficients.

8.3 Impact on Exoplanet Characterization

Our motivation for this study was to analyze the limits of
ground-based coronagraphic exoplanet characterization, and to
assess the impact that predictive control will have on it. Consider
the coupling of an ExAO-fed coronagraph to a high-dispersion
spectrograph,57 a technique recently dubbed “high-dispersion
coronagraphy” (HDC).58,59 We focus on this technique because
it is, in principle, photon-noise limited, meaning we do not have
to consider speckle noise. Neglecting detector and background
noise, the signal-to-noise ratio (S∕N) in the HDC technique is
given as57

EQ-TARGET;temp:intralink-;e074;63;286S∕N ¼ FpΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�ΔthCi

p ffiffiffiffiffiffiffiffiffiffiffi
Nlines

p
; (74)

where Fp is the photon rate from the planet and F� is the photon
rate from the star (both in one spectral resolution element), and
Nlines is the number of resolved lines in the planet spectrum used
for crosscorrelation template matching. hCi is the raw PSF con-
trast as we have derived here. Δt is the integration time needed
to reach a desired S∕N. This leads directly to

EQ-TARGET;temp:intralink-;e075;63;173Δt ∝ hCi: (75)

So, in terms of required integration times, the potential ben-
efits of predictive control are quite profound. Using just the
relatively simple form of it considered in this study, we find
that predictive control of atmospheric turbulence could make
a GSMT up to 30 times more efficient at exoplanet characteri-
zation around a star as bright as Proxima Centauri, and up to
1400 times more efficient on brighter stars.

8.4 Code Availability

The code we developed for this analysis is freely available in
a Github repository: https://github.com/jaredmales/aoSystem.
It is written in c++, is highly parallelized, and compiles to
a command line application which accepts configuration files
to set up the analysis. It depends on the library available in
a Github repository: https://github.com/jaredmales/mxlib, as
well as several easily available open-source libraries. No
licenses are needed.

9 Conclusion
We have developed a semianalytic framework for predicting the
raw PSF contrast in an AO-fed coronagraphic image under
closed-loop control. Instead of the usual spatial-filter analysis,
we explicitly calculated temporal PSDs and analyzed AO per-
formance in the temporal-frequency domain. Our technique
takes into account closed-loop dynamics as well as a multilayer
frozen-flow turbulence model. We also analyzed performance of
ideal coronagraphs, showing how to account for the subtle dif-
ference between the residual PSD and the residual modal vari-
ance on an aperture. Using our model, we showed that predictive
control will improve raw contrast by up to a factor of 1400 on
bright stars, and by a factor of 30 on eighth magnitude stars,
compared to the SI control law. Assuming a photon-noise lim-
ited observation, the exposure time required to characterize an
exoplanet will decrease by the same large factors. This has sig-
nificant implications for the potential of the coming ground-
based GSMTs to search for life outside our solar system and
makes predictive control one of the key techniques that must
be perfected for exoplanet characterization.

Appendix A: Mathematics of the Fourier Basis
We derive the normalizations and Fourier transforms of the
Fourier basis on a circular aperture.

A.1 Normalization
The L2 norm of the cosine mode on the aperture is

EQ-TARGET;temp:intralink-;e076;326;310j cosð2π~kmn · ~qÞj2 ¼
Z

Að~qÞcos2ð2π~kmn · ~qÞd~q: (76)

For a symmetric aperture, we can restrict ourselves to n ¼ 0

with no loss of generality, which simplifies the integral to

EQ-TARGET;temp:intralink-;e077;326;245jcosð2π~kmn ·~qÞj2¼
4

πD2

Z
D∕2

0

Z
2π

0

cos2
�
2π

m
D
qcosθ

�
dθqdq:

(77)

Using the exponential form of the cosine
EQ-TARGET;temp:intralink-;e078;326;176

j cosð2π~kmn · ~qÞj2 ¼
Z

D∕2

0

Z
2π

0

1

2

þ 1

4

�
e4π

m
Dq cos θ þ e−4π

m
Dq cos θ

�
dθq dq:

(78)
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With the following identity:

EQ-TARGET;temp:intralink-;e079;63;7412πJ0ðzÞ ¼
Z

2π

0

e�iz cosðϕÞdϕ: (79)

(cf. Ref. 60 8.411 #7), the integral evaluates as

EQ-TARGET;temp:intralink-;e080;63;687j cosð2π~kmn · ~qÞj2 ¼ 1

2
þ 4

D2

Z
D∕2

0

J0

�
4π

m
D
q

�
qdq: (80)

Next using the identity

EQ-TARGET;temp:intralink-;e081;63;631zJ1ðzÞ ¼
Z

zJ0ðzÞdz; (81)

(cf. Ref. 60 5.52 #1) and a change of variables we have

EQ-TARGET;temp:intralink-;e082;63;577j cosð2π~kmn · ~qÞj2 ¼ 1

2
þ Jið2πkmnDÞ: (82)

Similarly, the L2 norm of the sine mode on the aperture is

EQ-TARGET;temp:intralink-;e083;63;525j sinð2π~kmn · ~qÞj2 ¼
1

2
− Jið2πkmnDÞ (83)

and the norm of the product is

EQ-TARGET;temp:intralink-;e084;63;473j sinð2π~kmn · ~qÞ cosð2π~kmn · ~qÞj ¼ 0: (84)

A.2 Fourier Transforms on an Aperture
We need the Fourier transform of the Fourier modal basis over
the aperture of the telescope, that is

EQ-TARGET;temp:intralink-;e085;63;398Qc
mnð~kÞ ¼

Z
∞

−∞

Z
∞

−∞
Aðu;vÞcosð2π~kmn · ~qÞei2πðkuuþkvvÞdudv:

(85)

The unobstructed circular aperture is described by Eq. (2).
Now switching to polar coordinates and collecting terms

we have

EQ-TARGET;temp:intralink-;e086;63;308

Qc
mnð~kÞ ¼

4

2πD2

Z
D∕2

0

Z
2π

0

8<
:e

i2πq

h
ðkuþm

DÞ cos θþðkvþn
DÞ sin θ

i

þ e
−i2πq

h
ðku−m

DÞ cos θþðkv−n
DÞ sin θ

i9=
;dθq dq; (86)

where we have made use of the complex exponential form of
the cosine. We next introduce the notational simplification

EQ-TARGET;temp:intralink-;e087;63;189

kþmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ku þ

m
D

�
2

þ
�
kv þ

n
D

�
2

s

k−mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ku −

m
D

�
2

þ
�
kv −

n
D

�
2

s
(87)

and the associated angles defined by

EQ-TARGET;temp:intralink-;e088;326;752

cos α ¼
�
ku þ

m
D

�
∕kþmn sin α ¼

�
kv þ

n
D

�
∕kþmn

cos β ¼
�
ku −

m
D

�
∕k−mn sin β ¼

�
kv −

n
D

�
∕k−mn: (88)

The transform can now be written

EQ-TARGET;temp:intralink-;e089;326;677

Qc
mnð~kÞ ¼

2

πD2

Z
D∕2

0

Z
2π

0

½ei2πqkþmn cosðθ−αÞ

þ e−i2πqk
−
mn cosðθ−βÞ�dθq dq: (89)

With the following identity:

EQ-TARGET;temp:intralink-;e090;326;6052πJ0ðzÞ ¼
Z

2π

0

e�iz cosðϕÞdϕ; (90)

(cf. Ref. 60 8.411 #7) the transform is equivalent to

EQ-TARGET;temp:intralink-;e091;326;551Qc
mnð~kÞ ¼

4

D2

Z
D∕2

0

½J0ð2πkþmnqÞ þ J0ð2πk−mnqÞ�qdq; (91)

where JnðxÞ are the cylindrical Bessel functions of the first kind.
With the identity

EQ-TARGET;temp:intralink-;e092;326;486zJ1ðzÞ ¼
Z

zJ0ðzÞdz; (92)

(cf. Ref. 60 5.52 #1) we finally have

EQ-TARGET;temp:intralink-;e093;326;431Qc
mnð~kÞ ¼



J1ðπDkþmnÞ
πDkþmn

þ J1ðπDk−mnÞ
πDk−mn

�
: (93)

Similarly for the sine modes

EQ-TARGET;temp:intralink-;e094;326;376Qs
mnð~kÞ ¼ i



J1ðπDkþmnÞ
πDkþmn

−
J1ðπDk−mnÞ
πDk−mn

�
: (94)

Appendix B: Contrast C2 of Guyon
Here we present a derivation of the contrast due to time delay
and measurement error from Ref. 15, there called C2. We extend
the analysis of Ref. 15 to include finite loop delays, detector, and
background noise, and make it consistent with the results of
Sec. 4. A spatial frequency component of the wavefront
phase at time t can be written as

EQ-TARGET;temp:intralink-;e095;326;238Φmnð~q; tÞ ¼
2π

λ
h†mnðtÞ cos½~kmn · ~qþ ϕ†

mnðtÞ�; (95)

where the coefficient h†mnðtÞ is the combined amplitude of the
Fourier mode, and ϕ†

mnðtÞ is its phase. The † superscript is to
differentiate this unnormalized basis from the normalized
Fourier modes presented in Sec. 3.3.1. Now at a time τtl
later the wavefront will be

EQ-TARGET;temp:intralink-;e096;326;141Φmnð~q; tþ τtlÞ ≈Φmnð~q; tÞ þ
∂Φmnð~q; tÞ

∂t
τtl: (96)

The residual variance after applying the wavefront correction
will be
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EQ-TARGET;temp:intralink-;e097;63;752σ2tl;mn ≈
�


∂Φmnð~q; tÞ
∂t

�
2


τ2tl ; (97)

which becomes
EQ-TARGET;temp:intralink-;e098;63;705

σ2tl;mn ≈
�
2π

λ

�
2
��


dh†mnðtÞ
dt

�2


þ
�


h†mnðtÞ dϕ
†
mnðtÞ
dt

�2
	
τ2tl: (98)

We next employ the frozen flow hypothesis, assuming that
the amplitude does not change and that the phase changes only
due to wind-driven flow. This gives

EQ-TARGET;temp:intralink-;e099;63;601

dh†mnðtÞ
dt

¼ 0
dϕ†

mnðtÞ
dt

¼ 2π~kmn · ~V; (99)

which leads to the residual variance due to time lag

EQ-TARGET;temp:intralink-;e100;63;546σ2†tl;mn ≈
�
2π

λ

�
2

hh†2mnðtÞið2π~kmn · ~VÞ2τ2tl: (100)

Now the variance of each mode will be given by the spatial
PSD according to

EQ-TARGET;temp:intralink-;e101;63;484hh 2
mnðtÞi ¼

Pð~kmnÞ
D2

�
λ0
2π

�
2

ðm2 rmsÞ: (101)

Employing the wavefront variance from measurement
noise given by Eq. (52), the total residual variance at the science
wavelength will be

EQ-TARGET;temp:intralink-;e102;63;403

σ†2mn ¼
�
λ0
λ

�
2 Pð~kÞ
D2

ð2π~kmn · ~VÞ2τ2tl

þ β2pð~kmnÞ
S∕N2

�
λwfs
λ

�
2

ðrad2 rmsÞ: (102)

In this open-loop framework, the equivalent time lag is τtl ¼
τwfs þ τ where τ is the closed-loop delay defined in Sec. 6.1, and
τwfs accounts for the sample-and-hold of the WFS and DM.40

We calculate the optimum frame rate that minimizes the variance
by differentiating Eq. (102) with respect to τwfs, which yields
a quartic equation

EQ-TARGET;temp:intralink-;e103;63;258

λ20
Pð~kmnÞ
D2

ð2π~kmn · ~VÞ2½τ4wfs þ ττ3wfs�

−
λ2wfsβ

2
pð~kmnÞ
F2
γ

½ðFγ þ npxFbgÞτwfs þ 2npxσ2ron� ¼ 0: (103)

Each mode will have its own optimum τwfs, which is
somewhat analogous to modal gains in closed-loop control.
Since hhp2mni ¼ hhc†2mn i þ hhs†2mn i ¼ hh†2mni, we can use the results
of Sec. 4 to write

EQ-TARGET;temp:intralink-;e104;63;133hI†Φ;mnð~rÞi ¼ σ†2mn½PSFð~r− ~kmnλÞþPSFð~rþ ~kmnλÞ�: (104)

The summation in Eq. (39) defines hI†ΦðrÞi, which leads to
the expression for the contrast C2

EQ-TARGET;temp:intralink-;e105;326;752C2ð~rÞ ¼
hI†Φð~rÞi

hSiPSFð0Þ : (105)

The Strehl ratio can be calculated by summing the total
WFE after the convolution and then employing the Marechal
approximation

EQ-TARGET;temp:intralink-;e106;326;682hSi ¼ e−σ
2

: (106)

It is straightforward to derive the other contrasts, C0;1;3;4;5;6,
of Ref. 15 using similar arguments.

Appendix C: Calculating the Autocorrelation
The autocorrelation R can be calculated from a numerical PSD
using the following recipe:

1. Start with temporal PSD T mnðfÞ at N discrete
frequencies fj, where f1 ¼ Δf and fN ¼ 1

2
fs.

2. Form the two-sided temporal PSD of length 2N by
augmenting with 0 at the beginning, and augmenting
with the reverse at the end
EQ-TARGET;temp:intralink-;e107;326;485

T 0
mnðfj 0 Þ

¼
8<
:

0; j 0 ¼ 1

T mnðfjÞ; j 0 ¼ 2: : :Nþ 1; j¼ 1: : :N

T mnðfjÞ; j 0 ¼Nþ 2: : :2N;j¼N − 1: : :1

:

(107)

3. Calculate the DFT of the augmented PSD using the
FFT algorithm, giving the autocorrelation at lag τ

EQ-TARGET;temp:intralink-;e108;326;361RmnðtÞ ¼ FFTfT 0
mnðfj 0 Þg: (108)

Note that this is will be a circular autocorrelation
wrapping around after N points. N should be chosen
to be larger (by at least a factor of 2) than the needed
number of points of R.

4. The lags of the points are given by

EQ-TARGET;temp:intralink-;e109;326;266tj 0 ¼
(

j 0−1
2Nfs

; j 0 ¼ 1: : : N þ 1
j 0−2N−1
2Nfs

; j 0 ¼ N þ 2: : : 2N
; (109)

where only the first N þ 1 points are unique.
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