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Abstract

Significance: Diffuse correlation spectroscopy (DCS) is an optical technique that measures
blood flow non-invasively and continuously. The time-domain (TD) variant of DCS, namely,
TD-DCS has demonstrated a potential to improve brain depth sensitivity and to distinguish
superficial from deeper blood flow by utilizing pulsed laser sources and a gating strategy to
select photons with different pathlengths within the scattering tissue using a single source—detec-
tor separation. A quantitative tool to predict the performance of TD-DCS that can be compared
with traditional continuous wave DCS (CW-DCS) currently does not exist but is crucial to pro-
vide guidance for the continued development and application of these DCS systems.

Aims: We aim to establish a model to simulate TD-DCS measurements from first principles,
which enables analysis of the impact of measurement noise that can be utilized to quantify the
performance for any particular TD-DCS system and measurement geometry.

Approach: We have integrated the Monte Carlo simulation describing photon scattering in bio-
logical tissue with the wave model that calculates the speckle intensity fluctuations due to tissue
dynamics to simulate TD-DCS measurements from first principles.

Results: Our model is capable of simulating photon counts received at the detector as a function of
time for both CW-DCS and TD-DCS measurements. The effects of the laser coherence, instrument
response function, detector gate delay, gate width, intrinsic noise arising from speckle statistics,
and shot noise are incorporated in the model. We have demonstrated the ability of our model to
simulate TD-DCS measurements under different conditions, and the use of our model to compare
the performance of TD-DCS and CW-DCS under a few typical measurement conditions.

Conclusion: We have established a Monte Carlo-Wave model that is capable of simulating CW-
DCS and TD-DCS measurements from first principles. In our exploration of the parameter space,
we could not find realistic measurement conditions under which TD-DCS outperformed CW-
DCS. However, the parameter space for the optimization of the contrast to noise ratio of TD-DCS
is large and complex, so our results do not imply that TD-DCS cannot indeed outperform CW-
DCS under different conditions. We made our code available publicly for others in the field to
find use cases favorable to TD-DCS. TD-DCS also provides a promising way to measure deep
brain tissue dynamics using a short source—detector separation, which will benefit the develop-
ment of technologies including high density DCS systems and image reconstruction using a
limited number of source—detector pairs.
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1 Introduction

Cerebral blood flow (CBF) is an important indicator of brain function and health.'™ Diffuse
correlation spectroscopy (DCS) serves as a major optical technique that is capable of measuring
blood flow non-invasively and continuously.””'! In DCS, coherent light is incident on the surface
of the scattering medium, and the re-emitted scattered light is collected by a detector at a certain
distance away from the source position, typically in the range of 10 to 30 mm. Dynamics in the
tissue, mainly arising from blood flow induces phase variations of the scattered light that alters
the interference pattern of the partial waves of the re-emitted light, namely, the speckle pattern,
thus causing light intensity fluctuations with time at the detector. It is common to quantify these
temporal fluctuations using a temporal intensity autocorrelation function. The decay rate of this
autocorrelation function provides a measure of the blood flow index. Numerical and theoretical
tools have been developed to guide interpretations of experimental measurements. For traditional
continuous-wave DCS (CW-DCS), the analytical expressions of the autocorrelation functions
have been well established in diffusion theory,”'>!* and Monte Carlo simulations have been
developed to numerically obtain the field autocorrelation function for inhomogeneous media.®'*
Together with the noise model obtained analytically,'® the performance of a CW-DCS system for
a particular measurement geometry can be theoretically predicted.

Recently, a time-domain variant of DCS (TD-DCS) has been developed, which utilizes a
pulsed laser and a gating strategy to select photons detected at different arrival times.'¢>
This technology has the potential to differentiate blood flow information from different layers,
such as the skull and the brain tissue using a single source—detector separation. The theoretical
basis for TD-DCS has been established taking into account the effects of the instrument response
function (IRF), which includes the incident pulse shape and the broadening of the pulse arising
from the instrument, and the coherence length of the light source on the shape of the intensity
autocorrelation function.'® Ideally, a narrower width of the IRF will result in better specificity to
different photon pathlengths. However, the width of IRF is fundamentally limited by the coher-
ence length, and a narrow pulse in time will result in a short coherence length, which will degrade
signal to noise ratio (SNR) in TD-DCS measurements.'® A pioneering study on the performance
of TD-DCS has been conducted assuming the same noise model'® that is developed for CW-
DCS.?!' A proper noise model that quantifies the performance of TD-DCS measurements in terms
of SNR and contrast to noise ratio (CNR) for any IRF, coherence length, measurement geometry,
and brain activation pattern is still lacking.

We have constructed a numerical model which is capable of simulating both CW- and TD-
DCS measurements from first principles. We have integrated Monte Carlo simulations with wave
calculations to obtain the intensity fluctuations induced by tissue dynamics. The speckle inten-
sity is converted to photon counts within each bin time mimicking the experimental measure-
ments. The numerical results are compared with existing theoretical expressions of the average
intensity autocorrelation function for CW-DCS'* and TD-DCS.'® The simulated noise is also
validated with the existing noise model for CW-DCS.'> We have demonstrated the value of using
our model to predict the performance for any TD-DCS systems and measurement geometry in
terms of CNR due to brain activation. We have found that for a given set of parameters, brain
geometry, and the IRF profile utilized in this paper, CW-DCS at a large source—detector sep-
aration (30 mm) out-performs TD-DCS. We can increase the detected photon flux per bin time of
TD-DCS at a small source—detector separation (10 mm) by increasing the gate width at the cost
of reduced specifity to a particular photon pathlength or depth to achieve a performance com-
parable to CW-DCS at a medium source—detector separation (20 mm). We could not find realistic
measurement conditions under which TD-DCS outperformed CW-DCS. However, since the per-
formance of TD-DCS is highly dependent on the IRF profile’! and the other measurement
parameters, the quantitative results predicted in this paper can be different for researchers using
different input parameters in our model. The performance for a given TD-DCS system can be
easily calculated by changing the parameters of the numerical model, which is made publicly
available.”> TD-DCS is also capable of differentiating blood flow at different depths using a
single source—detector separation. This model provides guidance for the experimental develop-
ment of novel TD-DCS systems.
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Fig. 1 (a) lllustration of the single scattering event and the parameters used in Eq. (1). (b) The
geometry of the Monte Carlo simulation used in this manuscript and the illustration of the gating
strategy for TD-DCS. The size of the detector is 2 mm, the thickness of the first layer or first tissue
type is 15 mm, the reduced scattering coefficient is us = 1 mm~! and absorption coefficient
1a = 0.01 mm~'. The optical properties ug and u, are set to be the same for the two layers.
The dynamics in the second layer is increased when brain activation is introduced. The source
detector separation is set to be p = 20 mm unless otherwise stated. Measurements at a later gate
will be able to select photons with longer pathlengths, thus it is more sensitive to dynamics at
deeper depths. (c) lllustration of the calculation of the photon arrival time for the nth photon
as the sum of the IRF time and the transit time within the sample t,, = t,gir + t,.. (d) The
IRF profile we have used in this manuscript obtained experimentally. The full width half maximum
of the IRF is 0.31 ns. The dashed lines indicate the levels of the intensity of the IRF that corre-
sponds to 0.1, 0.01, and 0.001 of the peak intensity, and the widths that correspond to these levels
are 0.56, 0.82, and 1.18 ns, respectively.

2 Method

2.1 Theory

DCS quantifies the dynamics of the sample by calculating the autocorrelation function of the
speckle intensity fluctuations of light reemitted from tissue. For a single scattering event shown
in Fig. 1(a), the electric field measured at the detector is

N
Ex E Z exp(ikin ' ;n) exp(ikoul : (Rd - ?n))
n=1
N
x E, exp lkout Z exp(—iq, - 7). (1)

n=1

Here, E is the electric field reaching the detector located at ii’d; 7, is the position of the n’th
scatterer; NV is the total number of the scatterers; Z?O is the incident field; and g, = %Om - 7<m is the
momentum transfer, where %Om and %in are the output and incident wave vectors, respectively. We
only consider elastic scattering such that |%Om| = |%m| =k

For the case of multiple light scattering, Eq. (1) is revised as

N Ny

S Z Z CXp iz]ns : ?ns)' (2)

n=1 s=1
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Here, s denotes the s’th scattering event, and N, is the total number of scattering events for
the n’th component of the wave, or the n’th photon in our Monte Carlo simulations as will be
described in Sec. 2.2. The field autocorrelation function is calculated from g¢(7) =
(E*(1)E(t + 7)) /(|E()|?). For a semi-infinite medium, the analytical form of g; for CW-DCS
system has been calculated as”

_ 3Cuy [exp(Kry) exp(Kry)

9lpre) == | p—r 3

Here, K> =3p,uy + 6u*kiDpt, p is the source—detector distance, r; = (p* + z3)'/%,
ry = (p? + (20 +225)2)%, 20 = 1 Jugr, 2 = (5/3)uyr, k = 27/ 4, A is the wavelength, k; is the
central wave vector, C is the normalization constant, Dy is the diffusion coefficient, and u, and
u are the absorption and reduced scattering coefficients, respectively. In real time measure-
ments, a simpler expression is preferred for fitting and Eq. (3) can be simplified to a single
exponential decay at small 7 limit'>>

91(7) = exp(-7/7.), “4)

where 7. is the decay time constant that is utilized to quantify the tissue dynamics.
Experimentally, instead of g(z), the intensity correlation function g,(z) = (I(t)I(t+ 7))/
(|I(£)|)? is measured, and g,(z) is related to g, (z) via the Siegert relation**

9(7) = 1+ g ()%, ®)

with f =1 indicating complete coherence of the detected photons, and f < 1 accounting
for loss of temporal coherence and/or detection of multiple modes such as the two polarization
states of the electromagnetic field. The effect of the coherence length /. has been estimated

aSZS

ga(e) =1+ / Car / " dL'P(L)P(L)gy (L. 7)gy (L', 7)e 6L/ LF, (©6)
0 0

Here, P(L) is the photon pathlength distribution. It is noteworthy that this relation is only
valid when the incident light spectrum is a Gaussian function. For a semi-infinite highly scatter-
ing medium relevant for human brain measurements, P(L) can be calculated as***’

S 2 2

Here, v is the speed of light in the sample, 22 = z3 + p%, 22 = (20 + 22,)° + p% 20 = 1/,
7, =2D(1 + Reir) /(1 = Rei), Regr the boundary reflectivity, D = 1/[3(pu, + uy)], po the
absorption coefficient, u, the reduced scattering coefficient, and S the normalization factor such
that /[ P(L)dL = 1. Here, g,(L,7) is the pathlength-dependent normalized field temporal auto-
correlation function

P(L) =

91(L.7) = exp(=2u, DykiL7). ®)

At =0, g;(L,0) = 1, which provides the relation between f# and I. in Eq. (6).
The noise model for CW-DCS systems has been established analytically.'” The standard
deviation of (g,(z) — 1)), o(z), at each time delay 7 is

(1 + e—ZFTb)(l + e—ZFT) + 2m(1 _ e—ZFTb)e—2l"r
O-<T> =V Tb/T ﬂz 1— e‘erh

T 2my B+ ) 4 ()2 (1 4 pe)| ©)

Here, T, is the bin time, m is the bin index, T is the measurement time window, (n) is the
average number of photons in a bin time T, g,(7) — 1 = e 2", where I' = 1/z,.
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For TD-DCS, a gating strategy is utilized to select a portion of the photons that arrive at the
detector. For a gate delay time 7, and gate width ¢,,, only the photons that arrive within a meas-
urement window are selected to calculate the electric field in Eq. (2), as shown in Fig. 1(b).
Ideally, if both the widths of the IRF and the gate width are infinitely small, the gating strategy
will only select photons with a single pathlength L = #, * v, and g, () is reduced to g; (L = 7, *
v,7) in Eq. (8), where v is the speed of the light in the tissue. However, both the IRF and the gate
width will increase the width of the distribution of the photon pathlengths detected within a
measurement window. The expression of g, (z) for TD-DCS has been analytically obtained and
the effect of the coherence length /, and IRF are taken into account.'® At ¢, the gate delay time
dependent intensity autocorrelation function g, (¢, 7) is

0 (1,,7) :1—l—/ooodL/OoodL’P(L)Ip(ts—L/U)P(L’)

1,(t;= L' [v) g1, (L, ) g1 (L', 7)e OlE-L)/ P (10)

Here the effective pathlength distribution P(t,, L) = P(L)I,(t, — L/v) is the pathlength dis-
tribution of photon trajectories measured at #,, where the normalized IRF profile is denoted as
1,(t). The definition of coherence length is shown in Sec. 2.2, Step 4. It is noteworthy that the
definition of the coherence length can be different in other studies.'®?

2.2 Monte Carlo Wave Model

We have established a numerical recipe to simulate photon counts received at the detector as a
function of time for both CW-DCS and TD-DCS measurements from first principles. The steps
needed to construct the model are explained below.

Step 1: Simulate photon migration within a scattering medium using Monte-Carlo simulations.
The code for the Monte Carlo simulation is a derivation of that used in previous
publications.'***?® In the Monte Carlo simulation, we specify the source—detector separa-
tion and the optical properties of the sample including the scattering coefficient y; and
anisotropy factor g in different tissue types. We have used a two-layer sample geometry
denoted as two tissue types in the Monte Carlo code as shown in Fig. 1(b). Here we have
set g = 0 and p; = py = 1 mm~" for both tissue types in this study, but these can be easily
configured to be different by researchers for future work. In biological tissue, the value of g
obtained experimentally is typically above 0.9.%° But in the diffusive regime as we are inter-
ested, the DCS results are only governed by the reduced scattering coefficient as indicated in
Eq. (3). Thus, we can implement isotropic scattering with g = 0 and use a smaller u, by
assigning u, = u, in the Monte Carlo simulation to improve computational efficiency,
which is equivalent to g = 0.9, uy = p (1 — g). The effect of absorption will be taken
into account at a later stage in Step 8. We will assign different blood flow dynamics to
the two layers to demonstrate the DCS signal variation induced by blood flow change due
to neural activation in the deeper layer. The number of scattering events N,,; and pathlength
L, for the n’th photon in the i #i’th tissue type are recorded. The values of other parameters
we have used in the model are specified in the caption of Fig. 1(b).

Step 2: Calculate the arrival time 7,,, of the n’th photon. We set the time at the peak of the IRF to
be t = 0. The transit time that a photon spent within the medium is z,;, = L, /v, where
v =c/n is the speed of light within the medium, ¢ = 300 mm/ns is the speed of the
light in vacuum and the refractive index of the tissue is set to be n = 1.33. The IRF time
t,rr i1s randomly drawn from the probability density distribution determined by the IRF
profile, by obtaining the time at which a random number drawn within the interval [0 1]
matches the cumulative probability. This takes into account the effect of the IRF on the
distribution of the photon pathlengths detected within a specific measurement window.
The arrival time of the photon is t,, = t,;, + t,;re- In this paper, we have used an exper-
imentally measured IRF as shown in Fig. 1(d). In the experiment, a PicoQuant VisIR laser at
765 nm was used as the source with a PPG512 to trim the pulse, and a PicoQuant PMA42
photomultiplier was used as the detector to reduce the long tail. Any IRF profile obtained
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experimentally can be utilized in this model to predict the performance for a particular
TD-DCS system.

Step 3: Select photons that fall within the specified measurement gate. For a gate delay time ¢,
with a gate width 7,,, only the photons with ¢,,, that fall within the time span [t — t,,/2, 1, +
t,,/2] are selected for the following calculations. It is noteworthy that if both the width of the
IRF and the gate width ¢#,, are infinitely small, the photons with a single pathlength L, =
t, x v are selected, which is the ideal case described by Eq. (8), but is generally not achiev-
able experimentally.

Step 4: For each photon, assign the spectrum of the input light that corresponds to a particular
coherence length /.. Here we have utilized a Gaussian spectrum, and the relation between
the Gaussian spectrum in real and k space is related via

S(k) = e~(k=ko*/2k2)
S(L) = e LP/(2%)
ke = * [ (412). (11)

Here, we have defined the coherence length /. as the width of the Gaussian. It is noteworthy
that the definition of the coherence length can be different in other studies. We have combined
the photon description of light with the wave description. In principle, we cannot assign a wave-
length to a photon. However, each photon can be considered as a light trajectory for wave propa-
gation, which allows us to calculate the accumulated phase along a light path for different
wavelengths. In our model, any spectrum shape S(k) measured experimentally can be incorpo-
rated, which is one advantage of our numerical model over existing theoretical models,'%?
where a Gaussian spectrum profile is always assumed.

Step 5: Assign an initial phase randomly drawn within [0 2z] for each photon trajectory
Step¢6n: Obtain the displacements of the scatterers as functions of time. Here we denote the
displacement of the scatterer in the s’th scattering event of the n’th photon trajectory
AF,(t). The displacement is obtained from a second Monte Carlo simulation of
random particle motion with a diffusion coefficient Dg. The displacement of a
scatterer A7,,(f) = (7(t) = 7(0)),, can be calculated from the evolution of 7(¢) =

(x(2), y(2), 2(1))

ns

x(t+ Ar) = x(t) + N(0,2DgAr),
y(t+ At) = y(t) + N(0,2DpA1),
2(t + Ar) = z(1) + N(0,2DgAt). (12)

Here, N(0,2DgAt) is a normal distribution with mean 0 and variance 2D gArt. It is noteworthy
that the motion of the scatterers or red blood cells is in general a combination of convective
flow and shear induced diffusion. It has been experimentally observed and numerically
demonstrated that the DCS signal is dominated by the diffusive behavior of RBCs red blood
cells (RBCs).'*3%3! Thus, we only model the diffusive motion of RBCs as in Eq. (12).
The diffusion coefficient at the baseline, i.e. without brain activation, is set to be
Dg = 1% 10~® mm? /s in the model, which provides a decay time constant close to experimental
measurements.”’

Step 7: Calculate the momentum transfer g,;, = (%Om - %m)ms for each scattering event. Here i
denotes the i’th wave vector k for the s’th scattering event of the n’th photon. The angle of a
scattering event can be sampled from the phase function. However, since we are assuming
g = 0 where the scattering is isotropic as described in Step 1, we can simply generate unit
vectors 7y, with a random direction and calculate 7, — 7;, using a coordinate space where

1y, = (0,0, 1). The momentum transfer is then G = k; * (Mgu — Min ) ps-
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Step 8: At every time point ¢, obtain the contribution of the n’th photon and i’th k vector to the
electric field as

i(¢n+k1Ln)+ i&im*&rus(t) i(¢n+kiLn)_ iz]ins'arns(l)
E,i(1) = V/S(k)e > e Habn x> Vet (13)

It is noteworthy that if u, is different in different tissue types, p,L, =, iHasiLnsis
where p,,; and L,,; are the absorption coefficient and photon pathlength in the fi’th tissue
type

Step 9: Calculate the intensity fluctuations I(¢). This is calculated by summing over the con-
tribution from all the photon trajectories and wavelengths

(14)

Here we have ignored the term e’®’, where w is the angular frequency of the light, and we
have performed an incoherent sum over the k vectors since typically the measurement time is
long enough such that light waves with different angular frequencies or wavelengths do not
interfere. An example of the simulated intensity temporal fluctuations (z) is shown in Fig. 2(a).

Step 10: Convert intensity I(¢) to photon counts N(¢). If the average photon flux within a bin
time Af is Ny, we then normalize I(f) such that the average value of (I(t,)), = Nyin,
where [(,) is the intensity within the »n’th bin time #,. Then we perform a Poisson draw
for each bin time as, N(r,) = Pois(I(z,)). This process converts the continuous function
I(7) to discrete values as well as incorporates shot noise into the numerically generated
photon counts N (7). Other sources of noise can also be added to N (), including dark noise,
but this is out of the scope of this paper as dark noise is usually negligible in experimental
systems. An example of the conversion from I(¢) in Fig. 2(a) to N(#) is shown in Fig. 2(b).
The Poisson draw here is not unique due to the nature of shot noise.

Step 11: Calculate the intensity autocorrelation function g,(z) = (N(f)N(t + 7)) /(N(1))%. It is
noteworthy that if we skip Step 10, I(¢) can also be utilized to calculate the intrinsic noise in
g2(t) = (I(1)I(t + 7)) /{I(2))? that arises from speckle statistics due to a finite measurement
time,?> which does not include the effect of shot noise.

For CW-DCS simulations, we skip Steps 2 and 3, and use all the recorded photons to cal-
culate the speckle fluctuations utilizing Eqs. (13) and (14). In Sec. 3, we compare our modeling
results with existing theoretical predictions described in Sec. 2.1.

(@) - , , : : (b) s

08} ] 25

N (1)

(P
o VNI e .Ih....lml.d.' il -NMM.J.JILLI..J‘“IJ.JI | L.LIALJI .u.J..lhh |

0 0002 0004 0.006 0008  0.01 0 0002 0004 0.006 0008  0.01
t(s) t(s)

Fig. 2 Example of (a) /(t) and (b) N(t) generated from the Monte Carlo wave model assuming the

average photon flux is 100,000 photons/s. Here (b) is generated from (a) following the procedure
in Step 10.
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3 Resulis

We first simulate CW-DCS measurements with the measurement configuration described in
Fig. 1(b). We compare our results with the theoretical predictions of both g,(z) in Eq. (4) and
the noise model in g,(7) and o(z) in Eq. (9) as shown in Figs. 3(a) and 3(b). We see that our
numerical results are in good agreements with the theoretical predictions. These results are
obtained for a single wavelength at 800 nm under the assumption that the coherence length
is infinitely long.

Next, we simulate CW-DCS measurements using multiple wavelengths with central wave-
length 800 nm to compare with the theoretical predictions of the reduction of # due to loss of
coherence described by Eq. (6), by varying the width of the source spectrum (i.e., the coherence
length). The pathlength distribution P(L) of all the photons detected at the detector agrees with
the theoretical prediction in Eq. (7), as shown in Fig. 4(a). With the same P(L), we have calcu-
lated f = ¢,(0) — 1 as a function of the coherence length /. using our numerical model and
compared with the results calculated from the theoretical prediction in Eq. (6). In these calcu-
lations, we have used (#) instead of N(¢) to obtain g,(z) in Step 11 of Sec. 2.2, since the effect of
shot noise is not included in Eq. (6).%

After validating our modeling results with existing theoretical predictions for CW-DCS sys-
tems, we now simulate TD-DCS measurements with and without the IRF profile in Fig. 1(d)
taken into account, using a coherence length of /. = 90 mm for the input light source. For the
case without the effect of the IRF, the IRF profile is assumed to be infinitely narrow, i.e.,
tare = 0, t,, = t,;, = L/v in Step 2 of Sec. 2.2. The gate delay time dependent pathlength
distributions P(t,, L) for t, = 0.5, 1.5, and 2.5 ns and g, (r) with and without the IRF are shown
in Figs. 5(a) and 5(b). We see that if the effect of the IRF is ignored, the pathlength distribution
P(t,, L) is solely determined by the gates including gate delay 7, and gate width ¢,,. Compared to
Fig. 5(a), the pathlength distributions in Fig. 5(b) are broadened and their shapes are determined
by the IRF profile in Fig. 1(d). The corresponding results of g,(z) are shown in Figs. 5(c) and
5(d). Compared to Fig. 5(c), the values of § = ¢,(0) — 1 in Fig. 5(d) are smaller due to a broader
distribution of pathlengths, as we have expected. To validate the modeling results, we compare
the g,(7) curves obtained from the Monte Carlo wave model (solid lines) with those obtained
from the analytical expression in Eq. (10) (dashed lines) as shown in Figs. 5(c) and 5(d). We see
that the modeling and analytical results are in good agreement. It is noteworthy that for Figs. 5(a)
and 5(c), we have assumed a finite coherence length with an infinitely small width of the IRF,
which is generally not physically realizable. This numerical analysis serves as a sanity check
against established concepts.

@ » (b) 0.18
E *  Monte Carlo Wave Model * *  Monte Carlo Wave Model
18 | Theoretical Prediction * Theoretical Prediction
0.16
16
- —
" < o014
S S
1.2
0.12
1 L
*%
0.8 + . 0.1 . .
1076 1078 107 1073 1078 1075 107 1078

7 (s) 7 (s)

Fig. 3 (a) g, obtained from the Monte Carlo wave model averaged over 500 independent
simulations compared with the theoretical expression of g,(r) =1+ (exp(—27/7;)).
(b) 6(z) = std(g,(r) — 1) obtained from Monte Carlo wave model with 500 independent simulations
compared with the theoretical prediction given in Eq. (9). The parameters used are T, =1 us,
T=10ms, =1, (n) =0.1, and 7, ~ 32 us obtained from fitting in (a). The total number of pho-
tons used in the Monte Carlo simulation is 108.
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Fig. 4 (a) Pathlength distribution of all the photons that arrive at the detector obtained from the
Monte Carlo wave model and the theoretical prediction from Eq. (7). The total number of detected
photons is N, = 34759. (b) Comparison of the Monte Carlo wave model prediction for the depend-
ence of # on coherence length with the analytical model in Eq. (9).

(a) No IRF (b) With IRF
1000 800 . . .
I =05 ns 700 B ;=05 ns |
800 | -t5=1.5 ns -ts=1.5 ns
B =25 ns 600 B L=25ns |
5 600 1
o
& 400 |
200 |
0 [
100 200 300 400 500 600 0 200 400 600
L (mm)
() »
18
16 |
E
N
2 14
12}
1

10°® 107 107 107 107 107
7(8) 7(8)

Fig. 5 The histogram for the gate delay time dependent pathlength distribution P(t,, L) for the
case when (a) the effect of IRF is not taken into account and (b) the effect of IRF is taken into
account. (c) g»(r) obtained from the Monte Carlo wave model (solid lines) and analytical predic-
tions (dashed lines) in Eq. (10) for the case when (c) the effect of IRF is not taken into account and
(d) the effect of IRF is taken into account. We have calculated results for t; = 0.5, 1.5, 2.5 ns,
coherence length /. = 90 mm, gate width t,, = 0.2 ns, source-detector separation p =20 mm.
Other parameters are the same as in Fig. 3.

Next, we perform a noise analysis when only the speckle noise is considered, i.e., in the high
photon flux limit. We first obtain g,(z) = (I(¢)I(t + 7)) /{I(¢))* and then obtain 7, from fitting
using Eq. (4). The signal is obtained as the average of the 7. values, which is denoted as 7,
for simplicity. Noise is obtained from the std(z,) by running 100 instances of the Monte
Carlo wave model simulations using the baseline sample properties. The SNR is defined
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as SNR = z,./std(z..). To calculate the CNR for estimating changes in blood flow, we produce
an activated state by changing the diffusion coefficient from the baseline value
Dy =1x107% mm?/s to Dy = 2.25 % 107® mm?/s in the second layer (Tissue 2) shown in
Fig. 1(b). The value of 7./, which is the average 7. at the activated states, is obtained from the
average of 10 instances of the wave model. The contrast is Az, = 7. — 7./, and the CNR is
CNR = Az, /std(z.). Here, we have used a large change of the diffusion coefficient to minimize
errors in the contrast induced by noise to save computational time, since this paper is mainly
focused on demonstrations of the model instead of calculating the realistic contrast due to brain
activation. A smaller change of Dy can be applied, while more configurations used for averaging
are required to obtain both 7. and z... The comparison of the performance of TD-DCS with and
without the effect of IRF, and CW-DCS in the speckle noise limit are shown in Fig. 6. The value
7. decreases with increasing ¢, in Fig. 6(a) as expected, since photons with longer pathlengths
that undergo more scattering events are selected at larger #,. The SNR increases with 7, as shown
in Fig. 6(b). This is because for a fixed measurement time (7 = 10 ms in this case), more speckle
evolutions are averaged at longer #, because of the shorter z.. To quantify the specificity
to brain activation in the second layer in Fig. 1(b), we obtain the contrast with activation only
in the second layer, i.e., the diffusion coefficient is increased from baseline value
Dp =1x107% mm?/s to Dy = 2.25 % 107 mm?/s in the second layer (Tissue 2), and com-
pared with the case when brain activation is applied to the full medium, i.e., the diffusion coef-
ficient is increased from baseline value Dy = 1 X 107% mm?/s to Dy = 2.25 x 107® mm?/s in
the whole simulation region with its contrast denoted as Az, ;,. We see in Fig. 6(c) that the speci-
ficity to brain activation in the second layer, i.e., Az, /A7, ;, increases with increasing ¢, and that
at large t,, At./Az,, is larger for TD-DCS than for CW-DCS. This demonstrates the ability of
TD-DCS measurements at larger ¢, to achieve better sensitivity to tissue dynamics at deeper
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Fig. 6 Comparison of the performance of TD-DCS and CW-DCS in the speckle noise limit. Since
CW-DCS results do not vary with t,, they are denoted as dashed lines with constant y values.
(a) z¢, (b) SNR, and (c) the ratio of the contrast for activation in the second layer and activation
in the full regime Az./Az. p,, and (d) CNR for CW-DCS, and TD-DCS with and without the effect of
the IRF taken into account. The parameters used here are the same as in Fig. 5.
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layers. Thus, TD-DCS can tune the depth specificity by changing the measurement gate delays
with a fixed source—detector geometry, which is convenient for technologies such as high-
density DCS measurements. Also, CNR is higher for TD-DCS compared to CW-DCS in this
high-photon flux, speckle noise limit as shown in Fig. 6(d).

Now, we consider the more realistic case for human brain measurements where the photon
flux is very low and the DCS signal is shot noise limited instead of speckle noise limited. The
photon flux difference between TD-DCS and CW-DCS measurements needs to be taken into
account. We assume the incident photon flux to be 100,000 photons/s for CW-DCS at
p =20 mm. We then scale the photon flux accordingly by the number of photons detected
in a measurement gate in Step 3 for TD-DCS and the total number of the detected photons
in Step 1 of the Monte Carlo simulation for CW-DCS, as shown in Table 1. For the low photon
fluxes typical of human measurements, long measurement times 7 are needed to get estimates of
9»(7) with sufficient quality that can be fit to obtain an estimate of .. Running the wave model
for long T is computationally expensive. Further, we want to keep T fixed to be 10 ms to facili-
tate comparison with prior examples. We thus utilize the following trick to improve computa-
tional efficiency that gives us an estimate of the shot noise contribution to std(z.) (i.e.,
std(7,)¢nor) that is distinct from the finite speckle sampling noise contribution to std(z.) (i.e.,
std(7, )speckte)- We can then get the total noise from the sum of the variances. Our trick is to
sample the wave model for 7 = 10 ms to get /(). We then obtain N,,, = 1000 independent
Poisson draws of this I(z) get 1000 instances of N(z). We obtain g,(z) for each instance of
N(t) and average the 1000 correlation functions to get a more smooth g, ,,(7). We then fit
to get 7. ,, from g, .., (7). We repeat this process 100 times to obtain std(z, ). Finally,

we obtain std(7,)go = \/Navg * $td(7, avg), since shot noise contribution is proportional
0 1/4/Nayg-

With these photon flux, we then calculate the CNR for TD-DCS at p = 10,20 mm with the
effect of the IRF and coherence length taken into account, and CW-DCS at p = 10,20, 30 mm as
shown in Fig. 7(a). We see that for TD-DCS, the maximum CNR for the cases we have calculated
occurs at p = 10 mm, ¢, = 1.5 ns, when ¢,, is fixed to be 0.2 ns, but its CNR is still lower than
CW-DCS at p = 20 mm. The best performance for the cases we have simulated is CW-DCS at
the largest source—detector separation of p = 30 mm. Thus, when photon flux is taken into
account, the relative performance of TD-DCS as compared to its CW-DCS counterpart has
degraded. One way to increase the photon flux in TD-DCS is to increase the gate width 7,,.
We see that by increasing ¢,,, the CNR of TD-DCS at ¢,, = 0.5 ns has surpassed the performance
of CW-DCS at p = 20 mm. But at large ¢,,, the specificity to a particular photon pathlength L
and thus the ability to differentiate tissue depths decreases.
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Fig. 7 CNR comparisons of TD-DCS and CW-DCS in the shot noise limit. (a) CNR of TD-DCS as
a function of ts at t, = 0.2 ns, p = 10,20 mm, compared with CW-DCS at p = 10,20, 30 mm.
(b) CNR of TD-DCS as a function of t,, at t; =1.5ns, p =10 mm, compared with CW-DCS
at p =20 mm.
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Table 1 The photon flux used for all the simulation cases in Fig. 7.

Nopnotons received in MC Photon flux (photons/s)

CW, p =10 mm 11,141,462 825,000
CW, p =20 mm 138,281 100,000
CW, p =30 mm 38,934 28,200
TD-DCS, p =20 mm, t; =0.5ns, t, =0.2 ns 17,777 13,000
TD-DCS, p =20 mm, t; =1.5ns, t, =0.2 ns 7428 5200

TD-DCS, p =20 mm, t; =2.5ns, t, = 0.2 ns 2862 2100

TD-DCS, p=10mm, t; =0.5ns, t, =0.2 ns 169,973 122,900
TD-DCS, p=10mm, t;=15ns, t, = 0.2 ns 14,083 10,200
TD-DCS, p =10 mm, t; =2.5ns, t, =0.2 ns 4242 3100

TD-DCS, p =10 mm, t;=1.5ns, t, = 0.3 ns 21,263 15,000
TD-DCS, p=10mm, t;=15ns, t, =0.5ns 36,551 25,400

4 Discussion

We have developed a Monte Carlo wave model that is capable of simulating both TD-DCS and
CW-DCS measurements from first principles. This model can be utilized to calculate the noise in
TD-DCS and compare with CW-DCS measurements. We have validated our model with existing
analytical expressions of g,(z) for CW-DCS, TD-DCS, and the noise model of CW-DCS. Our
numerical model is capable of simulating any spectral profile, while existing theories always
assume a Gaussian spectrum.'®* Our system is capable of dealing with different brain activation
geometries other than the two layer system we have specified in this manuscript. From the com-
parison of TD-DCS and CW-DCS, we have seen that the performance of TD-DCS is not nec-
essarily better compared to CW-DCS, with the metric given by the CNR induced by tissue
dynamics change in the deeper layer of a two layer sample, mainly due to the relatively low
photon flux in TD-DCS since only a portion of the detected photons are selected. Methods that
can increase the photon flux for a measurement gate, such as temporal focusing, could signifi-
cantly improve the performance of TD-DCS, as we have seen that in the high photon flux limit,
TD-DCS out-performs CW-DCS. The performance of TD-DCS is highly sensitive to the meas-
urement parameters including gate delay time #,, gate width ¢#,,, and source—detector separation p.
It also depends on the hardware properties including the wavelength and coherence length of the
input laser light, the size of the detector, and the IRF profile. An analysis of the full parameter
space is out of the scope of this manuscript. For a give TD-DCS measurement and brain acti-
vation geometry, the optimized parameters can be determined using the code of our Monte Carlo
wave model. Our model will guide the future experimental design of novel TD-DCS systems.
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Code, Data, and Materials Availability

The Matlab code for the model is publicly available.?” Experimental conditions other than those
reported in this manuscript can be achieved by varying the parameters in the model.
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