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ABSTRACT. Significance: Compressed sensing (CS) uses special measurement designs com-
bined with powerful mathematical algorithms to reduce the amount of data to be
collected while maintaining image quality. This is relevant to almost any imaging
modality, and in this paper we focus on CS in photoacoustic projection imaging
(PAPI) with integrating line detectors (ILDs).

Aim: Our previous research involved rather general CS measurements, where each
ILD can contribute to any measurement. In the real world, however, the design of
CS measurements is subject to practical constraints. In this research, we aim at
a CS-PAPI system where each measurement involves only a subset of ILDs, and
which can be implemented in a cost-effective manner.

Approach: We extend the existing PAPI with a self-developed CS unit. The system
provides structured CS matrices for which the existing recovery theory cannot be
applied directly. A random search strategy is applied to select the CS measurement
matrix within this class for which we obtain exact sparse recovery.

Results: We implement a CS PAPI system for a compression factor of 4:3, where
specific measurements are made on separate groups of 16 ILDs. We algorithmically
design optimal CS measurements that have proven sparse CS capabilities.
Numerical experiments are used to support our results.

Conclusions: CS with proven sparse recovery capabilities can be integrated into
PAPI, and numerical results support this setup. Future work will focus on applying it
to experimental data and utilizing data-driven approaches to enhance the compres-
sion factor and generalize the signal class.
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1 Introduction
Photoacoustic tomography (PAT) is an emerging non-invasive imaging technique that combines
the high contrast of optical imaging with the high spatial resolution of ultrasound imaging.1–3 It is
based on the generation of acoustic waves by illuminating a sample with picosecond or nano-
second optical pulses. The acoustic waves are measured outside the object, and mathematical
algorithms are used to reconstruct an image of the inside. While there are many important
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practical and theoretical aspects along the lines of signal generation, signal detection, system
design, image generation and enhancement, in this paper we focus on the measurement and
inversion of acoustic waves.4,5 Specifically, we focus on PA projection imaging (PAPI) based
on integrating line detectors (ILDs).6,7 Our goal is to use ideas from compressed sensing (CS) to
reduce the number of spatial measurements compared to standard measurements where each
ILD is used to record its own time-dependent signal. Specifically, we present our design and
development of CS in PAT under physical constraints that naturally arise in the already existing
self-developed PAPI system.8

1.1 Photoacoustic Projection Imaging
A PA projection tomograph records the induced acoustic signals with an array of parallel ILDs,
with each sensor integrating (averaging) the pressure along the lines of the detectors. The data
thus consist of samples of the linear projection of the three-dimensional (3D) acoustic pressure
wave in the direction of the ILDs. Reconstruction in two-dimensional (2D) gives a projection of
the initial pressure distribution. If a 3D reconstruction is required, the object can be rotated
around an axis perpendicular to the fibers, and a 3D reconstruction is computed from the
collection of 2D projections by inversion of the 2D Radon transform, which is similar to parallel
beam X-ray CT.9,10 As in X-ray imaging, where in certain situations single projections are
sufficient, the same can be said for photoacoustic imaging. We will therefore restrict ourselves
to 2D PAPI.

Figure 1 shows a photograph of our self-developed all-optical PAPI system used in this
study. The setup is based on fiber optic Mach–Zehnder interferometers (FOMZIs) with graded
index polymer optical fibers (GIPOFs). These have a higher bandwidth than glass optical fibers
and are more stable for measurements. In the current system, 64 ILDSa are arranged on a circle
forming a cylinder. Readout for each sensor requires an analog-to-digital (AD) converter, and
four sensors are multiplexed to one AD converter. Thus, to measure all 64 signals, the meas-
urement process must be repeated four times. Our hypothesis is that proper combinations of
ILD signals will be advantageous over recording individual signals when used in conjunction
with a nonlinear CS recovery algorithm.

1.2 Compressed Sensing in PAPI
Following the CS paradigm, instead of recording pressure signals P ¼ ½pT

1 ; : : : ; p
T
n �T where pj is

the pressure signal (written as column vector) of the j’th ILD, we record CS data

Fig. 1 Photographic image of the PA projection tomography with 64 FOMZIs as ILDs forming
the basics of the presented research.
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EQ-TARGET;temp:intralink-;e001;117;736yi ¼ ðAPÞi ¼
Xn
j¼1

aijpj for i ∈ f1;2; : : : ; mg; (1)

where A ¼ ðai;jÞi;j ∈ Rm×n denotes the CS measurement matrix. Usually in CS, the measure-
ment matrix is chosen randomly, since this gives an exact recovery of sparse vectors with a high
probability for large n;m. However, in practice, and specifically in our application, the matrix A
cannot be chosen completely at random. First, the measurements cannot combine all pressure
values if they are not connected to the same controller. Second, the numbers ai;j are often
restricted to specific values, in our case, for example to 0 and 1. Finally, the dimensionality
n in our case is small, which limits the applicability of existing asymptotic CS theory that applies
to the limit n;m → ∞.

The goal of this work is to design, analyze, and implement a CS strategy that can actually be
realized with our PAPI system. Within the considered family of measurements, we investigate
the optimal design of matrices. Due to the low dimensionality of CS matrices, even a small
compression factor n∕m below 2 seems to be a substantial challenge.

1.3 Outline
In this paper, we present our findings and results in building a CS-PAPI system. This develop-
ment is based on several steps. First, we provide a rigorous description of the PAPI problem. In
this context, we also provide an overview of the most important background knowledge required.
Second, we introduce a novel class of CS measurements that are practically feasible and can be
realized with the existing self-developed PAPI setup. Third, we present a concept of optimal
measurement design that allows researchers and practitioners to strategically select measure-
ments to maximize imaging accuracy for CS in PAPI and other imaging modalities. While these
results are developed in the context of sparsity, we present an outlook for the use of more general
signal classes potentially enabling data-driven machine learning methods. Finally, we go from
theory to practice and show how these results can be translated into the experimental realization
of CS-PAPI.

2 Background
In this section, we present the background of our work. This includes PAPI modeling (Sec. 2.1),
sparse CS theory (Sec. 2.2), and the description of the self-developed PAPI system (Sec. 2.3).

2.1 PA Projection Imaging
PA tomography is based on generating an acoustic wave inside some investigated object using
short optical pulses. When measuring the pressure with ILDs, the imaging problem reduces to
a 2D version of the standard problem9,10 and in this work we consider the 2D version only.
Further, we restrict ourselves to constant sound speed and a circular measurement geometry
as shown in Fig. 2.

Fig. 2 (a) An object is illuminated with a short optical pulse; (b) the absorbed light distribution
causes an acoustic pressure; and (c) the acoustic pressure is measured with ILD arranged on
a circle.
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Let us denote by u∶R2 → R the 2D PA source distribution which is our image of interest and
supposed to be enclosed by a circle CR of radius R. The 2D projected pressure satisfies the 2D
wave equation

EQ-TARGET;temp:intralink-;e002;114;700∂2t pðr; tÞ − v2sΔrpðr; tÞ ¼ δ 0ðtÞuðrÞ for ðr; tÞ ∈ R2 × Rþ; (2)

where δ 0ðtÞ is the first time derivative of the Dirac delta distribution, r ∈ R2 is the spatial loca-
tion, t ∈ R is the time variable, Δr is the spatial Laplacian, and vs is the constant speed of sound.
The wave Eq. (2) is augmented with pðr; tÞ ¼ 0 for t < 0 such that the acoustic pressure is
uniquely defined as solution of Eq. (2). We rescale time in such a way that vs ¼ 1.

PAPI in circular geometry consists of recovering the function u from measurements of
Wuðs; tÞ ¼ pðs; tÞ made on CR × ð0;∞Þ. In the case of full data, exact and stable PA image
reconstruction is possible and several efficient methods for recovering u are available. We will
use the FBP formula derived in Ref. 11:

EQ-TARGET;temp:intralink-;e003;114;579uðrÞ ¼ −
1

πR

Z
CR

Z
∞

jr−sj

ð∂ttWuÞðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − jr − sj2

p dt dCðsÞ: (3)

Note the inversion operator in Eq. (3) is also the adjoint of the forward operator W.
This in particular implies that inverting W is stable.

In practical applications, the acoustic pressure can only be measured with a finite number of
acoustic detectors. The standard sampling scheme in a circular geometry assumes uniformly
sampled values

EQ-TARGET;temp:intralink-;e004;114;479pðsj; tlÞ for ðj;lÞ ∈ f1; : : : ; ng × f1; : : : ; qg; (4)

with sj ≜ RðcosðΩðj − 1Þ∕nÞ; sinðΩðj − 1Þ∕nÞÞ, tl ≜ 2Rðl − 1Þ∕ðq − 1Þ, and Ω ≤ 2π denoting
the angular covering on the detection circle. The number n of detector positions in Eq. (4) is
directly related to the resolution of the final reconstruction. Namely, n ≥ 2Rλ equally spaced
transducers covering the full circle are required to stably recover any PA source u that has maxi-
mal essential wavelength λ; see Ref. 12. Image reconstruction in this case can be performed by
discretizing the inversion Eq. (3). The sampling condition requires a very high sampling rate,
especially when the PA source contains narrow features, such as blood vessels or sharp inter-
faces. Commonly, λ will be determined by the spatial sampling via the Nyquist condition, such
that 2Rλ ¼ πNr, where Nr × Nr is the number of samples for discretizing the object of interest
on the square ½−R;R� × ½−R; R�. In this case, we get n ¼ roundðπNr∕2Þ for correct sampling
according to Shannon sampling theory.

Note that temporal samples can easily be collected at a high sampling rate compared to the
spatial sampling, where each sample requires a separate sensor. It is therefore beneficial to keep n
as small as possible by using tools that overcome the limitations of classical Shannon sampling
theory. Consequently, full sampling is costly and time-consuming, and strategies for reducing the
number of detector locations are desirable. In this study, we use n ¼ 64 samples, which does not
satisfy the Nyqvist criteria for the targeted discretization. However, the image quality in this case
is still reasonable. To further reduce the number of measurements while preserving image quality,
we use CS techniques.

2.2 Compressed Sensing
The traditional approach to signal and image processing is to first collect a large number of point-
like samples, which are then compressed and transmitted with minimal information loss. The
basic idea of CS is to combine signal acquisition and compression by using specific indirect
measurements together with mathematical algorithms that exploit the inherent structure of the
image. In this way, a high-quality image can be recovered from a smaller number of measure-
ments than required for point sampling at the same resolution. In particular, the seminal
works13,14 invented a theory of CS based on the sparsity of the signal to be recovered and the
randomness of the measurements. Subsequent research has identified properties of the measure-
ment matrix, such as the restricted isometry property (RIP), as key elements for stable and robust
recovery.
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The first basic ingredient of CS is sparsity, that is defined as follows. Let s ∈ N and x ∈ Rn.
The vector x is called s-sparse, if kxk0 ≔ #ðfi ∈ f1; : : : ; ngjx½i� ≠ 0gÞ ≤ swhere #ðSÞ stands for
the number of elements in a set S. Signals of practical interest are often not sparse in the strict
sense, but can be well approximated by sparse vectors. One calls σsðxÞ ≔ inffkx − xsk1jxs ∈
Rn is s − sparseg the best s-term approximation error of x ∈ Rn and calls x compressible,
if σsðxÞ decays sufficiently fast with increasing s.

2.2.1 Restricted isometry constant

Let s ∈ N and δ ∈ ð0;1Þ. Stable and robust recovery of sparse vectors requires the measurement
matrix to well separate sparse vectors. The RIP guarantees such a separation. We recall that
the measurement matrix A ∈ Rm×n is said to satisfy the RIP of order s with constant δ if

EQ-TARGET;temp:intralink-;e005;117;595ð1 − δÞkxk22 ≤ kAxk22 ≤ ð1þ δÞkxk22 for all s − sparse x ∈ Rn; (5)

and write δs for the smallest constant satisfying Eq. (5). Many sparse recovery results have been
derived using the RIP. For example, the result derived in Ref. 15 states that if A ∈ Rm×n satisfies
the 2s-RIP with constant δ2s < 1∕2 then for ky − Axk2 ≤ δ any x⋆ ∈ arg minfkzk1jkAz − yk2g
satisfies kx − x⋆k2 ≤ c1σsðxÞ∕

ffiffiffi
s

p þ c2δ for constants c1; c2 depending only on δ2s. This implies
stable and robust recovery for measurement matrices satisfying the RIP. The error estimate con-
sists of two terms: The term c2ϵ is due to the data noise and c1σsðxÞ∕

ffiffiffi
s

p
accounts for the fact that

the unknown may not be strictly s-sparse.
No deterministic construction is known providing large measurement matrices satisfying the

RIP with near-optimal s. However, several types of random matrices are known to satisfy the RIP
with high probability. An important example of a random matrix that satisfies the RIP is the
Bernoulli matrix, which is a random matrix B ∈ f−1;1gm×n having independent entries that take
the values −1 and 1 with equal probability. A Bernoulli matrix satisfies δ2s < δ with probability
tending to 1 as m → ∞, provided that m ≥ Cδsðlogðn∕sÞ þ 1Þ for some constant Cδ > 0 as
n → ∞. However, such a theory is hardly applicable in our situation due to the small dimension
of our measurement matrices.

2.2.2 Binary CS matrices

Another useful type of CS matrices is binary matrices having entries 0 or 1. Such measurement
matrices can be interpreted as the adjacency matrix of a bipartite graph ðL; R; EÞ where
L ≔ f1; : : : ; ng is the set of left vertices, R ≔ f1; : : : ; mg the set of right vertices, and E ⊆ L ×
R is the set of edges. Any element ðj; iÞ ∈ E can be interpreted as an edge joining vertices j and i.
The left vertices L represent the sensors, and the right vertices R model each measurement. The
vertex j ∈ L is connected to the vertex i ∈ R if sensor j contributes to measurement i. For our
application, we have this type of binary measurement matrices.

Specific binary measurements are lossless expanders for which a stable and robust recovery
theory exists.16,17 However, these results are again asymptotic and are not applicable for PAPI
with small CS matrices.

2.3 All-Optical PA Projection Tomograph
In order to realize photoacoustic projection tomography, one needs one or several ILDs that
integrate the pressure along one dimension. Initial setups used a single line detector that is moved
around the object either using a free-beam Mach–Zehnder interferometer9 or a free-beam as well
as fiber-based Fabry–Perot interferometer.18 To accelerate the data collection process arrays of
line detectors have been developed either consisting of a piezoelectric array19 or an array of
FOMZIs introduced in Refs. 8 and 20. Optical and piezoelectric ILDs have been compared
in Ref. 21. A method where a PA projection image is collected at one shot is the full-field
technique.22 In this paper, we use the FOMZI array reviewed below.

The PAPI setup consists of 18 individually designed (CAD) parts, for a total of 750 mechani-
cal components. The fiber cage of the system is built with 64 GIPOFs, and each GIPOF has two
end faces/ferrules, and five glue points, making a total of 128 end faces and 320 glue points.
The fiber laser used is an NKT Koheras AdjustiK E15 with a maximum power of 200 mW and
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a line width of 0.1 kHz. A 1:2 fiber splitter directly after the fiber laser splits the optical path into
a reference arm with 20% laser power and a measurement arm with 80% laser power. The 80/20
splitting is used because the measurement arm is split into 64 beams using a 1:64 fiber splitter
whereas the reference arm is only split into 16 beams. Thus, each of the 80 fibers receives 1.25%
of the overall laser power. The measurement arm consists of 64 GIPOFs arranged in a circular
configuration and multiplexed with sixteen 4 × 1 fast fiber optic switches from Sercalo. The 16
fiber optic switches are controlled by the measurement software.

For working point stabilization of the FOMZIs, 16-fiber phase switches are integrated on
four controller cards. A robust analog (bang-bang) controller with digital potentiometers and
easy USB control was developed at RECENDT.20 The reference and measurement arms are con-
nected by sixteen 2:2 50/50 fiber couplers and the 16 self-developed balanced photodetectors
detect the optical signal and provide two electrical signals. A low-frequency (LF) signal is
employed for working point stabilization, while a high-frequency (HF) signal represents the
actual data. The 16 PA signals are sampled by a National Instrument (NI) device with two cards,
each with eight channels resulting in 16 channels in total. Each card has a maximum sampling
rate of 60 MS s−1, 12 bit depth, and 128 MB on-board memory. The whole system is controlled
by a PC with our own control and measurement software (NI LabWindows).

3 System Design, Implementation, and Analysis
In this section, we present details on the design, implementation, and analysis of our self-devel-
oped CS-PAPI device. It is built upon an extension of the all-optical PAPI described in Sec. 2.3
using specific CS measurements that we optimize by introducing the sparse injectivity number
(SIN) as a quality measure for CS measurement matrices.

3.1 Compressive PAPI
We conduct CS measurements of the pressure P ¼ Wu in the detector domain, ensuring
that pressures from different times are not mixed. Thus, instead of collecting m individually
sampled signals as in Eq. (4), we take CS measurements yi;τ ¼ ðAPÞi;τ ≜

P
n
k¼1 ai;jpj;l

for ði;lÞ ∈ f1; : : : ; mg × f1; : : : ; qg with m < n. Recall that n is the number of sensors,
m the number of measurements, and q the number of temporal samples. If we write
Wx ¼ ½ðW1xÞT; : : : ; ðWnxÞT �T as a block column vector where the j’th row is the signal of
the j’th ILD, the CS-PAPI data can be written as
EQ-TARGET;temp:intralink-;e006;114;342

Y ¼

2
664
y1

..

.

ym

3
775 ¼ A

2
664
W1u

..

.

Wnu

3
775 ¼ AWu; (6)

where yi is i’th CS measurement signal.
The aim of CS-PAPI image reconstruction is to recover the unknown u from data in Eq. (6).

If the matrix A would have rank n, then Eq. (6) would have the solution u ¼ W#½ðATAÞ−1ATY�,
where W# is a numerical realization of the inversion formula of the wave equation and
ðATAÞ−1AT is the least square inverse of A. In the case of compressive measurements, however,
we have m < n and the matrix ATA is singular. Thus, solving Y ¼ AWu becomes underdeter-
mined and reconstruction algorithms using specific prior information are required. Following
the prime CS strategy, we use sparsity for that purpose.

Several choices for the CS measurement matrix A have been suggested for PAT.23–25

Specifically, for PAPI with ILDs binary CS matrices are often most easily realized in practice.
In this case sparsifying transformations in the detector domain may negatively affect stable
recovery results. Note that the CS measurement matrix A in Eq. (6) does not act in the temporal
variable. Thus, for any operation Φ acting in temporal variable only, we have the commutation
relation A ∘ Φ ¼ Φ ∘ A. This has been the motivation for the two-step image reconstruction
approach proposed in Ref. 23, based on sparsifying temporal transforms, which we essentially
follow here. However, in contrast to that paper, we use a structured CS measurement matrix
where only certain sensor combinations are allowed to be guided by the experimental design.
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3.2 Proposed Structured CS Measurements
Recall that the PAPI system (see Fig. 1) consists of 64 ILDs in total, which naturally come in
16 blocks of four sensors each, where each of these blocks is characterized by sensors
being connected to the same switch. We form CS measurements by selecting at most one
sensor of each block and summing the signals over four neighboring blocks. In that way
we make four CS measurements in parallel where the first measurement uses detectors in
group ½1� ¼ f1; : : : ; 16g, the second in group ½2� ¼ f16; : : : ; 32g, the third in group
½3� ¼ f33; : : : ; 48g, and the fourth in group ½4� ¼ f49; : : : ; 64g. In every measurement, there
is at most one ILD active within one block and every other sensor is inactive. Making m0 such
measurements, results for each group in a binary m0 × 16 matrix

EQ-TARGET;temp:intralink-;e007;117;61 6AG ¼ ½AG;1jAG;2jAG;3jAG;4� ∈ f0;1g1×16 for G ¼ ½1�; ½2�; ½3�; ½4�; (7)

where each block AG;b has at most one non-vanishing entry. Entry 1 means the corresponding
sensor is active and 0 means that the sensor is inactive. An example for such a matrix with
m0 ¼ 2 measurements is

EQ-TARGET;temp:intralink-;sec3.2;117;556AG ¼
�
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

�
:

According to the general construction, each row is characterized to have at most one non-
vanishing entry in each of the four blocks and the number of rows corresponds to the number of
measurements for any group G ¼ ½1�; ½2�; ½3�; ½4�.

The overall CS matrix acting on the 64 sensors arranged in four groups takes the block
diagonal form
EQ-TARGET;temp:intralink-;e008;117;457

A ¼

2
66664

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

3
77775 ∈ f0;1g4m0×64; (8)

where AG ∈ f0;1gm0×16 has the structure as in Eq. (7). For these types of CS measurements
combined with the sparsity paradigm, we address both the unique recovery question and the
optimal design question. All matrices of the form Eqs. (7) and (8) are experimentally implement-
able with the CS-PAPI system.

Remark 1 (Selection of block size and group size) The parameters guiding the types of CS
measurements are the block size (sensors having the same switch) and the number of blocks per
group. The product of these numbers gives the group size. The specific choices are determined by
the current PAPI setting (block size four and four groups per block); however, they can be
adjusted according to different experimental designs. For example, by fixing the group size
to 16, another choice is a block size of two and eight groups per block. Such measurements
are found to improve CS capabilities. However, on the downside, this doubles the number
of fiber phase switches. Our framework is completely flexible in terms of group number and
block size. The concrete choice should be determined by practical considerations.

3.3 Experimental Realization
In order to technically implement CS on PAPI, a plug-and-play concept was developed by
designing and implementing a CS module named SUM4 (for summing over 4) that can be inte-
grated into the PAPI system. Recall that before AD conversion, PAPI has 16 acoustic signals,
where each signal corresponds to the ILD selected in the 16 blocks by the switch. As a first step,
we extend PAPI by enabling the arbitrary selection of ILDs within each group. In addition, we
construct SUM4, where signals from four neighboring blocks are summed, resulting in four
electrical signals that are sampled by the NI card. Before summation, each signal can be poten-
tially be switched off, resulting in CS measurements of the form (7) and (8). Figure 3 shows the
schematic concept of SUM4, consisting of on/off switches, summation over blocks of four, and
transmission to the ADC. In addition, Fig. 4 shows a photo of parts of the CS-PAPI system.
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SUM4 can be seen as a device for analog signal conditioning and implements the CS aspects
in the analog electrical domain. It allows the arbitrary superposition of up to four analog signals
by switchable addition of the input signals. In addition, the design permits the compensation of
system-related losses in signal amplitudes, such as those caused by impedance matching. The
low-noise design of the analog signal paths results in a signal-to-noise ratio of 80 dBV, corre-
sponding to a resolution of at least 13 bits. The selection of electrical signals to be superimposed
is done via the USB port. This involves implementing a virtual COM port with a custom control
protocol. This intuitive control protocol facilitates easy integration of the device into a larger
network of instruments via USB. To ensure optimal integration with PAPI, the quad summers
combine four separate summing groups in one device, allowing 16 input signals to be routed to
four independent outputs.

3.4 Optimal Design
The CS-PAPI system with SUM4 allows us to perform any CS measurements of the form (7) and
(8). The aim in this section is to present a strategy for selecting optimal measurements within this
class based on exact reconstruction. For that purpose, we first note that the measurements
between the subgroups are independent and thus we aim for optimal design of each m0 × 16

Fig. 4 (a) Illustration of the CS detection principle and its technical realization by SUM4.(b) Photo
of the CS-PAPI system. Note that the CS module is located in the lower right part of Fig. 3, before
the A/D converter. In addition, the 4:1 switches are modified to allow for variable ILD selection.

Fig. 3 Schematics of the PAPI system setup using 64 detector positions.
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sub-matrix of the form (7). Second, we focus on optimal design in the context of sparse recovery.
Thus, we aim for binary matrices M ∈ Rm0×16 of the form (7) with m0 < 16 which allow us to
recover sparse signals x ∈ R16×1 from data Mx. Because the signal size is small, selecting these
matrices at random (as in standard CS) resulted in matrices not enabling sparse recovery.
We therefore designed a quality measure and a strategy to construct matrices enabling sparse
recovery.

A minimal requirement for the identifiability of sparse elements x ∈ R16 is the injectivity of
M over the set of s-sparse elements. However, injectivity alone is not sufficient in the sense that
Mx1 andMx2 can get close to each other for sparse signals x1; x2 very different from each other.
Thus, we actually need to bound the difference kMx1 −Mx2k2 in order to sufficiently separate x1
and x2. While this is essentially also included in the RIP constant, in this paper, we introduce
a different concept that we think fits our aims better.

[SIN] For a matrix M ∈ Rm0×n0 and any s we define the s-sparse injectivity number (s-SIN)
of M as

EQ-TARGET;temp:intralink-;e009;117;566ΘsðMÞ ≔ inf

�kMx1 −Mx2k2
kx1 − x2k2

jx1 ≠ x2 ∈ Rn0 are s − sparse

�
: (9)

Alternatively, the s-SIN can be defined as the largest constant Θ ≥ 0 such that
kMx1 −Mx2k2 ≥ Θkx1 − x2k2 for all s-sparse signals x1; x2 ∈ Rn0 .

The s-SIN is strictly positive if and only if the matrix M is injective on the set of
all s-sparse elements. Unlike the usual RIP, it only asks for the one-sided estimate
kMx1 −Mx2k2 ≥ Θkx1 − x2k2. Furthermore, for s ≤ n0∕2, it is easy to verify that σs is the
smallest singular value among all m0 × 2s sub-matrices of M0.

A good CS matrix is a CS matrix withΘsðMÞ large relative to kMk. Values ofΘsðMÞ greater
than 0.1 have been empirically observed to result in stable and robust signal reconstruction.
Randomly selecting M from our class of matrices turned out to very often yield (almost) vanish-
ing s-SIN. On the other hand, computing the s-SIN for all admissible matrices to make an
optimal selection is computationally infeasible. Therefore, to determine a suitable CS matrix,
we use a simple algorithm where we repeatedly randomly select M from our CS matrix class
and update the matrix whenever the s-SIN is increased. This procedure is summarized in
Algorithm 1, where for PAPI we have n0 ¼ 16.

Algorithm 1 Optimized detector selection for CS matrix with large s-SIM

1: SINopt ← 0

2: LISTopt ← zeros (1,4)

3: Mopt ← zeros ðm0; n0Þ

4: for i in [1, Niter] do

5: LIST← random.sample ðm0; n0Þ ▹ Drawm0 lists of active sensors

6: M ← makeCSMatrix(LIST) ▹ Build the CS matrix

7: SIN← getSIN(M,s) ▹ Compute the s-SIN of M

8: if SIN > SINopt then

9: LISTopt ← LIST

10: Mopt ← M

11: SINopt ← SIN

12: end if

13: end for

Return SINopt, LISTopt, Mopt ▹ Return optimal CS list, matrix and SIN

Haltmeier et al.: Design, implementation, and analysis of a compressed sensing. . .

Journal of Biomedical Optics S11529-9 Vol. 29(S1)



In Algorithm 1, the function random.sample selects a feasible list of sensors and
the function makeCSMatrix forms the corresponding CS matrix. Furthermore, getSIN
computes the s-SIN. We have found empirically that the procedure results in CS matrices with
an SIN over 0.1 in a reasonable time. Specifically, we take m0 ¼ 12 and s ¼ 2 for the results
shown below.

Algorithm 1 can be extended to use block sizes other than four and numbers of blocks other
than four. The only limiting factor is the increasing numerical complexity with increasing
dimensions.

3.5 Two-Step CS Image Reconstruction
Due to the separable nature of the image reconstruction problem (6), there are naturally two types
of reconstruction methods, namely one-step image reconstruction and two-step image recon-
struction. In the two-step methods, the complete data Wu are first recovered from CS data
A½Wu� via iterative methods, and in a second step u is recovered from Wu via wave inversion
such as the FBP inversion formula. In the one-step approach, the initial pressure is directly recov-
ered from CS data using iterative methods applied with the full forward operator AW. Both
classes of methods come with certain strengths and limitations. The two-step approach is fast
as iterative signal reconstruction and is separated from the computationally costly evaluation of
W and its adjoint. Moreover, CS properties of the matrix A can be exploited together with the
sparsity ofWu, potentially after a suitable basis transform. On the downside, the image structure
of u cannot be directly integrated in the image reconstruction. The one-step approach, on the
other hand, allows for easy integration of prior information about the image to be generated.
However, CS reconstruction theory based on sparsity and specific properties of the forward
matrix can hardly be integrated. Hybrid methods such as those proposed in Ref. 26 might over-
come such issues. Another drawback of one-step approaches is that they necessitate the repeated
use of the time-consuming evaluation of W and its adjoint.

Due to its clear interpretability and computational efficiency in this study, we work with the
two-step approach. Specifically, we utilize temporal transforms in combination with 1D total
variation (TV) minimization. For that purpose, we apply a transform Φ∶Rq → Rq acting in the
time domain such that the transformed pressure PΦT has sparse gradients. Thus, an approxi-
mation H ¼ ½hT1 ; : : : ; hTn �T to PΦT can be recovered by TV minimization:

EQ-TARGET;temp:intralink-;e010;114;363kAH − YΦTk2 þ k∂1Hk1 ¼
Xq
l¼1

kAhl − ðYΦTÞlk2 þ k∂1hlk1 → min
H

; (10)

where ∂1 is the derivative in the sensor direction. Problem (10) can be solved by a series of 1D TV
minimization problems for the 1D signals hl and is numerically efficient. Further, by writing the
FBP Eq. (3) as

EQ-TARGET;temp:intralink-;e011;114;284uðrÞ ¼ −
1

πR

Z
∂BR

Z
∞

jr−zj

ð∂tt½Φ−1 ∘ Φ ∘ Wu�Þðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − jr − sj2

p dt dSðsÞ; (11)

we can recover the unknown u from the filtered signals Φ ∘ Wu in the first step. Equations (10)
and (11) constitute the two-step method we use for image reconstruction in this paper.

Remark 2 Let us mention some further work on image reconstruction in CSPAT. Using inter-
twining relations between spatial and temporal operations for the wave equation, we extended the
sparsifying transform approach to the image domain,27,28 enabling one-step inversion. This and
the two-step method can also be applied to CSPATwith standard point-like measurements. Other
early work on CSPAT has been done in Refs. 29–33, where various compressive sampling strat-
egies have been used with sparse recovery techniques. Recently, machine learning methods have
been used in the context of CSPAT.34–40

4 Numerical Experiments
Due to the restricted CS matrices, it is challenging to achieve even a small compression factor
n∕m. Note that for our structured CS matrices, we require sparsity within the four groups of
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16 sensors each. For the following numerical investigation, we use a sparsity level of s ¼ 2.
Numerically, it turns out that we need 12 measurements to obtain a non-singular SIN with the
algorithm outlined above.

4.1 Measurement Design Results
We use the parameters of our PAPI system, where measurements on a group of detectors have
the form (7), whose structure is determined by the size of the blocks (which is four for our
PAPI) and the number of blocks within a group (which is also four for our PAPI). The goal of
CS is to keep the number m0 of measurements small, while allowing the unique recovery of
certain elements. Following the sparsity paradigm, our approach is to use Algorithm 1 to find
a matrix with non-singular s-SIN. The larger s, the more general the signal class, but the less
likely it is to get a non-vanishing s-SIN. So we take 2s ¼ 4 to have at least some generality in
the signal class.

Running Algorithm 1 we found that a non-singular SIN could be found for m0 ¼ 12 mea-
surements. In particular, in almost every test run with 100 iterations, we could find a matrix with
an SIN of about 0.14, which we then selected. Even form ¼ 11 we could find such matrices after
a longer search. However, we could not increase the compression factor further in the sense that
for m ¼ 10, even after 100,000 iterations, no SIN larger than machine precision could be found.
Roughly speaking, our work demonstrates a compression factor of at least 4∕3 for block size 4
and group size 16.

Remark 3 (Variable block size and group size) In order to put our work into a broader per-
spective, it is worth investigating whether different block sizes and numbers of blocks result in a
larger compression factor. Testing our algorithm with the same group size but a block size of two,
we found that indeed, using m ¼ 10 measurements results in a nonsingular s-SIN of ∼0.21,
demonstrating an increased compression factor of 8∕5. A similar effect has been observed when
keeping the block size constant while increasing the group size.

Having a non-singular 2-SIR allows for theoretical exact recovery of two-sparse signals
from exact data. In reality, robustness regarding noise and stability concerning the sparsity level
using specific reconstruction algorithms are central. While this is not part of our theory,
we expect similar results to the (unfortunately asymptotic) theory of CS. Our numerical results
below support this.

4.2 Image Reconstruction Results
For image reconstruction, we use the two-step sparse recovery method described above. The key
there is to apply a temporal transform to obtain sparsity. Here, we use a phantom such that the
spherical means are piecewise constant. Thus, in the first step, we use the Abel transform as the
time transform and recover the spherical means using TV minimization Eq. (10).

Reconstruction results from exact and noisy data are shown in Figs. 5 and 6. We use two
different measurement matrices, the first one is found by our algorithm and the second one is a
randomly selected matrix from the CSPAT family that we corrected by educated guess to get non-
vanishing 2-SIN (see Fig. 7). The CS measurement data and the added noise are shown in Fig. 8.
For specific parameter settings, we refer to the MATLAB code that will be made publicly avail-
able. We consider the FBP reconstruction as our ground truth because our aim is to approximate
the image quality achieved with the full sensor array (64 sensors). Our ground truth phantom
consists of circles, but they are not homogeneous. The profile has been chosen such that the
spherical means of the circular regions are piecewise constant, making it well-suited for TV
minimization. In this way, we avoid a transformation that modifies the signal in that regard,
as suggested in Ref. 23.

We find that the reconstruction procedure is indeed very stable and robust. In particular, the
noise had a small negative impact on the results. The reconstruction artifacts are due to the failure
of the strict 2-sparsity assumption. To support such a claim, we also show results (Fig. 9) for
a simple phantom where 2-sparsity on the 16-groups almost holds. In this case, the CS recon-
struction hardly differs from the ground truth. For precise relative error values, see Table 1. All
reconstruction results demonstrate stability and robustness.
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Fig. 6 Reconstruction results from noisy data. (a) (from left to right): Data from 64 ILD, reconstruc-
tion using an optimized CS matrix and reconstruction using a random matrix. (b) Corresponding
time-transformed data from the pressure. (c) Corresponding FBB reconstructions. In the first
two rows, the horizontal direction represents the spatial dimension, while the vertical direction
represents time.

Fig. 5 Reconstruction results from exact data. (a) (from left to right): Data from 64 ILD, reconstruc-
tion using an optimized CS matrix and reconstruction using a random matrix. (b) Corresponding
time-transformed data from the pressure. (c) Corresponding FBB reconstructions. In the first two
rows, the horizontal direction represents the spatial dimension, while the vertical direction repre-
sents time.
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5 Conclusion and Outlook
In this paper, we presented the experimental realization of a CS-PAPI system extending the
existing tomograph. We demonstrated that the specific setup allows perfect recovery of sparse
signals. However, for that purpose, we could not select an admissible matrix uniformly at
random, but a systematic strategy exploiting the SIM.

Fig. 7 (a) Comparison of a measurement matrix for optimized 2-SIN and (b) a random matrix
according to the CS setup, which has been corrected to have non-vanishing SIN. (c) The computed
s-SIN for the sparsity level 2s ¼ 1;2; 3;4; 5.

Fig. 8 Exact and noisy data for the optimized and the random matrix. The horizontal direction
represents the spatial dimension, while the vertical direction represents time.
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One future task is to go beyond the sparsity model. Thus our aim is to find CS matrices
A ∈ Rm×16 not targeting sparsity but actual real data. This can be done two-fold. First one can
train a matrix such that 16 × 1 pieces in data domain are optimally separated. Second optimi-
zation can be improved by optimizing over the image space. This allows us to consider that, due
to the forward map W, the 16 × 1 patches are actually correlated since they originate from the
same initial source. Deep learning and neural networks are natural candidates unveiling such
hidden correlation.
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Code and Data Availability
The code for generating a CS matrix with large SIN as well for producing the shown numerical
results are available upon request. No additional data are required for this study.

Fig. 9 Reconstruction results of sparse object. (a) (from left to right): Data from 64 ILD, reconstruc-
tion using an optimized CS matrix and reconstruction using a random matrix. (b) Corresponding
time-transformed data from the pressure. (c) Corresponding FBB reconstructions. In the first two
rows, the horizontal direction represents the spatial dimension, while the vertical direction repre-
sents time.

Table 1 Relative l2 error in the data (row 1), the CS reconstruction (row 2), and the final FBP
reconstruction error using the optimized and random matrix (row 3).

Optimized A Random A

Data CS FBP Data CS FBP

Non-sparse phantom (noisy) 0.0901 0.3159 0.6686 0.0766 0.3414 0.6810

Non-sparse phantom (exact) x 0.2594 0.6049 x 0.2849 0.6571

Sparse phantom (exact) x 0.0003 0.0010 x 0.0107 0.0509
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