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ABSTRACT. Purpose: Interpreting echocardiographic exams requires substantial manual inter-
action as videos lack scan-plane information and have inconsistent image quality,
ranging from clinically relevant to unrecognizable. Thus, a manual prerequisite step
for analysis is to select the appropriate views that showcase both the target anatomy
and optimal image quality. To automate this selection process, we present a method
for automatic classification of routine views, recognition of unknown views, and qual-
ity assessment of detected views.

Approach: We train a neural network for view classification and employ the logit
activations from the neural network for unknown view recognition. Subsequently,
we train a linear regression algorithm that uses feature embeddings from the neural
network to predict view quality scores. We evaluate the method on a clinical test set
of 2466 echocardiography videos with expert-annotated view labels and a subset of
438 videos with expert-rated view quality scores. A second observer annotated a
subset of 894 videos, including all quality-rated videos.

Results: The proposed method achieved an accuracy of 84.9%� 0.67 for the joint
objective of routine view classification and unknown view recognition, whereas a
second observer reached an accuracy of 87.6%. For view quality assessment, the
method achieved a Spearman’s rank correlation coefficient of 0.71, whereas a sec-
ond observer reached a correlation coefficient of 0.62.

Conclusion: The proposedmethod approaches expert-level performance, enabling
fully automatic selection of the most appropriate views for manual or automatic
downstream analysis.
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1 Introduction
Transthoracic echocardiography (TTE) is an essential part of the cardiac patient pathway and is
characterized by speed of acquisition, high temporal resolution, cost-efficiency, and low patient
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burden. An exam may contain ∼10 to 50 clipped videos (cine loops) of standardized scan planes
(views) showing a cross-section of the heart, typically with multiple videos of the same
scan plane.

Despite a multitude of semi-automated tools provided by (commercially) available software
packages, echocardiographic interpretation requires a fair amount of manual interaction and
analysis.1,2 Semi-automatic analysis tools require specific views of the heart and thus require
the end-user to manually select the right videos. Besides selecting the appropriate view, it is
crucial for sonographers to identify the video with the highest image quality as multiple videos
of the same view are often acquired. These additional steps motivate the need to integrate both
automatic view classification and quality assessment into the clinical workflow. Such integration
would streamline the process and improve current semi-automatic analysis tools.

The goal of view classification in echocardiography is to automatically infer the view of the
heart, which is defined by the acoustic window through which the patient is scanned, and the
cross-sectional plane that is acquired. For the past two decades, this problem has been addressed
with machine learning (ML) methods. As Penatti et al.3 outlined, early ML approaches for view
classification discriminated different views based on preprocessed image features. For example,
Ebadollahi et al.4 applied an algorithm to detect and model the cardiac chambers as a graph
structure and then used a support-vector machine to classify the view. Later, with the advent
of deep neural networks (DNNs) and deep convolutional neural networks (CNNs) in particular,
the focus shifted to end-to-end learning. Gao et al.5 proposed a two-stream CNN to classify the
view in echocardiography videos. The method incorporated cardiac motion information by
processing regular image data in one stream while concurrently processing optical flow images
in the other. Madani et al.6 employed a convolutional neural network for view classification and
obtained saliency maps to address the interpretability of inferred predictions. To better align with
the requirements of downstream tasks, Zhang et al.7 included more fine-grained apical classes in
their classification model and added a separate class for outliers. Østvik et al.8 employed a 2D
CNN to detect the optimal scan plane in a 3D volume acquired by 3D echocardiography. Howard
et al.9 evaluated a number of architectural approaches with CNNs and found that a two-stream
network similar to Gao et al.’s5 method led to the best view classification performance, which
approached the inter-observer level of agreement. The most recent efforts focused on minimizing
computational cost while upholding state-of-the-art performance. For example, Vaseli et al.10

proposed a knowledge distillation technique. Azarmehr et al.11 proposed a neural architecture
search for view classification. This resulted in an efficient architecture of half a million param-
eters that outperformed a computationally heavy DenseNet20112 with 20 million parameters on
the dataset described by Howard et al.9

Although existing echocardiography view classification methods achieve close to expert-
level performance with deep neural networks, they have been evaluated on curated (i.e., closed)
datasets. For example, Howard et al.9 excluded 4% of their data because they were considered
unclassifiable either because the view changed during a video or because the video lacked visible
anatomical landmarks. On the other hand, Østvik et al.8 addressed the detection of unknown data
by assigning an output logit to the class, but to evaluate the method, they used a nonclinical
dataset. Zhang et al.7 trained their model with a clinical dataset including outliers but did not
evaluate the model’s response to novel, truly unseen classes of data that were not included in the
training set.

The problem of unclassifiable data is greatly exacerbated in real-time clinical deployment.
Training data typically consist of retrospectively collected videos that the sonographer recorded
only after diligently positioning the ultrasound probe to obtain the optimal view. Therefore, while
transitioning between optimized views, the sonographer exposes the view classification algo-
rithm to unknown categories of data, potentially leading to incorrect view classification.

The recognition of unknown data can be viewed as an open set recognition problem.13 Open
set recognition addresses the inability of machine learning methods to recognize data that are
very different from the training data: the open set of unknown data. By definition, open set rec-
ognition has a twofold goal: To classify samples that belong to the known set of classes from the
training distribution and to recognize samples that are unknown (i.e., being out-of-distribution).
In open set recognition, out-of-distribution detection is not viewed in isolation.14,15
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In deep neural networks (DNNs), recognition of unknown data is typically performed using
an anomaly detection score such as the maximum Softmax probability or maximum logit
activation.16 In addition, several other scores have been proposed, such as the Mahalanobis dis-
tance metric,17 OpenMax,18 and more advanced approaches such as one based on generative
modeling.19 However, Vaze et al.15 and Dietterich and Guyer20 demonstrated that the simple
logit- or Softmax-based approach still achieves state-of-the-art performance on important com-
puter vision benchmarks.

The problem of detecting unknown views can be valuable in addressing automatic quality
assessment in echocardiography. In poor-quality echocardiograms, the view is typically unrec-
ognizable because cardiac structures are either poorly visible or simply missing. Such missing
features strongly correlate with reduced image quality. As the output of DNN classifiers can be
interpreted as a weighted sum of familiar features,20 a DNN view classifier is expected to assign
low output activations to a poor-quality echocardiogram. Zhang et al.7 therefore proposed to use
the maximum Softmax probability from their view classifier as a measure of quality, but they
found only modest associations between quality and this measure.

Even when addressed manually by experts, image quality assessment is a challenging task in
echocardiography: it is time-consuming and subjective, thus prone to large inter- and intra-rater
variability.21 This apparent subjectivity exists in spite of standardized scoring protocols, such as
the one developed by Gaudet et al.,22 who created questionnaires to systematically rate the qual-
ity of each view. The questions inquire about the presence of structures, as well as appropriate
gain, imaging depth, centering, and axial alignment with the ultrasound beam. Abdi et al.23,24

employed this protocol to define a reference standard for automatic view quality assessment with
deep neural networks. Similarly, Labs et al.25 designed their own quality assessment question-
naire to define a reference standard for training their DNN. Although Labs et al.25 only evaluated
apical two- and four-chamber views, their questionnaire inquired about more detailed features
than Gaudet et al.’s22, with questions about left-ventricle foreshortedness and chamber clarity.
Furthermore, Liao et al. 21 proposed to model the uncertainty in automatic quality assessment as
their reference-standard quality ratings showed high intra-rater variability. Zamzmi et al.26 com-
bined the task of view classification and quality assessment using a single neural network back-
bone with two classification heads: one for view classification and one for image quality
assessment.

To address the challenges of automatic view classification, unknown view detection, and
quality assessment, we propose an approach where we utilize a single deep learning network
to classify echocardiography views, detect unknown data, and assess view quality. The network
discriminates 10 commonly analyzed views: four parasternal views, four apical views, and two
subcostal views [Fig. 1(a)]. In addition, we leverage the maximum logit activations from the
network to detect unknown echocardiography views, namely: (i) Videos with poor image quality,
(ii) videos from a novel category, and (iii) videos fluctuating between multiple views. Finally, we

Fig. 1 Transthoracic echocardiography view classes. (a) The known classes as part of the training
set—Top row: apical two-, three-, four-, and five-chamber view; the parasternal long axis view
(PLAX). Bottom row: parasternal short axis (PSAX) at the aortic valve level; PSAX at the mid-
ventricle or apex; PSAX at the mitral valve; subcostal four-chamber view; the subcostal view with
inferior vena cava. (b) The unknown classes to be detected while excluded from the training set—
Top row: poor image quality and a novel category (here: subcostal short-axis). Bottom row: multiple
views in one video.
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employ the feature embeddings of the trained neural network to predict a view quality score with
a linear classifier, which is trained separately.

This paper is organized as follows: Sec. 2 describes our dataset, Sec. 3 outlines the proposed
method, Sec. 4 describes the relevant metrics for the evaluation, and Sec. 5 describes the experi-
ments and their results. Additional experiments are described in Sec. 6, where we compare the
method with a different approach to anomaly detection, and we evaluate our view classification
network on the public CAMUS27 and Echonet-LVH28 datasets. Finally, we provide a discussion
and conclusion in Secs. 7 and 8, respectively. For experimental comparisons regarding anomaly
scores and model architectures, we refer to the Secs. 9.1 and 9.2 in the Appendix, respectively.

2 Data

2.1 Data Collection
We included a set of 619 retrospectively collected transthoracic echocardiography studies, com-
prising 5366 videos, derived from 598 unique patients following approval by the Amsterdam
UMC Medical Research Ethics Committee. Among these, 378 studies involving 357 patients
were collected from Amsterdam UMC—location University of Amsterdam (Center A), whereas
241 studies from 241 patients were collected from the Amsterdam UMC—location Free
University (Center B).29 The dataset is further detailed in Table 1. Details about training and
test data division and the resulting view-label statistics will be provided in Sec. 5.1.

The included patients presented symptoms of angina pectoris (chest pain) or dyspnea
(shortness of breath) at the time of their first echo exam, with most patients being suspected
of chronic coronary syndromes. The Amsterdam UMC Medical Research Ethics Committee
waived the need for informed consent.

2.2 Reference Annotations
To define a reference standard for view classification, two expert cardiologists assigned one of
the following 10 view labels to each video: apical two-, three-, four-, or five-chamber view;
parasternal long-axis view (PLAX); parasternal short-axis view (PSAX) at the level of the aortic
valve, mitral valve, or mid/apex; the subcostal four-chamber view; or the subcostal view of the
internal vena cava [Fig. 1(a)]. If a video did not unambiguously fit into any view class, it was
labeled as one of three unknowns, i.e., open or out-of-distribution categories: novel category,
corresponding to an identifiable view category absent in the training set; a poor quality video,
indicating a view unidentifiable by an expert; and multiple views, indicating that the video
fluctuates between two or more known classes within a single video sequence [Fig. 1(b)].

To define a reference standard for the quality of the videos, a subset of the data was rated
based on a view quality questionnaire described by Gaudet et al.22 The questionnaire contains

Table 1 Details of collected echocardiography studies.

Center A (University of Amsterdam) Center B (Free University)

Studies 378 241

Patients 357 241

% Male 59% 59%

Age—years, median (IQR) 67 (15.7) 65 (15.0)

Manufacturer GE Philips

Machine types (studies) Vivid: E9 (201), E95 (28),
q (18), 7 (44), S6 (86), S70 (1)

EPIQ 7C (232),
Affiniti 70C (9)

Frame rate—Hz, median (IQR) 55 (7.0) 50 (6.5)

Frames, median (IQR) 108 (37) 99 (36)

Heart cycles, median (IQR) 2.1 (0.1) 2.0 (0.1)
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ordered multiple-choice questions, which evaluate the visibility of the imaged anatomy, the cen-
tering of these structures within the field of view, and the depth and gain of the image. As the
questions are view-specific and their number varies per view, we normalized the total scores
between 0 and 1. To increase scoring reproducibility,30 videos were grouped into sets of 8 to
10 in a custom-built interface during the annotation procedure. In each group, the videos were
vertically aligned, playing simultaneously. The platform enabled a rater to compare, sort, and
reassess the video scores within a set to potentially rectify any initial misjudgments.

3 Method
We designed an automatic method that performs view classification, unknown view recognition,
and view quality assessment (see Fig. 2).

First, we train a 2D CNN (Resnet-50-v231) to predict one of C ¼ 10 known view classes from
an echocardiography video using cross-entropy loss. For this, we (sub-)sample a set of T still frames
from the video resulting in a 3-dimensional array, X, with shape T ×H ×W and pixel elements
xtij ∈ ½0;1�. During training, T is a chosen hyperparameter and the frames are sampled randomly
from the video, whereas during test time, the full sequence of frames is sampled. The CNN classifier
processes each frame independently, predicting a class-logit vector (ŷt) for each frame. Finally, the
video-based view prediction is obtained by calculating the mean of class logit vectors along the
temporal dimension and taking the index of its highest value: ŷ ¼ arg maxyð1T

P
T−1
t¼0 ŷtÞ.

Second, from the outputs of the trained CNN, we perform unknown view recognition.
We derive an anomaly score S during test time, which is the maximum logit class activation,
often abbreviated as max logit. In our context, the maximum logit is defined as
Sðy ∈ CjXÞ ¼ maxð1T

P
T−1
t¼0 ŷtÞ. A minimum acceptance threshold δ indicates whether a video

belongs to the set C of (known) training classes or the set of unknown classes: a video with a max
logit below a defined threshold will be rejected and marked as unknown.

Last, we employ the trained CNN (down to the penultimate layer) to train a quality assess-
ment model. We employ a set of quality-rated training videos, extract the intermediate activation
vectors lt from the CNN layer prior to the linear class mapping, and average those vectors over
the frames of a video: l ¼ 1

T

P
T−1
t¼0 lt. We use these time-averaged feature embeddings to fit a

linear regression model. Given that the feature embedding layer is high-dimensional, we impose
a sparse prior on the weights: we fit a Lasso regression model, which minimizes the loss function
consisting of the mean squared error and an L1-weight penalty

EQ-TARGET;temp:intralink-;e001;117;337Loss ¼ 1

2N

XN
k¼1

kw · lk − yqk þ bk22 þ αkwk1; (1)

where yq ∈ ½0;1� is the Gaudet-based22 quality label, w is the weights, b is the learned bias, and α
is a hyperparameter to control the degree of regularization.

Fig. 2 Overview of the proposed method in deployment. An echocardiography video is split into T
frames, which are processed separately by a 2-dimensional ResNet-50. Its frame-based logits are
averaged to give C video-based logits and the final output: A view prediction and the maximum
logit, where the latter is used as an anomaly score to either accept/reject a view. In addition, the
frame-based feature vectors from the ResNet-50 Backbone are averaged across frames and
regressed linearly to a quality score. Note that the linear regression for quality assessment is
trained separately on a small subset of videos with quality labels.
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4 Evaluation
To assess the performance of our method on view classification, unknown view recognition, and
quality assessment, the following metrics are used.

4.1 Accuracy
We define closed set accuracy and full set accuracy. Closed set accuracy is defined as the
prediction accuracy on the closed dataset of known views when the unknown views (i.e., the
open set) are omitted

EQ-TARGET;temp:intralink-;e002;114;635Aclosed ¼
jfX∶y ∈ C ∧ ŷ ¼ ygj

jfX∶y ∈ Cgj ; (2)

where y is the target view class, ŷ is the predicted class and C is the set of known classes. j · j is
used to denote the cardinality (number of videos) of a set.

Full set accuracy is computed from all data (both known and unknown views) and depends
on the chosen anomaly score threshold for acceptance of a video. More specifically, the full set
accuracy is expressed as the sum of correctly classified known views and the correctly recognized
unknown views, expressed as a fraction of the size of the full dataset

EQ-TARGET;temp:intralink-;e003;114;527AðδÞ ¼

0
B@

jfX∶y ∈ C ∧ ŷ ¼ y ∧ SðXÞ ≥ δgj
þ

jfX∶y ∈= C ∧ SðXÞ < δgj

1
CA

jfXgj ; (3)

where δ is a chosen threshold on the anomaly score SðXÞ. The δ-threshold is set to the value that
maximizes AðδÞ on a validation set other than the test set.

4.2 Receiver-Operating-Characteristic Curve (ROC-AUC)
We evaluate known-view classification performance through the area under the receiver-
operating-characteristic curve (ROC-AUC). Here, we employ a one-versus-one strategy, as
opposed to a one-versus-rest. Hence, the ROC-AUC is first computed among all possible pairs
of known classes and then averaged. This preserves the class-distribution-agnostic properties of
the ROC-AUC in a multiclass setting.32

Conversely, to assess the performance of unknown view recognition, we use a one-
versus-rest strategy. In this case, the positives represent the accepted video samples, and the
negatives represent the rejected ones. Thus, the true positive rate (TPR) and false positive rate
(FPR) are defined as:

EQ-TARGET;temp:intralink-;e004;114;301TPRðδÞ ¼ jfX∶y ∈ C ∧ SðXÞ ≥ δgj
jfX∶y ∈ Cgj ; (4)

and

EQ-TARGET;temp:intralink-;e005;114;252FPRðδÞ ¼ jfX∶y ∈= C ∧ SðXÞ ≥ δgj
jfX∶y ∈= Cgj : (5)

Using these definitions, we additionally compute the balanced accuracy for unknown view
recognition, which is defined as the average of TPR and specificity (1 – FPR) for a given δ.

4.3 Open Set Classification Rate (OSCR)
To jointly evaluate known-view classification and unknown view recognition, we compute
OSCR.14 This equates to the true positive rate for unknown view recognition but under the extra
condition that the accepted known-view predictions are correct (ŷ ¼ y)

EQ-TARGET;temp:intralink-;e006;114;131OSCRðδÞ ¼ jfX∶y ∈ C ∧ ŷ ¼ y ∧ SðXÞ ≥ δgj
jfX∶y ∈ Cgj : (6)

We report the area under the curve of the OSCR plotted against a false positive rate.14
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4.4 Spearman Correlation
To evaluate automatic view quality assessment, we assess the correlation between expert-rated
and predicted quality scores using Spearman’s rank correlation coefficient, which measures how
well their relation can be described by a monotonic function.

5 Experiments and Results
First, we describe the dataset division for the conducted experiments. Then, we describe the
architecture and training of our view classification network and assess its performance on stan-
dard view classification and unknown view recognition. Finally, we evaluate our method’s ability
to predict view quality.

5.1 Data Division
View classification and quality assessment were trained and evaluated successively. As illustrated
in Fig. 3, for the view classification stage, the data set from Center A (357 patients), which
consisted of 4872 videos, was split into a training set of 2945 videos and a test set of 1927
videos. We split the data randomly on the patient level and confirmed that the split had not
introduced large distributional shifts with respect to age and sex. The training set for automatic
quality assessment (QA) consists of videos sourced from the view classification test set from
Center A (500 videos; 50 from each known class). Across all experiments, the included data
from Center B (241 patients, 494 videos) were part of the test sets. The resulting view class
distributions are detailed in Table 2. The merged sets A2þ B are referred to as the interobserver
test set.

5.2 View Classification and Unknown View Recognition

5.2.1 Architecture and training

Prior to analysis, our video data were converted from three-channel pixel data ∈ ½0;255� to
single-channel grayscale ∈ ½0;1� as regular (B-mode) ultrasound does not convey color informa-
tion. To remove additional irrelevant information from the corners of the image, such as heart rate
and ECG signal, the videos were cropped based on the video metadata. In addition, videos were
resized to 224 pixels in height with a maintained image aspect ratio and center-cropped to a
square image measuring 224 × 224 pixels.

For view classification, we used a BiTv2 architecture,31 with pretrained weights from
Imagenet-21k. This architecture is based on Resnet-50-v2,33 which consists of a downsampling
layer, 48 convolutional layers with an identity mapping every three layers, and a fully connected

Fig. 3 Flow diagram illustrating the dataset division for the experiments. The height of each seg-
ment is proportional to the number of videos in a set. The dataset is sourced from two centers: The
data from Center A are split into a training and test set for the view classification stage of the experi-
ments (1), after which a subset is taken to train a quality assessment model (2). Center B is part of
the test set at both stages. Test sets A1 and A2 overlap on the patient level.
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layer. We used the adjusted version of this architecture, where the batch normalization layers are
replaced with a combination of group normalization34 and weight standardization,35 which
allowed efficient pretraining at scale on Imagenet-21k.31 To process single-channel gray-scale
images, we averaged the initial weights in the input layer, which normally process three-channel
RGB input.

To augment training data, a cascade of random transformations was performed, each with
50% probability in the following order: rotation with the angle uniformly sampled between −25
and 25 degrees; gamma correction with gamma uniformly sampled between 0.5 and 2; resized
crop with scaling parameter uniformly sampled between 0.2 and 2; elastic distortion with inten-
sity scaling factor α set to 2 in x- and y-direction;36 and additive Gaussian noise with standard
deviation 0.01.

Mini-batches consisted of 16 videos with eight still frames, where frames were sampled
randomly from each video sequence (without replacement). Preliminary experiments showed
that the number of sampled frames did not appreciably affect training performance, and eight
frames per video were chosen to make optimal use of the available memory resources. To address
the unbalanced class distribution in the data, the data sampler sampled each class uniformly with

Table 2 View-label statistics of datasets used for view classification. The number of videos is
shown both as a number (n) and a percentage. The unknown views in the training set lack
fine-grained labels, hence the absence of their statistics.

Dataset → Training

Test

Set A1 Set A2 Set B

Known views: n (%) n (%) n (%) n (%)

Apical {.}

Two-chamber 444 (15.1) 175 (10.8) 39 (13.0) 61 (12.3)

Three-chamber 277 (9.4) 145 (8.9) 26 (8.7) 43 (8.7)

Four-chamber 542 (18.4) 270 (16.6) 55 (18.3) 91 (18.4)

Five-chamber 169 (5.7) 77 (4.7) 10 (3.3) 15 (3.0)

Parasternal {.}

Long axis 419 (14.2) 242 (14.9) 41 (13.7) 69 (14.0)

PSAX {.}

Aortic valve 226 (7.7) 112 (6.9) 18 (6.0) 44 (8.9)

Mitral valve 221 (7.5) 106 (6.5) 18 (6.0) 35 (7.1)

Mid/apex 141 (4.8) 89 (5.5) 12 (4.0) 27 (5.5)

Subcostal {.}

Four chamber 182 (6.2) 146 (9.0) 27 (9.0) 25 (5.1)

IVC 80 (2.7) 75 (4.6) 18 (6.0) 28 (5.7)

Total: 2701 (91.7) 1437 (88.3) 264 (88.0) 438 (88.7)

Unknown views:

Novel category — 114 (7.0) 20 (6.7) 17 (3.4)

Poor quality — 65 (4.0) 15 (5.0) 36 (7.3)

Multiple views — 11 (0.7) 1 (0.3) 3 (0.6)

Total: 244 (8.3) 190 (11.7) 36 (12.0) 56 (11.3)
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replacement of drawn samples. The network was trained for 300 epochs, and the learning rate
was reduced by a factor of 10 after the 150th and 250th epoch. Here, we defined an epoch as the
number of iterations it would take to sample all the videos of the training set without uniform
sampling or replacement. This means that, during an epoch, videos from overrepresented classes
were more likely to be skipped and videos from underrepresented classes were more likely to be
sampled multiple times. The network was optimized using cross-entropy loss and AdamW opti-
mizer with a learning rate of 1e − 4, β equal to (0, 0.999), ϵ set to 1e − 8, and weight decay set to
0.01.37 For testing, the minimum acceptance threshold for the anomaly score was set to the
threshold that maximizes the full set accuracy on the validation set.

5.2.2 Results

To investigate the model’s ability to jointly perform view classification and unknown view rec-
ognition, we evaluated its performance on videos with both known and unknown views. The
results are summarized in Fig. 4. On the test set from Center A [Fig. 4(a)], the model achieved
84.0% full set accuracy [Eq. (3)] and 93.5% closed set accuracy [Eq. (2)]. On the cross-vendor
test set from Center B [Fig. 4(b)], the model shows no performance degradation compared with
test set A, which originates from that same center as the training set.

The most frequent disagreement of our model with the reference labels [Fig. 4(a)] can be
seen among the following pair of classes: PSAXmid/apex and PSAX mitral, where disagreement
was found for 31 videos in total. Other notable errors were observed with the apical four-chamber
view (A4C), which was misclassified in 11 cases as either A2C or A5C. Example images from
these classification results are shown in Fig. 5. As these examples suggest, most classification
mistakes can be attributed to videos with poor visibility of anatomical features that distinguish
view classes, such as the ascending aorta for the A5C and the mitral valve for the PSAX mitral.

With the chosen anomaly acceptance threshold, the proposed method moderately favors
false acceptances over false rejections: Out of 1627 videos from test set A, we found 135 false
positives and 99 false negatives. Among the false positives, there is a high prevalence of videos
classified as subcostal views. Upon further inspection, we found that those views indeed belong
to the broader category of subcostal views but not one of the known subcostal views from the
training set. Moreover, a visual comparison of the empirical anomaly score distributions of
known and unknown views revealed no notable differences between the validation and test sets.

To compare model performance with interobserver variability, we evaluated the model on
the interobserver test set [Fig. 4(c)]. Although the observers agreed on the classification in 87.6%

(c)(a) (b)

Fig. 4 Confusion matrices for several experiments, displayed with closed set accuracy [Eq. (2)],
Full set accuracy [Eq. (3)] and (balanced) unknown-view recognition accuracy (Sec. 4.2). The last
row and column (shades of orange) represent unknown-view reference labels and predictions,
respectively. (a) Proposed method evaluated on set A (A1þ A2, Fig. 3). (b) Proposed method
evaluated on set B. (c) Results on the interobserver test set (A2þ B, Fig. 3).
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of the views, the model agreed for 84.1% of cases with rater 1, thereby approaching interobserver
agreement.

Inference times for the automatic method averaged at 180 ms per video and 1.63 ms per
frame on consumer-grade hardware (11th Gen Intel Core i7-11700 @ 2.5 GHz CPU, GeForce
RTX 3070 GPU, and SSD data storage). As a typical echocardiography acquisition records at
∼20 ms per frame, the algorithm can be deployed in real time.

(a) (b)

Fig. 5 Example test images of most frequently misclassified views from the apical (a) and
parasternal (b) window. Misclassified views can generally be attributed to difficult examples with
poor visibility of the anatomical features that distinguish one view from another.

Table 3 Inter-rater and model-rater Spearman correlation on video quality assessment (QA)—
evaluated on the QA test set (Fig. 3). R1 and R2 stand for raters 1 and 2, respectively. The QA
training set was annotated by rater 1. The best result among the three comparisons is displayed in
bold font.

Comparison:

Spearman’s Rank Corr. Coef. (↑)

R1/R2 R1/model R2/model

A2C 0.629 0.747 0.536

A3C 0.864 0.587 0.706

A4C 0.668 0.733 0.606

A5C 0.665 0.798 0.542

PLAX 0.773 0.703 0.522

PSAX aortic 0.338 0.706 0.485

PSAX mitral 0.708 0.785 0.539

PSAX mid or apex 0.634 0.734 0.517

SC-4C 0.646 0.762 0.510

SC-IVC 0.229 0.504 0.091

Mean � std 0.62� 0.18 0.71� 0.09 0.51� 0.15
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5.3 Quality Assessment

5.3.1 Training

For quality assessment, we used the QA training set and test set as detailed in Fig. 3 and
employed the trained CNN described in Sec. 6.1 (with frozen weights). We fed the videos from
the QA training set to the view classifier and extracted time-averaged feature vectors from the
penultimate layer. Subsequently, we used these feature vectors to train a fivefold cross-validated
linear regression model with L1 regularization, using the LassoCV module from the Scikit-learn
Python library. During test time, the videos of the test set were fed successively through the view
classification model and the linear model to produce quality assessment predictions (Fig. 2). All
predictions of the regression model were clamped between 0 and 1.

5.3.2 Results

The achieved results are summarized in Table 3 and Figs. 6 and 7. Figure 6 shows test examples
ranked by automatic quality scores in ascending order, where a clear positive trend in view qual-
ity can be observed from left to right. The automatic ranking disagrees mostly with the expert
ratings in the last column: two disagreements between the good and excellent categories, and a
zoomed PLAX view, which was rated only as fair by the expert. As Fig. 7 shows, the model
agrees in 52.7% of cases with rater 1, whereas in 96.6% of cases, the agreement between the

Fig. 6 Example images from the quality assessment test set with automatic (auto) and expert view
quality ratings (R1). Automatic ratings are given both as frame-level (I) and video-level (V ) esti-
mations, whereas expert ratings only exist on the video level.
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method and rater 1 is at most one category off. This surpasses the inter-rater agreement levels,
which are only 44.0% and 88.6%, respectively. Spearman’s Rank correlation coefficients
(Table 3) reveal that the quality scores predicted by our model are closely aligned with the assess-
ments of rater 1, which labeled the training data. On average, this alignment surpasses the cor-
relation between rater 1 and rater 2. Only A3C and PLAX videos show superior agreement
between raters.

6 Additional Experiments

6.1 Training Classifier with Unknown Views as Outlier Category
In our earlier experiments, the available unknown views were included in the test set but excluded
from the training set. This simulates a realistic clinical scenario, where the model could be
exposed to unknown unknowns. However, to assess the benefits of using the available unknown
views for training, we conducted an experiment using outlier exposure.38 For this, we included
the available unknown views in the training set and added an extra class to the model backbone to
represent these videos. This effectively turns those classes into known unknowns, which makes
this experiment deviate from our original focus on detecting unknown unknowns.

For training, all reference labels of outlier videos were collapsed to a single outlier class
without further specification of the fine-grained (outlier) label. The network architecture was
adjusted by including an extra (scalar) output logit, appended to the logit vector representing
the in-distribution class activations. For this experiment, we maintained class-balanced sampling,
treating the outlier class as one of the in-distribution classes.

For testing, the in-distribution prediction of a video was inferred to be the largest activation
of the known class logits. To compute the anomaly score, we experimented with the two follow-
ing configurations: (a) In line with the proposed method, we computed the maximum logit acti-
vation over the known classes, now explicitly ignoring the outlier class activation,20 and (b) we
sum the Softmax probabilities of the known classes38 (i.e., summed Softmax).

To allow a meaningful comparison between approaches, we trained both the regular and
outlier-exposed model using fivefold cross-validation (see Sec. 9.1). The results are summarized
in Table 4 and Fig. 8. Although outlier exposure did not improve closed set accuracy and known-
view ROC-AUC, Table 4 shows that outlier exposure led to improvements in full set accuracy,
open set classification rate (OSCR), and unknown-view detection ROC-AUC. As Fig. 8
illustrates, the enhanced metrics are due to the improved detection of novel categories.
Finally, the max logit activation outperforms the Softmax-based anomaly score, most notably
on multiple view detection.

6.2 Evaluation of Public Datasets
To allow comparisons with our work, we evaluate our approach on two publicly available
datasets. The first dataset, known as the CAMUS dataset,27 contains echocardiographic videos

(a) (b)

Fig. 7 Confusion matrices of view quality assessment on test set B. (a) Model agreement with rater
1 (52.7%). (b) Interobserver agreement (44.0%). Normalized quality scores were binned according
to the following intervals: poor [0, 0.25], fair (0.25, 0.5], good (0.5, 0.75], and excellent (0.75, 1].
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of apical two- and four-chamber views. The CAMUS dataset was originally developed to enable
automatic left ventricle segmentation. The second dataset, known as EchoNet-LVH,28 consists
primarily of PLAX views and was developed to enable automatic assessment of left-ventricle
wall thickness.

We repurpose these datasets to test whether our model correctly identifies the views con-
tained within them. For this, we employ the trained model from a randomly selected validation
fold described in Sec. 6.1. From the public datasets, we utilized the full set as a test set and
applied the same preprocessing steps, as described in Sec. 5.2.1. The results are summarized
in Table 5. The proposed method achieved a view classification accuracy of 93.0% on
CAMUS and 91.6% on EchoNet-LVH.

Furthermore, because the CAMUS dataset includes image quality labels, we used these to
evaluate our automatic method for view quality assessment. The results are summarized in Fig. 9
as box-and-whisker plots grouped by reference category (poor, medium, or good). The results
demonstrate a clear positive correlation between the estimated and reference quality.

Through the visual inspection of the misclassified views in the CAMUS dataset, we found
that several videos with A2C and A4C reference labels would be more accurately described as
A3C and A5C views, respectively. Two such examples are shown in Figs. 10(a) and 10(b). This
finding aligns with the original dataset descriptors,27 which acknowledge the inclusion of A5C

Table 4 Comparison of the proposed method with regular training (Sec. 5.2.1) and training with
outlier exposure (Sec. 6.1). Evaluation metrics include closed set accuracy [Eq. (2)], full set accu-
racy [Eq. (3)], open set classification rate AUC (OSCR-AUC) [Eqs. (5), (6)], known view classi-
fication ROC-AUC, and unknown-view recognition ROC-AUC [Eqs. (4), (5)]. Results (mean
(%) ± standard deviation) are obtained through training with fivefold cross-validation and testing
on the full test set. Experiment with the greatest mean of row is displayed in bold font.

Regular training
(max logit)

Outlier exposure
(max logit)

Outlier exposure
(Softmax)

Closed set accuracy [Eq. (2)] 93.2� 0.80 93.5� 0.28 93.5� 0.28

Full set accuracy [Eq. (3)] 84.9� 0.67 85.8� 0.44 85.1� 0.30

OSCR-AUC [Eqs. (5), (6)] 78.9� 1.68 82.9� 0.35 80.2� 0.56

ROC-AUC known views 99.4� 0.06 99.1� 0.04 99.1� 0.04

ROC-AUC unknown views [Eqs. (4), (5)] 82.7� 1.36 86.9� 0.24 85.2� 0.35

Fig. 8 Cross-validated performance of training with outlier exposure in comparison with regular
training on three different subtasks (a)–(c) of unknown view detection on the full test set
(A1þ A2þ B, Fig. 3). For each subtask, we generate the ROC curves by removing the samples
of the other two subcategories from the test set. To obtain the curves as displayed, we average the
(interpolated) true positive rates across the validation folds.
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views within the A4C category when a true A4C view was unavailable. Our model correctly
identified a significant proportion of these cases as true A5C or A3C views: 20 out of 30 cases
that our model identified as five-chamber views were true A5C views. Similarly, all eight cases
that our model identified as A3C views were true A3C views. In addition, misclassifications
between A2C and A4C consisted entirely of edge cases or cases with poor visibility of the target
anatomy.

Similar challenges were encountered with the EchoNet-LVH dataset, particularly when
affected by poor image quality or artifacts [see Figs. 10(d) and 10(e)]. In some cases, the model

Fig. 9 Automatically inferred view quality scores from the CAMUS dataset.27 The dataset provided
both view and image quality labels as metadata to their videos.

Table 5 Classification results on the CAMUS and EchoNet-LVH datasets. The classification
accuracy amounts to 93.0% on CAMUS (A2C and A4C) and 91.6% on EchoNet-LVH (PLAX).
Numbers in bold font indicate correct classifications.

Reference

A2C A4C PLAX

Predicted A2C 478 18 28

A3C 8 0 183

A4C 10 452 30

A5C 1 30 6

PLAX 0 0 10,987

PSAX aortic 0 0 20

PSAX mid/apex 0 0 35

PSAX mitral 1 0 10

SC-4C 0 0 5

SC-IVC 0 0 100

Unknown 2 0 593
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misclassified PLAX views as one of the other known view classes, but it predominantly mis-
identified PLAX views as unknown. Visual inspection revealed that the PLAX views that our
model classified as A3C views showed a version of the PLAX view that was rotated toward the
apex, therefore resembling an A3C view. About 25% of these disagreements even showed true
A3C views [Fig. 10(f)].

7 Discussion
We have presented an automated method for echocardiography view classification. Unlike pre-
vious works, our method also recognizes unknown views, which are common in exams, and rates
view quality, which is important for downstream analysis. For these, we used a CNN that was
supervised by view labels and a linear mapping of CNN features to assess view quality. These
CNN features thereby allow us to automate view quality assessment using a relatively modest set
of view quality training labels, which are generally expensive to acquire.

Similar to Howard et al.’s9 view classification method, our method approaches expert-level
performance. Direct comparison of our method with previous methods is, however, challenging
due to a lack of publicly shared code and data. To allow future comparisons with our method, we
performed an evaluation of publicly available echocardiography data. Further improvements of
our method can be made in the distinction of classes with strong visual similarity to one another,
especially when the image quality is suboptimal. For example, the model sometimes mistakes the
PSAX view at the mitral valve level for the PSAX view at the mid-level. The distinction between
these views heavily relies on the visibility of the mitral valve, which is hardly visible on a still
image if the image quality is poor. However, we would like to note that the clinical benefit of
these improvements could be limited as many of these misclassified videos are characterized by
insufficient diagnostic quality. A more impactful improvement would be to close the gap in per-
formance between experts and our model for the task of unknown view recognition. As shown in
Fig. 4, a limitation of the current method is the relatively low balanced accuracy compared with
the second observer. Future work could potentially improve on this by shifting from a post-hoc

(a) (b) (c)

(d) (e) (f)

Fig. 10 Explainable misclassification examples from CAMUS27 (a)–(c) and EchoNet-LVH28

(d)–(e). (a) Apical three-chamber view with two-chamber reference label (arrow: outflow tract).
(b) Apical five-chamber view with four-chamber reference label (arrow: ascending aorta).
(c) Poorly optimized apical four-chamber view (right, bounding box: right heart). (d) and
(e) PLAX view inferred as unknown by proposed method (arrow: imaging artifact). (f) Apical
three-chamber view with PLAX reference label.
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derived anomaly score to a representation learning approach such as prototype learning or recip-
rocal point learning.19,39

The three subcategories of unknown views have shown to be a relevant stratification of
anomaly detection in echocardiography as each subcategory showed different responses to
max-logit-based detection. Among the subcategories, the proposed method is most successful
at detecting unrecognizable videos with poor image quality. As videos with poor image quality
lack the defining structures and anatomical features of a view, it is hardly surprising that a view
classifier returns low-class activations for these videos. The results show that our method strug-
gles to detect novel categories, likely misclassifying them due to the presence of familiar features.
The method most notably fails with novel subcostal views, such as the subcostal short-axis view,
possibly due to shared image features with the known subcostal views. Another limitation is that
the method does not differentiate subcategories of unknown views, which could be useful in
limited cases where a video fluctuating among views shows diagnostic-quality anatomy and
should not be categorized as unusable.

We have shown that novel category detection can be improved by training with outlier expo-
sure. However, model performance may degrade when exposed to novel types of outliers. The
unexposed model may be a plausible lower bound on this performance degradation. Outlier echo-
cardiograms are nevertheless an inevitable byproduct of data acquisition, and we have shown that
utilizing these echocardiograms will result in optimal performance with the available resources,
thereby likely improving clinical utility.

The Softmax-based anomaly score performed comparably to the maximum logit on novel
category detection and poor-quality detection but more often failed to detect when the view fluc-
tuated. This means that taking the sum of Softmax probabilities (across the known classes) yields
fewer anomalous values for multiple-view sequences than taking the max logit. This could be
because videos with multiple views typically alternate between two known views, causing
Softmax activations to sum to a normal (non-anomalous) value.

Choosing the threshold δ for the anomaly score significantly impacts the method’s perfor-
mance. We determined the optimal threshold based on the maximum achievable full set accuracy
from the validation set. However, this metric is sensitive to the frequency of unknown views
relative to known views, which is problematic if this ratio is unpredictable. To address this,
an alternative approach is to use the validation set to determine the threshold based on the average
of OSCR and unknown view recognition specificity. This metric remains invariant to the relative
frequency of unknown views and can achieve a maximum value at a threshold within its domain
that is not at the extremes of all possible δ values.

The key limitation of our proposed echocardiography view classifier is the incomplete list of
known views for classification. Although Howard et al.9 and Zhang et al.7 recognized 14 and 22
views, respectively, we incorporated 10, as those were the available views in our centers.
Although the study of Zhang et al.7 remains the most extensive to date, no study currently
includes every possible view, which necessitates the open set recognition approach. Future
enhancements could involve multi-center data and broader inclusion criteria to allow a more
comprehensive set of routine views.

Our view quality assessment method predicts quality scores within the range of inter-rater
variability using a modest training set of 50 videos per class. This is enabled by view classi-
fication features, which we have shown are useful toward predicting view quality. View quality
assessment is challenging due to significant intra- and inter-rater variability. Similar to Liao
et al.,21 who found only 55% intra-rater agreement, we found 44.0% inter-rater agreement.
Although our model yielded a 52.7% agreement with rater 1, our method did not achieve com-
parable agreement to rater 2, as is demonstrated by inferior Spearman correlation coefficients. To
enhance this method, we suggest using multiple raters to annotate the training set, which gives an
empirical distribution of quality labels. This allows for the implementation of the multi-label soft-
labeling approach proposed by Liao et al.21 This combination could provide insight into when a
quality estimation is useful, gauged by an uncertainty estimate, while leveraging the efficiency of
our pre-trained view classifier backbone that has already learned the essential features. As the
inter-rater agreement strongly differs per view, it is plausible that the view quality reference stan-
dards for some views are sub-optimally defined. Thus, future work could investigate these
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reference standards with the goal of minimizing inter-rater variability and improving clinical
usefulness for downstream analyses.

The current work allows quick sorting and querying of echocardiographic studies to improve
the diagnostic workflow. The automatic view labeling makes the studies queryable with a search
term for the desired view, and the automatic quality scores can automatically provide the best
acquisition among the list of matches. In addition, the predicted quality of acquisition is impor-
tant for automating downstream analyses such as ejection fraction and strain estimation, as it may
automatically filter out views that are unfit for these purposes. Given this, the current method
may aid in reducing the level of skill required for acquiring echocardiograms, thereby adding
value to point-of-care ultrasound devices in general practice care and medically under-
served areas.

8 Conclusion
We have presented a CNN-based method for real-time automatic 2D-echocardiography view
classification with unknown view recognition and automatic assessment of view quality. The
proposed method achieved an accuracy of 84.9% for the joint objective of routine view classi-
fication and unknown view recognition, whereas a second observer reached an accuracy of
87.6%. For view quality assessment, Spearman’s rank correlation coefficient between our
method and the reference was 0.71, whereas 0.62 for a second observer. The results indicate
that the method enables fully automatic selection of the highest quality target views for manual
or automatic downstream analysis.

9 Appendix

9.1 Comparison of Anomaly Scores
To demonstrate the benefit of using the max logit as the proposed score for anomaly detection,
we compared this score with other frequently used anomaly scores. For this evaluation, we
trained the model as described in Sec. 5.2.1, now using fivefold cross-validation on our training
set to allow a statistically meaningful comparison among anomaly scores. Then, we computed
the following post-hoc anomaly scores for each video in the test set, in addition to the max logit

1. Maximum Softmax probability: the highest estimated probability among classes. This
score is computed by normalizing the logits with the Softmax function and then taking
the maximum value among the classes. Anomalous videos should correspond to low maxi-
mum Softmax values.16

2. L1-norm of feature layer (L1): the mean of feature activations in the penultimate layer of
the network.15 We averaged the activations across the time dimension before taking the
mean activation of the 2048-dimensional feature layer. Anomalous videos should be rep-
resented by low L1 norms.

3. Entropy of feature layer: the entropy of normalized activations in the penultimate layer of a
network. To compute this score for a single video, we averaged the feature vectors across
time, then we normalized the vector to sum to 1, and finally, we computed the entropy. We
negated this score such that low scores correspond to anomalous videos.

4. Relative frequency: occurrence of the most frequently predicted view on a frame-by-frame
basis, computed as a fraction of the total number of frames in a video. Anomalous videos
should be associated with lower relative frequencies.

Finally, we used ROC curves to compare the anomaly scores in their ability to discriminate
known views from three subcategories of unknown views: (a) videos from novel categories,
(b) videos with poor image quality, and (c) videos showing multiple views over time.

These results are summarized in Fig. 11, which shows that the max logit activation is the
best-performing anomaly score among the ones that we tested, closely followed by the maximum
Softmax probability, and feature layer entropy. This is consistent with the findings of Dietterich
and Guyer20 who listed the max logit as the most successful familiarity-based anomaly score.
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9.2 2D versus 3D Convolutional Architecture
To investigate whether a spatiotemporal 3D CNN leads to improved performance over the 2D
CNN in the proposed method (Resnet-50, BiTv2), we trained a 3D variant of Resnet (X3D-M).
This model adheres to the architecture design of a 2D Resnet-50 but with 3D instead of 2D
convolutional kernels, higher parameter efficiency, and pretrained weights from the kinetics-
400 video action recognition dataset,40 instead of Imagenet-21k. We modified our training and
inference protocol to fit a 3D architecture: During training, we down-sampled a video sequence
by an integer factor M that resulted in a frame rate as close to 16 fps as possible and selected a
random 16-frame sequence. For testing, we divided the entire video into successive 16-frame
sequences at the same fps, with each sequence overlapping the preceding and following sequen-
ces by eight frames. The final output for each test video was computed by averaging the outputs
of all its sequences. The remaining training and testing conditions remained identical to the
2D model.

As with previously tested approaches, the 3D model was trained using fivefold cross-
validation. The results are summarized in Table 6. Despite similar classification ROC-AUC, the
3D model critically underperforms on metrics for unknown view recognition compared with the
2D model, namely, unknown view recognition ROC-AUC and open-set-classification-rate AUC.

We hypothesized that by utilizing temporal information, a 3D CNN could improve upon the
2D approach. A 3D approach would be able to identify distinctly moving structures in similar
views such as the PSAX views, where only one of them shows the (moving) mitral valve.

Table 6 Comparison of the proposed 2D CNN with a 3D CNN. Evaluation metrics include closed
set accuracy [Eq. (2)], full set accuracy [Eq. (3)], open set classification rate AUC (OSCR-AUC)
[Eqs. (5), (6)], known view classification ROC-AUC, and unknown-view recognition ROC-AUC
[Eqs. (4), (5)]. Results (mean (%) ± standard deviation) are obtained through training with fivefold
cross-validation and testing on the full test set. The max logit is used as the anomaly score.
Experiment with greatest mean of row is displayed in bold font.

2D CNN 3D CNN

Closed set accuracy [Eq. (2)] 93.2� 0.80 91.3� 0.36

Full set accuracy [Eq. (3)] 84.9� 0.67 83.0� 0.36

OSCR-AUC [Eqs. (5), (6)] 78.9� 1.68 73.3� 1.14

ROC-AUC known views 99.4� 0.06 99.2� 0.12

ROC-AUC unknown views [Eqs. (4), (5)] 82.7� 1.36 78.1� 0.99

Fig. 11 Cross-validated performance of four different anomaly scores on three different subtasks
(a)–(c) of unknown view detection on the full test set (A1þ A2þ B, Fig. 3). For each subtask, we
generate the ROC curves by removing the samples of the other two subcategories from the test
set. To obtain the curves as displayed, we average the (interpolated) true positive rates across the
validation folds.
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However, the results from the tested 3D CNN did not show improved discrimination. Possible
improvements for the current 3D implementation could include a longer temporal window in
conjunction with a higher frame sampling rate to capture more fine-grained spatiotemporal
information.
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