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ABSTRACT. Purpose: Recently, learning-based denoising methods that incorporate task-
relevant information into the training procedure have been developed to enhance
the utility of the denoised images. However, this line of research is relatively new
and underdeveloped, and some fundamental issues remain unexplored. Our pur-
pose is to yield insights into general issues related to these task-informed methods.
This includes understanding the impact of denoising on objective measures of
image quality (IQ) when the specified task at inference time is different from that
employed for model training, a phenomenon we refer to as “task-shift.”

Approach: A virtual imaging test bed comprising a stylized computational model of
a chest X-ray computed tomography imaging system was employed to enable a
controlled and tractable study design. A canonical, fully supervised, convolutional
neural network–based denoising method was purposely adopted to understand the
underlying issues that may be relevant to a variety of applications and more
advanced denoising or image reconstruction methods. Signal detection and signal
detection-localization tasks under signal-known-statistically with background-
known-statistically conditions were considered, and several distinct types of numeri-
cal observers were employed to compute estimates of the task performance.
Studies were designed to reveal how a task-informed transfer-learning approach
can influence the tradeoff between conventional and task-based measures of image
quality within the context of the considered tasks. In addition, the impact of task-shift
on these image quality measures was assessed.

Results: The results indicated that certain tradeoffs can be achieved such that the
resulting AUC value was significantly improved and the degradation of physical IQ
measures was statistically insignificant. It was also observed that introducing task-
shift degrades the task performance as expected. The degradation was significant
when a relatively simple task was considered for network training and observer per-
formance on a more complex one was assessed at inference time.

Conclusions: The presented results indicate that the task-informed training method
can improve the observer performance while providing control over the tradeoff
between traditional and task-based measures of image quality. The behavior of
a task-informed model fine-tuning procedure was demonstrated, and the impact
of task-shift on task-based image quality measures was investigated.
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1 Introduction
The development of image denoising methods for medical imaging applications based on deep
neural networks (DNNs) remains an active area of research.1–7 Although learning-based image
denoising methods, by conventional design, can improve traditional image quality (IQ) measures
such as root mean square error (RMSE) and structural similarity index measure (SSIM), it is well
known that such measures may not always correlate with objective task-based IQ measures.8–11

Here and throughout this article, a “task” denotes an image-based inference to be performed by a
human or numerical observer. This is because the loss functions that are commonly employed to
train such methods do not explicitly take into account the intended task that is to be performed by
use of the resulting images. For example, Yu et al.10 demonstrated that task-based metrics were
not consistent with traditional IQ metrics in a study of DNN-based image denoising related to
nuclear medicine imaging. Likewise, Li et al.9 reported similar findings and systematically inves-
tigated task-related information loss induced by DNN-based denoising methods under different
conditions. Task-information loss has also been studied within the context of the learning-based
single-image super-resolution problem.12

To enhance the utility of an image produced by the use of a learning-based method, infor-
mation regarding a task can be naturally incorporated into the training procedure.13–16 A variety
of task-informed methods employ a hybrid loss comprised of a conventional component and a
task-based loss component. For an image reconstruction problem, Adler et al.13 proposed such an
approach to establish a learned reconstruction operator. Similarly, Ongie et al.14 designed a low-
dose computed tomography (CT) reconstruction framework to enhance the detectability of sig-
nals. For enhancing the utility of denoised images for segmentation tasks, Zhang et al.17 proposed
a task-informed low-dose CT denoising framework that employed a hybrid loss that incorporated
the dice score loss. In a different approach that did not employ the hybrid loss strategy, Han
et al.15 proposed a perceptual loss-based denoising method.

Although these studies provide valuable insights into the potential of learning-based task-
informed image formation and restoration methods, this line of research is relatively new and
underdeveloped. Improved utility of the estimated image for the specified task generally comes at
the cost of degraded task-agnostic measures of image quality, and understanding this complicated
trade-off within the context of a specific problem is important. Although task-related information
has been incorporated into loss function designs, the use of transfer learning coupled with con-
straints on how such information is utilized during model fine-tuning remains unexplored. This is
potentially important because previous studies have reported that task-related information may
be primarily lost by the deeper layers of a DNN for certain applications.9

Another critical issue that is specifically relevant to task-informed learning-based methods
for image formation or restoration relates to generalization performance with respect to the task.
Tasks in medical imaging applications are generally complicated and can be difficult to com-
prehensively specify, either analytically or implicitly via the specification of a collection of
acquired images. For example, a signal detection task requires the specification of the signal,
the background in which it is embedded, and the measurement noise to be detected. All of these
quantities are stochastic in nature, and the former two will vary with the subject and disease state
in the specified cohort. When a task-informed image formation or restoration method is trained
with consideration of a specified detection task, it is anticipated, by design, that the resulting
images will possess enhanced utility for performing that particular task. However, at inference
time, the characteristics of the signal, background, or noise may differ from those modeled in the
original task. This is a phenomenon that we refer to as “task-shift,” indicating that source tasks
(used for training) are different from target tasks (used for inference).18 Assessing the robustness
of a task-informed image formation or restoration method to task-shift is essential to understand-
ing its potential suitability for clinical translation.

In this work, numerical studies are performed to yield insights into fundamental issues
related to the incorporation of signal detection task information into a learned image denoising
method. Consider that medical images are denoised by use of a DNN and the clinical task of
interest is to detect a signal in the denoised images. The following two questions motivate the
study design: (1) How do traditional and task-based measures of IQ covary when a
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conventionally trained DNN is fine-tuned by use of a hybrid task-informed loss function with all
weights being frozen except for select deep layers? and (2) What is the impact of task-shift on the
IQ measures and what is the relative influence of the source and target task complexity?

Avirtual imaging test bed is employed to enable a systematic exploration of these questions.
The test bed comprises a stylized computational model of a chest X-ray computed tomography
(CT) imaging system coupled with high-fidelity clinical CT images that represent the to-be-
imaged objects. From simulated noisy projection data, images that contain lesions are recon-
structed. These images are subsequently denoised by use of a learned method. Although a vast
number of DNN-based image denoising methods are available and new ones are being developed
at a breakneck pace, in this work, a canonical, fully supervised, convolutional neural network
(CNN)-based denoising method is purposely adopted. This will facilitate a basic analysis and
understanding of the underlying issues that may be relevant to a variety of applications and more
advanced denoising or image reconstruction methods. Signal detection and signal detection-
localization tasks are considered, and several distinct types of numerical observers are employed
to compute estimates of the task performance. The studies will reveal how a task-informed trans-
fer learning approach can influence the tradeoff between conventional and task-based measures
of image quality within the context of the considered tasks. In addition, for the first time, insights
into the behavior of a learned denoising method when task-shift is present are revealed.

The remainder of the paper is organized as follows. Section 2 describes the necessary back-
ground on DNN-based image denoising, signal detection tasks, and numerical observers. The
task-informed training method considered in this work is described in Sec. 3. The numerical
studies and associated results are described in Secs. 4 and 5, respectively. Finally, the article
concludes with a discussion of the key findings in Sec. 6.

2 Background

2.1 Learning-Based Image Denoising
End-to-end learning-based denoising methods hold significant potential for medical imaging
applications.1,4,7,19–21 Given a noisy image fn ∈ RN , where N is the dimension of the image,
an end-to-end learning-based denoising method is described generically as

EQ-TARGET;temp:intralink-;e001;117;376f̂ ¼ F ðfn;ΘÞ; (1)

where F denotes an image-to-image mapping implemented by a DNN that is parameterized by

the weight vector Θ and f̂ ∈ RN denotes the denoised image. Depending on how the target data

are defined when training the DNN, f̂ can be interpreted as an estimate of the noiseless image
f ∈ RN or an estimate of a reduced noise version of fn. Avariety of DNNs have been employed to
implement the mapping F ,1,21 and convolutional neural networks (CNNs) represent a popular
choice.1–3,6,19

In addition to the choice of DNN architecture, the specification of the loss function plays a
key role in the design of a DNN-based denoising method. Mean square error (MSE) that mea-
sures the L2 distance between the denoised and target images has been widely employed.3,4,6,19–23

The perceptual loss function has also been used and was reported to be effective in reducing noise
while retaining image details,1 and the use of adversarial loss functions has been deployed with
similar success.20,24 However, such loss functions that are commonly employed in computer
vision applications do not explicitly incorporate information regarding a particular medical im-
aging task. In recent studies, it has been demonstrated that learning-based denoising methods
trained by the use of such loss functions can improve traditional IQ measures such as RMSE or
SSIM, whereas important information relevant to a downstream detection task is lost.9,10 Such
findings motivate the further development and investigation of task-informed learning-based
denoising methods.

2.2 Formulation of Binary Signal Detection Task
In this study, a binary signal detection task that requires an observer to classify a denoised image

f̂ as satisfying either a signal-present hypothesis H1 or a signal-absent hypothesis H0 is consid-
ered. These two hypotheses are described as
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EQ-TARGET;temp:intralink-;e002a;114;736H0∶ f̂ ¼ F ðfb þ nÞ; (2a)

EQ-TARGET;temp:intralink-;e002b;114;705H1∶ f̂ ¼ F ðfbþ s þ nÞ; (2b)

where fbþs ∈ RN and fb ∈ RN denote signal-present and signal-absent noiseless images, respec-
tively, and n ∈ RN denotes the measurement noise. A signal-present image fbþs is formulated by
inserting a signal image fs ∈ RN into a background object fb. In a signal-known-exactly (SKE)
detection task, fs is non-random, whereas, in a signal-known-statistically (SKS) detection task, it
is a random process. Similarly, in a background-known-exactly (BKE) detection task, fb is non-
random, whereas, in a background-known-statistically (BKS) detection task, it is a random
process.

In addition, detection-localization tasks in which the signal could be located at one of J
distinct locations were considered.25 In this case, an observer is required to classify an image
as satisfying one of J þ 1 hypotheses (i.e., one signal-absent hypothesis and J signal-present
hypotheses). The imaging processes under these hypotheses are represented as

EQ-TARGET;temp:intralink-;e003a;114;563H0∶ f̂ ¼ F ðfb þ nÞ; (3a)

EQ-TARGET;temp:intralink-;e003b;114;525Hj∶ f̂ ¼ Fðfbþ sj þ nÞ; (3b)

where j ¼ 1;2; : : : ; J and fbþsj is a signal-present noiseless image with the signal at the j’th
location.

2.3 Numerical Observers for Objective IQ Assessment
In preliminary assessments of medical imaging technologies, numerical observers (NOs) have
been employed to quantify task-based measures of IQ for various image-based inferences.26 The
NOs employed in this study are surveyed below.

2.3.1 Hotelling observer

The Hotelling observer (HO) employs the Hotelling discriminant, which is the population equiv-
alent of the Fisher linear discriminant, and is optimal among all linear observers in the sense that
it maximizes the signal-to-noise ratio of the test statistic.8,27 For binary signal detection tasks, the

HO test statistic tHOðf̂Þ computed by the use of the denoised data f̂ is defined as

EQ-TARGET;temp:intralink-;e004;114;344tHOðf̂Þ ¼ wT
HO f̂ ¼ ðK−1

f̂
ΔfÞT f̂; (4)

where wT
HO ∈ RN denotes the Hotelling template, Δf ∈ RN denotes the difference between the

ensemble mean of the image data f̂ under the two hypotheses H0 and H1, and

Kf̂ ≡
1
2
ðK0ðf̂ÞþK1ðf̂ÞÞ. Here,K0ðf̂Þ ∈ RN×N andK1ðf̂Þ ∈ RN×N denote the covariance matrices

corresponding to f̂ under H0 and H1, respectively.

In some cases, the covariance matrices K0ðf̂Þ and K1ðf̂Þ are ill-conditioned, and therefore,
their inverse cannot be stably computed. To address this, a regularized HO (RHO) can be

employed that implements the test statistic tRHOðf̂Þ as9

EQ-TARGET;temp:intralink-;e005;114;218tRHOðf̂Þ ¼ wT
RHO f̂ ¼ ðKþ

α ΔfÞT f̂; (5)

where Kα represents a low-rank approximation of Kf̂ that is formed by keeping only the singular
values of Kf̂ greater than ασmax. Here, α is a tunable parameter, and σmax represents the largest
singular value of Kf̂ . Finally, K

þ
α is the Moore–Penrose inverse of Kα.

2.3.2 Channelized Hotelling observer

A channelized HO (CHO) is formed when the HO is employed with a channeling mechanism.
When implemented with anthropomorphic channels and an internal noise mechanism, the CHO
can be interpreted as an anthropomorphic observer and attempts to predict the human observer
performance.28,29 In addition, the channeling mechanism can be employed to reduce the
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dimensionality of the image data when the image data are insufficient to accurately estimate the

covariance matrix. Let T denote a channel matrix and v ≡ Tf̂ denote the corresponding chan-

nelized image data. The CHO test statistic tCHOðf̂Þ is given as

EQ-TARGET;temp:intralink-;e006;117;696tCHOðf̂Þ ¼ ½ðKv þKintÞ−1Δv�Tðvþ vintÞ; (6)

where Kv denotes the covariance matrix of the channelized data v, Kint denotes the covariance
matrix of the channel internal noise, and vint is a noise vector sampled from a Gaussian distri-
bution N ð0;KintÞ. Based on previous studies,29 in this work, Kint is defined as

EQ-TARGET;temp:intralink-;e007;117;634Kint ¼ ϵ · diagðKvÞ; (7)

where diagðKvÞ represents a diagonal matrix with diagonal elements fromKv and ϵ is the internal
noise level. The parameters of the difference-of-Gaussian (DOG) channels and the internal noise
level employed in this study are described in Sec. 4.3.4.

2.3.3 Learned NOs

Recently, several machine learning methods have been proposed to establish NOs.30–36 The
single-layer neural network (SLNN)-based NO (SLNN-NO) is a special learned NO that has
the shallowest architecture, possessing only a single fully connected layer with a bias term and
a sigmoid activation function. This architecture can be employed for different tasks through the
specification of the loss function. For example, the binary cross entropy (BCE) can be used to
train the SLNN-NO for binary signal detection tasks, whereas the categorical cross-entropy loss
function can be employed for detection-localization tasks. A SLNN-based method has also been
proposed to approximate the HO.30 This NO will be referred to as the SLNN-HO and will also be
employed in the studies below. The SLNN-HO is useful when the estimation and/or inversion of
the image covariance matrix is intractable.

3 Task-Informed Training Method
A transfer learning approach is investigated in which a DNN is pre-trained by the use of a con-
ventional (non-task-informed) loss function Lp and subsequently fine-tuned by the use of a
hybrid loss LHybrid that includes a task component Lt. The fine-tuning of the denoising network
is constrained to the last several layers instead of re-training the whole network. This is motivated
by a recent study by Li et al.9 who demonstrated that, at least for linear CNN-based denoising
networks, the degradation of task-relevant information primarily occurs in the last layers. This
behavior can be explained by noting that the last layer of the denoising network transforms a
high-dimensional feature tensor into the denoised output image. Therefore, the transform pos-
sesses a null space and is non-invertible.9 A hybrid loss function LHybrid is defined as13

EQ-TARGET;temp:intralink-;e008;117;274LHybridðΘ1;ΘoÞ ¼ ð1 − λÞ · LpðΘ1Þþ λ · LtðΘ1;ΘoÞ; (8)

where λ ∈ ½0;1� is a scalar parameter, Lp is the physical loss component, Lt is the task compo-
nent, Θ1 is the vector of weight parameters associated with the trainable layers in the pretrained
denoising network, and Θo denotes the vector of weight parameters of the neural network (NN)-
based NO used to compute the task component Lt. The task component is designed to measure
the performance of a NO on a specific task. By appending a network-based NO to the pretrained
denoising network, the denoised image can be transformed into a scalar that is used to compute
the task-specific component. The trainable layers in the pretrained denoising network are jointly
trained with the NO. By employing this training strategy, the NO used to compute Lt can be
easily adapted to different tasks. The details of the proposed task-informed training method are
described below and summarized in Procedure 1.

Mean squared error (MSE) and mean absolute error are commonly employed choices for Lp.
The selection of the task-based loss component is based on specific tasks. In this paper, binary
signal detection tasks were considered, and the specific formulation of LHybrid is described
in Sec. 4.2.
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4 Numerical Studies
Computer-simulation studies using a stylized X-ray CT virtual imaging test bed were conducted
to gain insights into fundamental issues described in Sec. 1. Signal-known-statistically (SKS)
with background-known-statistically (BKS) signal detection and signal detection-localization
tasks were considered. Both the SLNN-NO and SLNN-HO were employed to compute estimates
of the task performance, which was employed to evaluate the impact of a task-informed training
procedure on the considered denoising network described in Procedure 1.

4.1 Virtual Imaging Pipeline
The Lung Image Database Consortium image collection37 was employed to generate signal-
present (SP) images fbþs and signal-absent (SA) images fb to perform binary signal detection
tasks as defined in Eq. (2). This database consists of 243,945 2D image slices from 1018 3D
thoracic CT reconstructed images, in which 10,706 image slices contain annotated nodules. A
total of 100,000 SA images were formed by extracting regions of interest (ROIs) of a dimension
of 120 × 120 pixels from normal lung areas from several central slices. To generate SP images,
an established insertion method38 was employed to insert realistic nodules into 50,000 generated
SA images. In SP images, the centroids of the nodules were either located at a fixed location or at
random locations subject to the specific tasks described in Sec. 4.3. The generated SP and SA
images were utilized as the target (normal-dose) CT images f.

The corresponding noise-enhanced (low-dose) images fn were generated by degrading
the target images f described above. A canonical fan-beam CT imager with a linear detector
geometry was considered for noise simulation. To produce these images, the true

Procedure 1 General procedure of the task-informed training method

Input:

• Θ: Weight parameters of the denoising network F with N layers;

• Θ1: Weight parameters of the last N train trainable layers of F ;

• Θ2: Weight parameters of the first ðN − N trainÞ layers of the denoising network F , Θ ¼ fΘ1;Θ2g;

• Θo : Weight parameters of an appended observer used to compute the task component Lt;

• Lp: Physical loss for pre-training and task-informed training F ;

• Lt: Task-based loss for task-informed training F ;

• LHybrid: The hybrid loss formulated by Lp and Lt and weighted by the parameter λ defined in Eq. (8);

• D1: Dataset for pre-training F ;

• D2: Dataset for task-informed training F ;

Procedure:

1. Pretrain the denoising network F and optimize weight parameters Θ by use of D1 and physical loss
function Lp;

2. Append the observer with initial weight parameters Θo to the pretrained F ;

3. Set the weight parameters Θ1 that correspond to the last N train convolutional layers of the pretrainedF to
be trainable;

//The other trained weight parameters Θ2 are fixed;

4. Given initial setting ofΘo and pre-trainedΘ, jointly tune the weight parameters Θ1 and train Θo by use of
D2 and the hybrid loss function LHybrid;

5. Output the task-informed denoising network F with optimized weight parameters Θ.

Output: The denoising network F with optimized weight parameters Θ after task-informed training by use of
LHybrid.
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continuous-to-discrete forward operator was approximated by a discrete-to-discrete operator H
that was implemented by use of the Radon-torch toolbox.39 The scanning angular range of the
modeled fan-beam system was 360 degrees, and 256 evenly spaced tomographic views were
considered. The assumed distance between the X-ray source and the center of the object and
the distance between the detector and the center of the object were 400 and 400 mm, respectively.
The number of detector elements was 512, and each element was 0.8 mm in size. During the
simulated imaging process, the forward operator was applied to the entire chest cross-section,
covering the system’s full field of view.

Noise-enhanced projection data g were generated as8,39

EQ-TARGET;temp:intralink-;e009;117;264g ¼ T −1ðPoiðT ðHfÞÞÞ; (9)

where Poið·Þ is a Poisson noise generator acting on the transformed measurement data T ðHfÞ.
Here, T ðxÞ ¼ I0 expð−xÞ, and T −1ðxÞ ¼ logðI0x Þ, where I0 is the beam intensity. The noisy (low-
dose) images fn were then reconstructed from g by the use of a filtered back-projection recon-
struction algorithm that employed a Ram-Lak filter.40 As described below, the proposed denois-
ing method was applied to regions of interests (ROIs) of dimension 120 × 120 pixels within the
reconstructed images. These ROIs were situated within the lung area, with their center locations
uniformly distributed over that region. Figure 1 shows examples of ROIs employed in our
studies.

4.2 Training and Validation Details

4.2.1 Architecture and loss function for denoising networks

The canonical CNN architecture of depth D depicted in Fig. 2 was employed with the task-
informed training method to establish an end-to-end learned denoising method. It is important

Fig. 1 Examples of (a) noisy (low-dose) signal-present ROI, (b) target (normal-dose) signal-
present ROI, (c) noisy (low-dose) signal-absent ROI, and (d) target (normal-dose) signal-absent
ROI, which were extracted from reconstructed cross-section images. The red box contains the
signal.
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to note that the assessment studies described below can be readily repeated with any other DNNs.
The network input was a reconstructed noisy image fn of dimension 120 × 120, and the output

was a denoised image f̂ with the same dimensions. The CNN contained four types of layers. The
first layer was a Conv+ReLU layer, in which 64 convolution filters of dimension 3 × 3 × 1 were
applied to generate 64 feature maps. In each of the 2nd to ðD − 2Þth Conv + BN + ReLU layers,
64 convolution filters of dimension 3 × 3 × 64 were employed, and batch normalization was
included between the convolution and ReLU operations. In the ðD − 1Þth Conv + BN layer,
64 convolution filters of dimension 3 × 3 × 64 were employed, and batch normalization was
performed. In the last Conv layer, one single convolution filter of dimension 3 × 3 × 64 was
employed to form the final denoised image of dimension 120 × 120.

Let fðjÞ denote a given SA or SP target (normal-dose) image, and let fðjÞn denote the cor-
responding noise-enhanced (low-dose) image. Given a collection of J paired training data

fðfðjÞn ; fðjÞÞgJj¼1, the denoising network was pretrained by minimizing the MSE loss function:

EQ-TARGET;temp:intralink-;e010;114;447LMSEðΘÞ ¼ 1

J

XJ

j¼1

kFðfðjÞn ;ΘÞ − fðjÞk22; (10)

where the vector Θ denotes the weight parameters of the denoising network.

4.2.2 Architecture and loss function for the NN-based observers used to
compute Lt

The physical loss function Lp in Eq. (8) was defined by an MSE loss. The task component Lt of
the hybrid loss function was computed by the use of either the SLNN-NO or SLNN-HO, as
described next.

The SLNN-NO consisted of a fully connected layer along with a sigmoid activation func-

tion. The BCE loss function was employed to train the SLNN-NO. Let fðfðjÞn ; yðjÞÞgJj¼1 denote the

image data fðjÞn and the corresponding label yj ∈ f0;1g. The BCE loss function LBCEðΘ1;ΘoÞ is
expressed as30

EQ-TARGET;temp:intralink-;e011;114;248LBCEðΘ1;ΘoÞ ¼ −
XJ

j¼1

log pðyjjfðjÞn ;Θ1;ΘoÞ: (11)

Here, Θ1 is the vector of weight parameters associated with the trainable layers in the
pretrained denoising network, and the vector Θo denotes the weight parameters of the fully
connected layer of the appended SLNN-NO.

Differently, the SLNN-HO loss function LHOðΘ1;ΘoÞ is expressed as30

EQ-TARGET;temp:intralink-;e012;114;156

LHOðΘ1;ΘoÞ ¼
1

J

XJ

j¼1

fð1 − yjÞ½ΘT
o ðF ðfðjÞn ;Θ1Þ − f0Þ�2

þ yj½ΘT
o ðFðfðjÞn ;Θ1Þ − f1Þ�2g − 2ΘT

oΔf; (12)

where f0 ¼ 2
J

P
J
j¼1ð1 − yjÞFðfðjÞn ;Θ1Þ, f1 ¼ 2

J

P
J
j¼1 yjFðfðjÞn ;Θ1Þ, and Δf ¼ f1 − f0.

Fig. 2 CNN-based denoising network investigated in this study.
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4.2.3 Datasets and denoising network training details

The standard convention of utilizing separate training/validation/testing datasets was adopted.
The training dataset included 40,000 pairs of noisy signal-present and signal-absent images along
with the corresponding target (normal noise) images. The validation dataset including 200 signal-
present images and 200 signal-absent images, and the corresponding target (normal noise)
images was randomly selected from the training dataset. Finally, the testing dataset comprised
10,000 signal-present images and 10,000 signal-absent noisy images. For task-informed model
training with the hybrid loss function LHybrid, the same training dataset described above was
employed to fine-tune the denoising network. The validation and testing datasets used for pre-
training were also employed to evaluate the performance of the fine-tuned denoising networks.

In both the pretraining and task-informed fine-tuning stages, the denoising networks were
trained on mini-batches at each iteration by the use of the Adam optimizer41 with a learning rate
of 0.0001. Each mini-batch contained 50 signal-present images and 50 signal-absent images that
were randomly selected from the training dataset. The network model that possessed the best
performance on the validation dataset was selected for use. The Keras library42 was employed for
implementing and training all networks on a single NVIDIA TITAN X GPU.

4.3 Objective Evaluation of Image Quality

4.3.1 SKS/BKS binary signal detection tasks with fixed signal locations

The task-informed training method was evaluated for SKS/BKS binary signal detection tasks for
which known signal locations were considered. The centroids of the nodules were located at the
center of the extracted ROIs. The incident flux I0 ¼ e11 was used to determine the noise level in
the simulated noisy images.

When fine-tuning the denoising networks, the SLNN-NO and SLNN-HO were employed as
NOs to compute the task component Lt in Eq. (8). Here, Lt was defined as the BCE and HO loss
functions in Sec. 4.2.2 when SLNN-NO and SLNN-HO were employed, respectively. The
SLNN-NO, HO, RHO, and DOG-CHO were employed for subsequent assessments of image
quality. It should be noted that, for the case in which the SLNN-NO was employed to compute
Lt, the SLNN-NO employed for objective image quality assessment was trained on the denoised
estimates, and it was not identical to that used to compute Lt. The use of these NOs for evaluation
represented a situation in which the NO for evaluation may not be identical to the NO used to
optimize the denoising networks. The weight parameters λ ¼ f0.01; 0.1; 0.3; 0.5; 0.7; 0.9; 0.99g
in Eq. (8) were considered. Only the last three convolutional layers of the denoising network
were set to be trainable for both cases. Based on these settings, the impact of the weight param-
eter λ on the performance of the considered NOs was investigated.

4.3.2 SKS/BKS binary signal detection tasks with random signal locations

In this case, the centroids of the nodules were randomly located within the lung area of extracted
ROIs by the use of a uniform probability density function. The incident flux I0 ¼ e11 was used to
determine the noise level of the simulated low-dose images. The SLNN-NO was used to compute
task component Lt in Eq. (8), considering that the SLNN-NO can be employed when the signal is
randomly located. The trained SLNN-NO was subsequently utilized to evaluate the performance
of fine-tuned denoising networks. This represented a situation in which the same observer was
used for both training and evaluation.

To assess the impact of the weight parameter λ on the performance of the SLNN-NO, the
weight parameters λ ¼ f0.01; 0.1; 0.3; 0.5; 0.7; 0.9; 0.99g in Eq. (8) were considered. The num-
ber of trainable layers was also swept from 0 to 4.

4.3.3 Investigation of the impact of task-shifts

Test cases with different weight parameters λ. A study was designed to investigate the
robustness of the task-informed image denoising method to task-shift. First, binary signal
detection tasks with fixed signal locations were considered for model training (source tasks),
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whereas tasks with random signal locations were considered for evaluation (target tasks).
Next, the tasks with random signal locations were used as source tasks, and the tasks with fixed
locations were considered target tasks. Detection-localization tasks were also considered. The
tasks with two and four possible signal locations were considered to be both source/target and
target/source tasks to study the impact of task-shift. The considered test cases are outlined in
Table 1.

The SLNN-NO was employed to compute task component Lt in Eq. (8), and only the
last three convolutional layers were set to be trainable. For evaluations, SLNN-NOs were
independently trained on training datasets for target tasks. The SLNN-NO performance under
the situations without task-shift was considered the reference. The weight parameters
λ ¼ f0.01; 0.1; 0.3; 0.5; 0.7; 0.9; 0.99g in Eq. (8) were considered to investigate the impact of
task-shifts when the weight of the task-based component varies.

Test cases with gradually increased mismatches in source/target tasks. Studies
were designed to simulate situations in which the mismatch in the source task and target task was
gradually increased. In the case of a binary signal detection task, the source task was a binary
signal detection task with a fixed signal location. For the target tasks, the signal was randomly
located within circles with radii r ¼ f4;8; 12;16; 20g. Detection-localization tasks were also con-
sidered. Here, the source task possessed two fixed signal locations, and tasks with f2;3; 4;5; 6g
fixed signal locations were considered target tasks. In these tasks, the signal was randomly
located within one of the considered possible locations.

The SLNN-NO was employed to compute the task component Lt in Eq. (8) for network
training. Only the last three convolutional layers were set to be trainable, and the weight param-
eter λ ¼ 0.7. For evaluations, SLNN-NOs were independently trained on different training data-
sets designed for target tasks. The SLNN-NO performance under the situations without task-shift
was considered a reference.

4.3.4 Numerical observer computation

Both the HO and RHO were employed for objective image quality assessment because they are
optimal linear observers. For computing the HO and RHO test statistics, the covariance matrixKf̂
was empirically estimated by the use of 40,000 signal-present and 40,000 signal-absent images.
When computing the RHO test statistic, the threshold parameter α in Eq. (5) was swept from
1e − 1 to 1e − 7, and the corresponding detection performance was estimated based on a separate
validation dataset, including 200 signal-present images and 200 signal-absent images. The value
that led to the best RHO detection performance was selected.

For computing the CHO test statistic, 2000 signal-present and 2000 signal-absent images
were utilized to empirically estimate the channelized covariance matrix. A set of 10 DOG
channels29 was employed with channel parameters σ0 ¼ 0.005, α ¼ 1.4, and Q ¼ 1.67. The
internal noise level ϵ was 2.5, which was the same value employed by Abbey and Barrett.29

To independently train the SLNN-NO for objective image quality assessment, 40,000 signal-
present images and 40,000 signal-absent images were employed. These learned-NOs were
trained by use of the Adam optimizer41 with a learning rate of 0.0001.

Table 1 Test cases designed for the investigation of the impact of task-shifts described in
Sec. 4.3.3. Here, BSD and D&L represent binary signal detection tasks and detection-localization
tasks, respectively.

Test case Source task Target task

#1 BSD with fixed signal locations BSD with random signal locations

#2 BSD with random signal locations BSD with fixed signal locations

#3 D&L with two signal locations D&L with four signal locations

#4 D&L with four signal locations D&L with two signal locations
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4.3.5 Evaluation metrics

Both traditional and task-based measures of IQ were employed for assessments. Receiver oper-
ating characteristic (ROC) analysis was conducted, and area under the curve (AUC) values were
computed and employed as a figure-of-merit for task-based measures. The ROC curves were fit
by the use of the Metz-ROC software43 that employs the proper binormal model.44 The uncer-
tainty of the AUC values was estimated as well. Two commonly used traditional metrics (i.e.,
RMSE and SSIM) were employed as task-agnostic measures to assess the denoised images.

5 Results
In Secs. 5.1 and 5.2, the results are presented to reveal the impact of the task-informed training
method on the tradeoff between conventional and objective measures of image quality within the
context of the considered tasks. In addition, in Sec. 5.3, the results are reported to investigate the
impact of denoising on objective measures of IQ when task-shift was introduced.

5.1 Results for the Case with Fixed Signal Locations
The task-informed training method was evaluated for SKS/BKS binary signal detection tasks in
which known signal locations were considered. Here, these tasks were employed for both train-
ing and evaluation of the task-informed training method in which no task-shift was present.
Section 5.1.1 describes the impact of the weight parameter λ on the performance of the employed
NOs. In Sec. 5.1.2, the changes in the covariance matrix induced by the task-informed training
method were also investigated to gain insights into the observer performance.

5.1.1 Impact of the weight parameter λ

The impact of the weight parameter λ in Eq. (8) on the signal detection performance as measured
by AUC is shown in Fig. 3. Both the SLNN-NO and SLNN-HO described in Sec. 4.2.2 were
considered to be the NO to compute task component Lt in Eq. (8). The signal detection per-
formance was evaluated by the use of the SLNN-NO, HO, RHO, and DOG-CHO acting on the
denoised images. For both cases, the performance of the four different NOs on the denoised
images was higher when larger λ values (larger weight for task-based loss) were considered.
Those results confirm that the task-informed training method can improve the NO performance
even when the NOs employed for objective image quality assessment were different from the NO
used to compute Lt during model training.

Figure 3 yields two additional noteworthy findings. First, for the case in which the SLNN-
HO was employed for training [panel (a)], the performance of the HO employed for objective

Fig. 3 Relationships between AUC and the weight parameter λ in the hybrid loss LHybrid when
different NOs were employed for objective image quality assessment. Panels (a) and (b) the case
in which the SLNN-HO and SLNN-NOwere employed to compute the task componentLt in Eq. (8),
respectively, during model training. For both cases, the performance of the four different NOs
increased as a function of λ, confirming that the task-informed denoising method can improve the
NO performance even when different NOs were used for model training and for image quality
assessment.
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image quality assessment was relatively high (statistically equivalent to that of the SLNN-NO
and RHO). However, this relatively high HO performance was only observed for very large λ
values (e.g., 0.99) in which SLNN-NO [panel (b)] was employed. The HO performance was
much lower when relatively small λ values (i.e., 0.01-0.9) were employed. The RHO perfor-
mance was employed as a reference and was relatively high for all cases. These observations
suggest that, for the case in which SLNN-HO was employed for training, the second- and poten-
tially higher-order statistical properties of the images were optimized to benefit the HO perfor-
mance, but such behavior did not occur in the case in which SLNN-NO with small λ values was
considered. Second, when SLNN-HO was used for training, the performance of DOG-CHO
was greatly improved for large λ values and was not significantly improved for other cases.
This observation indicates that the DOG channels were “closer” to efficient channels when λ
was appropriately selected. However, this behavior was not observed in the case in which
SLNN-NO was employed for training.

5.1.2 Changes in covariance matrix induced by the task-informed training
method

To gain insights into the behavior of the HO performance, the singular value spectra of the
covariance matrices corresponding to the images denoised by task-informed training method
were further examined. The results, shown in Fig. 4, reveal that the covariance matrix corre-
sponding to the denoised images produced by the use of the pretrained denoising network was
ill-conditioned, whereas that corresponding to the denoised images produced by the use of the
fine-tuned denoising network was well-conditioned when SLNN-HO was employed to compute
the task component Lt in Eq. (8). However, for the case in which SLNN-NO was employed to
compute Lt, a similar observation only occurred for very large λ values (e.g., 0.99) in Eq. (8), and
the covariance matrices were still ill-conditioned for small λ values [Fig. 4(b)]. The results of this
analysis were consistent with the previously discussed results shown in Fig. 3 and indicated that
the task-informed training method may improve the image statistics that are important for signal
detection.

5.2 Results for the Case with Random Signal Locations
The impact of the task-informed training method on the tradeoff between conventional and objec-
tive measures of IQ was investigated by considering SKS/BKS binary signal detection tasks with
random signal locations for both training and evaluation. Section 5.2.1 describes the impact of
the weight parameter λ and the number of trainable layers on the SLNN-NO performance. In
Sec. 5.2.2, a study was also performed to investigate whether the loss of task-relevant information
primarily occurs in the last several layers when the denoising network depths increase.

Fig. 4 Singular value spectra of covariance matrices corresponding to the denoised images. The
related task-informed denoising methods were trained using the hybrid loss LHybrid with different λ.
Panels (a) and (b) the case in which the SLNN-HO and SLNN-NO were employed to compute the
task component Lt in Eq. (8), respectively, during model training. These results demonstrate that
the task-informed denoising method could mitigate the ill-conditioning of the covariance matrices
and possesses the potential to improve the image statistics that are important for signal detection.
The results of this analysis were consistent with the previously discussed results shown in Fig. 3.
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5.2.1 Impact of the weight parameter λ and number of trainable layers

The impacts of the weight parameter λ in Eq. (8) and the number of trainable layers on the signal
detection performance as measured by the SLNN-NO are shown in Figs. 5 and 6, respectively.
Here, the SLNN-NO employed to compute the task component Lt in Eq. (8) was also employed
to assess the signal detection performance. For comparison, the impact on traditional measures of
IQ is demonstrated in Table 2. It was observed that, after the task-informed model training, the
SLNN-NO signal detection performance was improved, whereas the traditional measures of IQ
were degraded compared with those achieved by the pre-trained denoising network.

As shown in Fig. 5 and Table 2, for all numbers of trainable layers, the task performance
increased as a function of λ. In addition, the degradation of traditional metrics was significant for
relatively large λ but insignificant for small λ values (i.e., λ ¼ 0.01 − 0.7). As expected, the trade-
off between traditional and task-based measures of IQ can be controlled by λ. For example, when
λ ¼ 0.7, the resulting AUC value was greatly improved to that of λ ¼ 0.01, whereas the RMSE
and SSIM were statistically equivalent to that of λ ¼ 0.01.

As shown in Fig. 6, significant improvements in the task performance were achieved by fine-
tuning the last (or last several) convolutional layer(s) (e.g., 0 to 2), whereas improvement was
insignificant when more layers were trainable. For traditional IQ metrics (i.e., RMSE and SSIM),

Fig. 5 Relationships between AUC and the weight parameter λ in Eq. (8) when different numbers
of trainable layers (N train) in the denoising network were considered. The SLNN-NO was employed
for both denoising model training and objective image quality assessment. The dashed line at the
bottom represents the SLNN-NO performance on images produced by the pre-trained, non-task-
informed, denoising network.

Fig. 6 Relationships between AUC and the number of trainable layers in the denoising network
when the task component Lt in LHybrid was weighted with different λ. The SLNN-NO was employed
for both denoising model training and objective image quality assessment. Significant improve-
ments in task performance were achieved by fine-tuning the last several convolutional layers
(e.g., 0 to 2), whereas improvement was less significant when more layers were subject to
refinement.
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Table 2 Relationships between RMSE and the number of trainable layers in the denoising net-
work and the weight parameter λ in LHybrid. The quantity N train denotes the number of trainable
layers. The values shown in the column related to N train ¼ 0 represent cases in which RMSE and
SSIM were calculated on images denoised by the pretrained non-task-informed denoising
network. Additional details are provided in Sec. 5.2.1.

N train λ 0 1 2 3 4

RMSE 0.01 1.3437 1.3498 1.3485 1.3481 1.3477

0.1 1.3437 1.3503 1.3499 1.3498 1.3495

0.3 1.3437 1.3507 1.3506 1.3501 1.3498

0.5 1.3437 1.3506 1.3514 1.3534 1.3546

0.7 1.3437 1.3509 1.3549 1.3613 1.3667

0.9 1.3437 1.3775 1.3988 1.4147 1.4244

0.99 1.3437 1.7178 1.9304 2.1127 2.2595

SSIM 0.01 0.9416 0.9408 0.9409 0.9410 0.9414

0.1 0.9416 0.9407 0.9409 0.9411 0.9412

0.3 0.9416 0.9407 0.9408 0.9409 0.9409

0.5 0.9416 0.9405 0.9407 0.9407 0.9408

0.7 0.9416 0.9404 0.9401 0.9394 0.9391

0.9 0.9416 0.9391 0.9381 0.9369 0.9368

0.99 0.9416 0.9197 0.9024 0.8755 0.8738

Fig. 7 Examples of (a) a low-dose signal-present image, (b) a normal-dose signal-present image,
and (c)–(f) images f̂ generated by the task-informed denoising network trained using LHybrid in
which λ ¼ 0.01; 0.5; 0.9; 0.99, respectively. The red box indicates the inserted signal. The denoised
images estimated by the denoising network that was trained with task-informed loss function
LHybrid were blurred, and the severity increases along with the increase of λ.
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Table 2 shows that the degradation mainly resulted from the last small number of convolutional
layer(s). For smaller λ values (i.e., λ ¼ ∼0.01 to 0.3), the changes in traditional IQ metrics were
statistically insignificant.

The denoised estimates produced by the task-informed image denoising methods were also
subjectively assessed. Figure 7 shows a noisy image and denoised images generated by denoising
networks fine-tuned with the hybrid loss for different values of λ in Eq. (8). The denoised esti-
mates were blurred as a result of the task-informed training, and the level of blur increased when
λ increased.

5.2.2 Impact of denoising network depth

A study was performed to investigate whether the loss of task-relevant information primarily
occurs in the last several layers when the denoising network depths increase. As shown in
Table 3, the SLNN-NO performance decreased as a function of denoising network depth, which
is consistent with previous findings9 that the mantra “deep is better” may not always hold for
objective IQ measures. After the task-informed training, the SLNN-NO performance was
improved, and the variations of the improved SLNN-NO performance were statistically insig-
nificant when network depth varied. No matter how deep the pretrained denoising network was,
the loss of task-relevant information still occurred in the last certain layers (i.e., not related to the
depth of denoising networks), at least in the considered cases.

5.3 Impact of the Task-Shifts for Training and Evaluation

5.3.1 Test cases with different weight parameters λ

The robustness of the task-informed image denoising method to task-shift was also assessed, and
the results are shown in Figs. 8 and 9. The SLNN-NO performance for the case with no task-shift
was considered a reference. It was observed that introducing task-shift always degraded the task
performance as expected and the degradation resulting from task-shift became insignificant when
λ decreased. This is due to the smaller weight for the task-based loss component as λ decreases,
which makes the impact of task-shift less significant. For the case in which a relatively simple
task was used for training and the complex one was used for evaluation [Figs. 8(a) and 9(a)], the
degradation in the task performance was much more significant than in the case in which a com-
plex task was used for training and a simple one was used for evaluation [Figs. 8(b) and 9(b)]. For
binary signal detection tasks shown in Fig. 8, this observation is due to the fact that the case with
random signal locations can be easily generalized to the case with fixed signal locations but not
vice versa.

Similar findings were observed for the detection-localization tasks with both two and four
possible signal locations, as shown in Fig. 9. It was found that, when the tasks with four and two
possible locations were considered source/target tasks, less significant degradation in the task
performance was observed when compared with the case in which the tasks with two and four
possible locations were considered source/target tasks. This suggested that employing a

Table 3 Relationship between signal detection performance achieved by the SLNN-NO and the
depth D of the denoising networks. The SLNN-NO performance on images denoised by the
denoising network trained with LHybrid and the pretrained non-task-informed denoising networks
was quantified. For each of the denoising networks of varying depth, only the last three layers were
fine-tuned with LHybrid. The standard error for AUC values is 0.003. The results indicated that the
loss of task-relevant information only occurred in the last (or last several) layer(s), regardless of the
depth of the denoising network.

D 9 11 13 15

AUC (Fine-tuned) 0.6984 0.7146 0.7074 0.7130

AUC (Pretrained) 0.5751 0.5714 0.5529 0.5501
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relatively complex task for training can better improve the robustness of a task-informed image
restoration method to task-shift than employing a simple task.

5.3.2 Test cases with gradually increased mismatches in source/target tasks

Another test case was performed to assess the robustness of the task-informed image denoising
method to task-shift, and the results are shown in Fig. 10. The SLNN-NO performance for cases

Fig. 9 Robustness of the task-informed image denoising method to task-shift assessed for signal
detection-localization tasks. The SLNN-NO was employed for both training and objective image
quality assessment. The detection-localization task with four possible signal locations was con-
sidered a complex task, and the detection-localization task with two possible signal locations was
considered a simple task. (a) The red curve represents the task-shift case in which the simple task
was used for training and the complex one was used for evaluation. The blue curve represents the
reference case without task-shift in which the complex task was used for training and evaluation.
(b) The red curve represents the task-shift case in which the complex task was used for training
and the simple one was used for evaluation. The blue curve represents the reference case without
task-shift in which the simple task was used for training and evaluation. The observations are sim-
ilar to those in Fig. 8. Using a complex task for denoising model training can mitigate task per-
formance degradation when a task-shift is introduced.

Fig. 8 Robustness of the task-informed image denoising method to task-shift assessed for binary
signal detection tasks. The SLNN-NO was employed for both model training and objective image
quality assessment. The binary signal detection task with random signal locations was considered
a complex task, and the binary signal detection task with fixed signal locations was considered a
simple task. (a) The red curve represents the task-shift case in which the simple task was used for
training and the complex one was used for evaluation. The blue curve represents the reference
case without task-shift in which the complex task was used for training and evaluation. (b) The red
curve represents the task-shift case in which the complex task was used for training and the simple
one was used for evaluation. The blue curve represents the reference case without task-shift in
which the simple task was used for training and evaluation. It was observed that using a complex
task for denoising model training can mitigate task performance degradation when a task-shift is
introduced.
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without task-shift was considered a reference. As expected, it was observed that introducing task-
shift always degraded the task performance. As shown in Fig. 10(a), for binary signal detection
tasks, the SLNN-NO performance decreased as a function of the radius of a circle where the
signal was randomly located. In addition, the SLNN-NO performance gap between cases with
and without task-shift increased when the radius became larger.

Similar findings were also observed for the detection-localization tasks, as shown in
Fig. 10(b). It was observed that the SLNN-NO performance decreased as a function of the num-
ber of possible signal locations. In addition, the SLNN-NO performance gap between cases with
and without task-shift increased as a function of the number of possible signal locations. This
suggests that, when employing the task-informed denoising method, the gap between potential
task-shifts between training and evaluation needs to be carefully investigated.

6 Discussion and Summary
In this work, a task-informed DNN-based image denoising method that preserves task-specific
information was objectively evaluated. This study was motivated by previous works9,10 that indi-
cated that traditional DNN-based denoising methods may not benefit the task performance even
though the traditional measures of IQ were improved. The task-informed model training method
employed a hybrid loss strategy and only acted on the last several layers of a DNN-based denois-
ing method. To evaluate the method, binary signal detection tasks with fixed and random signal
locations under SKS/BKS conditions were considered. The performance of SLNN-NO, SLNN-
HO, and common NOs was quantified to assess the impact of task-informed training on task
performance preservation.

The numerical results indicated that certain tradeoffs can be achieved such that the resulting
AUC value was significantly improved, and the degradation of physical IQ measures was sta-
tistically insignificant. The improvement in the signal detection performance of the considered
NOs for evaluation can be explained by singular value spectra analysis. It was revealed that the
considered task-informed transfer learning approach could mitigate the ill-conditioning of
covariance matrices and has the potential to improve the image statistics that are important for
signal detection. In addition, it was observed that significant improvements in the task

Fig. 10 Robustness of the task-informed image denoising method assessed for two cases with
gradually increased severities of task-shifts. The SLNN-NO was employed for both denoising
network training and objective image quality assessment. (a) In the case of binary signal
detection tasks, the source task was a binary signal detection task with a fixed signal location.
In the target task, the signal was randomly located within circles with gradually increased radius
r ¼ f4;8; 12;16; 20g. (b) In the case of detection-localization tasks, the source task was a task with
two possible signal locations, and tasks with f2;3; 4;5; 6g possible signal locations were consid-
ered target tasks. The red curve represents the task-shift case in which the source task was used
for training and the target tasks for evaluation. The blue curve represents the reference case in
which the target task was considered for denoising network training and performance evaluation. It
was observed that, as the task-shift increased, the degradation in task performance became more
severe.
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performance were achieved by fine-tuning the last (or last several) convolutional layer(s),
whereas the improvement was insignificant when more layers were trainable, which confirmed
that the loss of task-relevant information occurred in the last certain layers, at least in the
considered cases.

To better understand the potential suitability of a task-informed image restoration method for
clinical translation, its robustness to task-shift was also assessed. It was observed that introducing
task-shift will degrade the task performance as expected. The degradation was significant when a
relatively simple task was considered the source task, whereas a complex one was used as the
target task. The degradation can be potentially mitigated by employing the complex task as the
source task and the simple one as the target task. This suggests that employing a relatively com-
plex task for training can better improve the robustness of a task-informed image restoration
method to task-shift than employing a simple task.

There remain numerous important topics for future investigation. In this work, the
SLNN-NO and SLNN-HO were employed to compute the task component Lt in Eq. (8).
Anthropomorphic numerical observers (ANOs) may instead be employed to predict the human
observer performance.29,45,46 Employing an ANO to compute Lt may potentially benefit a task-
informed image denoising method if humans are the ultimate readers of the image. The evalu-
ation study in this paper focuses on significant parameters such as the weight parameter λ in
Eq. (8) and the number of trainable layers. Other parameters, such as the size of training dataset
and the ratio between signal-present and signal-absent images, remain unexplored. The extension
of the proposed method for use with more complex tasks such as detection-estimation tasks32,47 is
also an important topic. The task-informed image denoising method and the corresponding
assessment strategy can also readily be applied to different image restoration and reconstruction
methods. Ultimately, it will be critical to conduct human reader studies to assess the benefit of
any task-informed method.
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