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Introduction

Abstract. Intratumoral heterogeneity biomarkers derived from positron emission tomography (PET) imaging
with fluorodeoxyglucose (FDG) are of interest for a number of cancers, including sarcoma. A range of radiomic
texture variables, adapted from general methodologies for image analysis, has shown promise in the setting.
In the context of sarcoma, our group introduced an alternative model-based approach to the measurement of
heterogeneity. In this approach, the heterogeneity of a tumor is characterized by the extent to which the
3-D FDG uptake pattern deviates from a simple elliptically contoured structure. By using a nonparametric analy-
sis of the uptake profile obtained from this spatial model, a variable assessing the metabolic gradient of the tumor
is developed. The work explores the prognostic potential of this new variable in the context of FDG-PET imaging
of sarcoma. A mature clinical series involving 197 patients, 88 of whom have complete time-to-death information,
is used. Texture variables based on the imaging data are also evaluated in this series and a range of appropriate
machine learning methodologies are then used to explore the complementary prognostic roles for structure and
texture variables. We conclude that both texture-based and model-based variables can be combined to achieve
enhanced prognostic assessments of outcome for patients with sarcoma based on FDG-PET imaging informa-
tion. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.5.2.024502]
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generate a number of related meaningful metabolic descriptors

The importance of quantitative assessment beyond semiquan-
titative SUV-based summaries is now firmly established in a
number of contexts (diseases and modalities). Positron emission
tomography (PET) has been found useful in the evaluation of
intratumoral heterogeneity at the macroscopic level' and calls
for more elaborate algorithmic methodologies to capture prog-
nostic information. This assessment can be achieved using
spatial mathematical modeling of the metabolic tracer uptake
information observed within the volume of interest (Vol).
Our group has considered modeling the 3-D tumor uptake
using a geometric (ellipsoidal) pattern of reference.” With
this approach, heterogeneity is defined as a lack-of-fit of the
data to that idealized pattern. The ellipsoidal structural model
provides an opportunity to construct further descriptors of
both spatial and metabolic characteristics of the tumor.® Such
model-based assessment of the uptake distribution provides
potential for further tumor characterization. Here, we develop
an approach, involving a nonparametric analysis of the 3-D
elliptical contour profile, for evaluating the “metabolic gradient”
of the tumor at each voxel. These model-based volumetric gra-
dients can be combined with structural heterogeneity in multi-
variate prognostic analyses. This methodology allows one to
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that may be considered independently or together, as they
exhibit limited correlation with each other. Section 4 illustrates
the prognostic value of these model-based characteristics, and
in particular that of metabolic gradient assessment, which con-
stitutes the main contribution of this paper.

This PET-based heterogeneity assessment can also be con-
sidered within the context of a larger set of radiomic features
that may have prognostic value for patient outcome. Accounts
of radiomics-based prognostic analyses using PET have been
reported in a number of contexts, including for lung, oesopha-
geal, breast, and head and neck cancers.*!! Modern radiomic
analysis considers general, and not necessarily biologically
motivated, statistical characteristics of the distribution of tracer
uptake. In most cases, they consist of first-order summaries of
the uptake histogram and second-order texture features'? derived
from relationships between neighboring voxels in the region
under study. Texture analysis has also been used with CT
(e.g., in lung"%'*) and MRI data (e.g., in glioma'*'3). Texture
analyses for prognostic or therapeutic assessment of sarcoma are
reported for CT or MRI data.!!® A recent contribution by
Vallieres et al.?’ has reported on the joint use of texture analysis
with PET and MRI for prediction of lung metastases associated
with primary sarcomas. In Sec. 3, we also explore the position of
the proposed structural variables with respect to radiomic fea-
tures, postulating that these two methodologies may be comple-
mentary to each other. In doing so, this paper illustrates that
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texture analysis offers opportunities for PET-based prognosis in
sarcoma, as a secondary contribution.

The diversification of image-based quantitative metabolic
assessments also naturally raises the question of feature selec-
tion for multivariate prognostic models, not unlike in genomics.
Classical statistical solutions to this end can often meet their
limitations since in many settings, the number p of covariates
available could become greater than the number N of patients in
the cohort. Stepwise selection for Cox hazard models may, for
example, become unreliable. In this context, machine learning
techniques can provide more adequate solutions toward feature
selection. Such techniques are being considered more consis-
tently in recent years'®“!'*?! for texture-based heterogeneity
assessment. In Sec. 4, we also illustrate how final prognostic
model selection may fair out when both sets of structural and
textural features are considered together.

2 Methodology

2.1 Structural Modeling and Metabolic Gradients

Here, we describe the algorithmic approach used to construct
a semiparametric regression profile of the volumetric uptake
data in terms of a reference ellipsoidal pattern. Hereafter, the
N observations (x,Y) are described by their 3-D coordinates
x €Q in the image domain Q C R® and measured uptake
value Y. The spatial distribution of uptake observations is char-
acterized in terms of its compliance to a rigid 3-D ellipsoidal
model parametrized by 0 = (u, X) for shape X (the uptake data
covariance matrix) and location p. Voxel location within this
model can be expressed in terms of their radial position within
the ellipsoid:

u(@) = (x—p) = (x— p). ()

This provides the opportunity to represent the volumetric
uptake information as a function of ellipsoidal radius, as
shown in the profile plot in Fig. 1. A nonparametric (either
isotonic or bitonic) regression f of this profile (u, Y) can be
obtained given a set choice of ellipsoidal parameters 6 in the
form of a model:

Y,-Zf[u,-(e)]—l—&‘,», izl,...,N, (2)

where {¢;}, are realizations of a white noise process, assumed
to have zero mean and constant variance. Our semiparametric
approach thus consists in optimizing Eq. (2) over both the ellip-
soidal shape and location # and nonparametric regression curve
f- In other words, the best nonparametric regression curve (in
the least squares sense) is obtained for the optimal choice for 6,
i.e., with respect to the ellipsoid that best fits the VoI uptake data.

The original approach® consisted in fitting a stepwise iso-
tonic decreasing nonparametric least squares regression function
f to the uptake data Y, following the idealized representation of
gradually decreasing ellipsoidal level curves at increasing ellip-
soidal radii. A measure of lack-of-fit of this template structure
was used directly to quantify heterogeneity (this is described in
more details further). Here, we used this approach to quantify
heterogeneity but introduced a second, bitonic (i.e., unimodal)
regression for f in order to perform further assessment of the
structure of the 3-D uptake distribution. This unimodal level
profile f provides a more reasonable description of a tumor
that might have a central necrotic core (see Fig. 1). (This
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principle also applies to other tumor types for which distribu-
tions have an overall decreasing radial uptake pattern, as it has
the ability to differentiate sharper concentrations of uptake.)
An algorithm to implement the unimodal fit is described in
Appendix A. Given the fitted nonparametric unimodal uptake
profile, it is now possible to evaluate associated gradients
—f'[u(0)] at any point within the tumor. These signed uptake
curve gradients can be used as a variable for tumor characteri-
zation (and prognostic assessment, as discussed hereafter).

As the unimodal regression curve }” obtained for Eq. (2) is a
stepwise function, a smoothing spline is subsequently applied
to it in order to obtain a final unimodal continuous uptake
profile function f 1.€.,

Y: = flu;(0)], i=1,....N. 3)

This creates the opportunity to define a variable for tumor
characterization in the form of the signed metabolic gradient:

9lu(8)] = =F'[u(6)). @

which yields a negative gradient value for a locally decreasing
uptake profile (or locally decreasing metabolic activity) and
a positive value at an area of increasing uptake signature
(or increasing metabolic activity), as illustrated in Fig. 1. Here,
“decreasing” is understood in terms of the tumor timescale,
relative to peak activity and when exploring the Vol from the
tumor core out toward the tumor boundary: for example, a
more developed sarcoma will typically exhibit increased avidity
further away from its core, and hence, core metabolic activity
would be seen to decrease, as shown in Fig. 1. A technical
description of this algorithm is provided in Appendix A.

2.2 Structural Variables and Interpretation

A number of structural variables can be extracted from the mod-
eling approach described in Sec. 2.1 for tumor characterization.
As in previous works from the group,>* intratumoral hetero-
geneity may be defined as a measure of lack-of-fit of the spatial
model to the observed uptake distribution. Two versions of such
a heterogeneity variable can be constructed as follows using
Eq. 3):

Yoy -1

SN (=)
MIYR/N T '

o= = Var(Y)

(&)

Various gradient summaries may be obtained from Eq. (4) to
further describe intratumoral status and activity. Normalized
gradients may be derived from Eq. (4) to conform to a universal
scale by

glu(0)

O = (D

(6)

As each voxel i receives a gradient value g; = g[ui(@)], the
sample of N signed gradients may be analyzed, for example, in
terms of its first quartile or its 95th percentile, to capture sum-
marizing features of the rate of metabolic change within the Vol.
In this view, taking the first quartile of (normalized) gradients
provides a single-valued evaluation at the lower end of the scale
of metabolic rates: one would expect a lower first quartile for a
tumor with decreasing metabolic activity, for example, resulting
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Fig. 1 FDG-PET uptake profiles of two sarcoma studies: case A (49-year-old male with upper thigh soft
tissue sarcoma, alive at last follow-up 4 years after baseline scan) presented with an active, homo-
geneous core (top) and case B (48-year-old male with pelvis soft tissue sarcoma, died 8 months
after baseline scan) presented with a heterogeneous core with low activity (bottom). These features
are visible from the transverse and coronal field-of-view images (left). Centre plots: corresponding uptake
profile [u(), Y], initial stepwise monotonically decreasing fit f{u(0)] (inner navy curve), stepwise unim-
odal regression f[u(6)] (thinner, red curve), and smoothed bitonic uptake profile curve f[u(9)] (thicker,
blue curve). Initial stepwise fit f(u) is barely noticeable for case A but highlights the benefit of using a
unimodal fit in case B. Rightmost plots summarize gradient information: top plot illustrates the gradient
curve g(u) Eq. (4), and uptake weighted gradients gy (u), as functions of radial location u. Reference
voxels are identified to illustrate decreasing and increasing uptake rates (a blue square and a red circle,
respectively). The gradient lengths at those locations correspond to the absolute value of the normalized
gradients g Eq. (6). The plot for case B shows how the gradient measure has a negative sign for voxels
located on the left hand side of the uptake profile mode (i.e., voxels closer to the core with a decreasing
rate of uptake). Bottom plot: histogram of normalized gradients g on a common binning scale. Broken
vertical lines indicate the 25th and 95th quantiles of normalized gradients.

Normalized gradients

0.5

from necrosis. Likewise, the 95th percentile of (normalized)
gradients provides an analysis of higher rates, where a higher
value would likely correspond to a more rapidly changing tumor
metabolism. Figure 1 illustrates this idea.

The sample of metabolic gradients may also be weighted by
voxel uptake into

(N
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in order to emphasize evaluation at areas of higher uptake,

before being summarized into quantiles of the vector (gy )Y, =

{gy[u;(0)]}Y,. The rightmost plot of Fig. 1 shows an example
of such a sample.

2.3 Textural Quantitation

First-order, second-order, and regional features commonly
found in other contributions®**2* were computed as per
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definitions provided by the Image Biomarker Standardization
Initiative® (version 1.5). Second-order features are defined as
moments and functions of the grayscale level co-occurrence
matrix (GLCM), which is made of the frequencies P;; of adja-
cency of any two uptake values (i, j) in a given direction.'” The
output texture features are computed and averaged over all 13
directions in the volume. We use the normalized GLCM, i.e.,
>.i;Pij = 1, where matrix P is symmetric. Regional features
were derived from a gray level size zone matrix (GLSZM),
which evaluates the numbers and sizes of contiguous homo-
geneous regions of equal (discretized) gray level.?>%
Abundant descriptions of the above-mentioned features can
be found in the literature cited above. The list of features con-
sidered here is by no means comprehensive but includes the
main first- and second-order features found in the literature
on PET-derived radiomics. The two regional features were
selected on the basis of their relevance in other works,%?%?*
their relative algorithmic simplicity, and to introduce higher-
order evaluations in our analysis.

Other variables commonly found in the literature in the
context of radiomics include assessment of shape® or
morphology.’**> We also included in our analyses an evalua-
tion of volume asphericity®® proportionally to the ratio of
the segmented boundary surface S and its volume V by
§/(36Vx)'/3 — 1. A comparison of morphological ellipsoidal
features® with our model-derived features was aptly suggested
by a reviewer. On this basis, five morphological descriptors for
ellipsoidal characteristics®> were included that rely on volume
eigenvalues Amqior = Aminor = Aiase derived by principal compo-
nent analysis (PCA). These features assess major, minor, and
least axis lengths (defined, respectively, as 44/Amjors

4/ Aminor> and 44/Aieas) as well as volume elongation and flat-

ness (\/ Aminor//lmajor and vV /Ileast//lmajor’ respeCtiVCIY)-
3 Experimental Methods

3.1 Dataset and Analysis Framework

The dataset of primary sarcoma tumors was acquired at the
University of Washington in Seattle, United States, between
August 1993 and January 2003, after patients were diagnosed
by biopsy. After exclusion of unsuitable cases due to lack of
complete data availability, the cohort (N = 197, 88 deaths
observed) is composed of 130 soft tissue, 51 bone, and 16 car-
tilage sarcomas, in patients aged between 17 and 86 years of age
(median 45), of which 86 females and 111 males, with 99 high-
grade, 66 intermediate, and 32 low-grade tumors.

All patients underwent standard [18F] FDG-PET on a GE
Advance PET scanner before either neoadjuvant chemotherapy
or surgical resection. Patients received an intravenous injection
of [18F] FDG (259-370 MBq) after fasting for at least 12 h and
rested for between 45 and 60 min before emission and attenu-
ation scan acquisition of the tumor fields of view (FoVs). All
imaging data were reconstructed using filtered backprojection
(FBP), rendering 3-D images using a Hanning filter after scatter
correction, resulting in a reconstructed resolution of 10 mm.”’
Output image sets had voxel size of 4.30 mm X 4.30 mm in the
transverse plane and slice thicknesses of 4.25 mm. Details on the
imaging protocol were reported in previous reports.>*® Raw
counts were scaled into SUV with respect to activity in injected
dose per unit weight of the patient (kBq/g).

Primary tumors were identified by a radiologist. Crude input
ellipsoidal Vols were drawn around the entire FDG-PET tumor
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volume in AMIDE® for volumetric (3-D) statistical analysis.
Our model-based quantitation approach is robust to the choice
of input Vol, and in fact, the analysis can be performed on the
crude bounding box (or bounding ellipsoid),>* which could
include a (relatively small) proportion of background voxels.
However, texture features do require volume segmentation,
which was performed in three different ways in our initial analy-
ses. Here, we present results obtained for a fixed-threshold seg-
mentation similarly, e.g., to Yan et al.,*” where the threshold
value is set for each study based on the subsample of the
lower 15% of uptake values (so as to include background
and healthy tissue activity only). For a given study, the segmen-
tation threshold is defined as the mean subsample value
plus three standard deviations of this subsample. This approach
yielded satisfactory delineation throughout the cohort. Alterna-
tive segmentation techniques considered consisted in using
either the convex hull of this threshold-segmented volume or
the volume segmented obtained by localized fitting of a tubular
representation.’ Results for these alternative approaches are left
out here, as the analysis of their impact is outside the scope of
this paper and may be considered in future works. The general
conclusions of this paper remained unchanged by the choice of
segmentation strategy.

Given the near-homogeneous voxel dimensions, no interpo-
lation was performed prior to Vol resegmentation for texture
analyses. Thus, both structural and textural groups of features
were obtained from the same segmented Vol. Uptake values
Y were requantized into Q = 32 gray levels Y2 by fixed bin
number transformation:

o [(@= 1)Y= min(y)]
Y { max(Y) — min(Y) J 1

Experimentation indicated that although texture quantitation
changed with the choice of Q, this did not meaningfully impact
general conclusions from our survival analyses. We have not
considered the impact of alternative quantization techniques;
this question is beyond the scope of this paper.

A total of 44 variables were considered and may be identified
in three frames as follows: (i) routine clinical variables [tumor
grade, clinical volume, clinical tumor subtype, patient age,
patient sex, maximum standardized uptake value (SUVmax),
mean uptake value (SUVmean) and total lesion glycolysis
(TLG) were collected for this cohort]; (ii) structural features
including heterogeneity using both H, and H;, and the raw, nor-
malized, and uptake-weighted gradients (Sec. 2.2); and (iii) a set
of image summaries including morphologic and texture fea-
tures (Sec. 2.3).

The primary endpoint for all survival analyses was overall
survival status at last follow-up. The sarcoma cohort comprises
tumors of three different grades and subtypes described above.
In particular, it includes a high number of high grade soft tissue
sarcomas (STS). For this reason, we excluded a total of 15
patients, who were lost to follow-up within the first 2 years
for survival analyses, a common horizon in survival studies
of STS.3! This threshold seems a reasonable compromise as
median survival times can drop to 11 months for higher stages,
irrespective of grade, according to the TNM classification of
malignant tumours (TNM).3!3?

Univariate Cox survival analyses performed for all of the
variables revealed the following were significant, at least at
the 5% significance level: (clinical) tumor grade, subtype, tumor
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volume, SUVmax, SUVmean, and TLG; (structural) Hy, H,,
Jo.2s)> 9v.[0.95]5 (textural) asphericity, PCApujor, PCAminor,
PCA\.t» meanys, skewnessygy, Kurtosisysy, medianggr,
entropyyst, uniformityygr, min.gradientygt, entropygrcm,
dissimilarity gy cm, homogeneity g cum, contrastg; cm,
autocorrelationgy o, and max .probabilityg cu-

3.2.3 PCA-guided clustering

In order to identify variable groupings in the PCA domain that
were relevant to the patient information, we performed cluster-
ing of the PCA-projected features, using their transformed
coordinates in the subspace spanned by the first 15 principal
components. Clustering was performed via k-means® of the
projected variables into 15 clusters, based on the above consid-
erations. Other strategies may be used to guide variable cluster-
ing. Table 1 summarizes the compositions of the resulting
variable groupings, which tend to align with distinct functional
interpretations. Clusters C; to C;5 may, respectively, be identi-
fied in terms of patient and histologic information (C; to Cy),
assessment of volume and morphology (Cs to Cg), metrics
related to metabolic avidity (C;), structural heterogeneity
(Cg), assessment of distributional variability and correlation
(Cy to Cyy), and metrics predominantly related to intensity levels
(C1p 1o Cy5).

3.2 Feature Space Exploration

3.2.1 Correlation

The correlation matrix of the set of variables provided in Fig. 2
demonstrates the strong separation between structural and tex-
tural variables, with a few noticeable exceptions: coefficient of
variation of the histogram (CoVysr) and max. probability gy cym
aligned with gpos; and Jpos, and entropygrcm and
homogeneityg; cm With Hy.

3.2.2 Principal components analysis

o . 3.3 Feature Selection
Scaled PCA of the dataset (which is based on the correlation

matrix of Fig. 2) provides further insight into how various quan-
titative features considered capture the information available.
For the sarcoma dataset under study, the first 15 principal com-
ponents explain 95% of the variance, and each further compo-
nent captured less than 1% of additional information.

The above feature space exploration indicates that structural and
radiomic variables tend to span different areas of the information
space. This suggests that (i) structural variables derived from
spatial modeling of the volumetric FDG uptake distribution
have prognostic potential in the analysis of sarcomas and
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Fig. 2 Correlation matrix of the continuous variables used in the survival analyses. All correlations within
(—0.65, +0.65) have been reduced to the predominant gray level in the image. Gray levels darker and
brighter than that level indicates, respectively, negative and positive correlations greater than 65%.
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Table1 Composition of the 15 k-means clusters of the principal com-
ponents. Remarkably, routine clinical variables grade, subtype, age,
and sex each defines their own cluster. Volume and morphologic
indicators are grouped into clusters Cs and Cg together with the
(GLSZM) regional features. Cg and C4q are the only clusters containing
both structural and textural features.

Cluster Variables in cluster

C4 Grade

Cs Subtype

Cs Sex

Cy Age

Cs PCAfatness: PCAeiongation

Ce Volume, TLG, asphericity, PCApzjor, PCAminors PCAjgasts
Size-zoneg sz, Intensityg szm

Cr SUVmax, SUVmean, gjo2s), Jpo.0s)s 9v,0.25) Jv,[0.95]

Cg Ho, Hi

Co Jjo.25), correlationg e

Cio Jj0.9s), Skewnessygt, kurtosisygt, CoViygr, uniformityysr,
uniformityg oy, homogeneityg oy max. probabilityg cm

Cyq Varianceyst, entropypst, entropygicm, dissimilarityg.cm,
contrastg cm

Cy2 Min. gradientyst, max. gradientygt

Ci3 Min. gradient graynst

C1q Max. gradient grayyst

Cis Meanyst, medianyst, autocorrelationg cu

(ii) they remain useful when used in combination with texture
features commonly used in radiomics. The availability of many
quantitative variables for the characterization of tumor metabo-
lism raises the question of final selection of prognostic variables.
Multivariate prognostic models may be defined directly from
available features (for instance, using only structural features,
only radiomic features, or a combination of both), or on the
basis of a feature selection approach. We considered several typ-
ical alternatives for this purpose, exploring two avenues: using
principal components analysis and clustering; and using typical
machine learning classifiers. These methodologies are described
hereafter.

3.3.1 Feature selection guided by PCA and clustering

PCA can be used directly to create multivariate prognostic mod-
els, as it organizes the input patient information in an optimal
recombination. On the basis of the PCA of Sec. 3.2.2, we con-
sidered a prognostic model made of the first 15 principal
components.

One downside of a PCA-guided prognostic analysis is
that the variables used in the risk model are not as easily inter-
pretable from a clinical viewpoint (each of the PCA-transformed
variables being linear combinations of all input variables
{z1....,2,}). Another possible strategy for defining a final
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set of prognostic variables relies on a clustering analysis of
the principal components, e.g., via k-means,* so as to define
groupings of the original variables {z;,...,z,} based on the
proximity of their images {z;, ..., z,} in the PCA-transformed
domain. From the clustering output of Sec. 3.2.3, which is sum-
marized in Table 1, final feature selection may be carried out
arbitrarily. We used the k-means centroids of the PC clusters
as risk covariates in the Cox model. Following this approach,
the original Cox model

,1(1‘; Z) — /'Lo(t)eﬂlllJru-Jrﬁpr

reduces to the linear recombination:

Mtz) = lo(t)e~<')<z(1‘>+"'+Z(nll))+"'*E(C>(Z(1C)+"'“§’Cc>), (8)

where z@ is the k’th of the p, covariates contained in cluster
c€{l,...,C}, C< p.In other words, the parametrization  of
the parametric regression part of the Cox model becomes a rep-
arametrization /3 based on the linear combination of input cova-
riates obtained from the clustering. This PCA-guided approach
therefore provides a way of grouping risk variables and aggre-
gating the resulting hazard ratios in terms of how the survival
information is spanned by these groups of variables. This is not
unlike the original PCA output, which provides PCs as linear
combinations of the input variables, except that here we
would make use of the clustering analysis of these PCs. This
increases the potential for interpretability if a particular feature
can be identified to summarize each cluster.

Other approaches could be considered to define or elect var-
iables representative of each principal component (or cluster).
One possible strategy is to elect in each cluster the covariate
yielding the single highest hazard ratio in absolute value and
using these k covariates only, discarding all other variables from
the clusters. Further exploration of such alternatives will be the
topic of future work; the results presented here are rather pro-
vided to suggest this alternative route as a possibility for prog-
nostic evaluation.

3.3.2 Feature selection based on machine learning

A final set of prognostic covariates may be selected using
machine learning techniques, such as random forests or neural
networks. For radiomics-based analyses especially, which
require sieving through a number of features that tend to be
much larger than the cohort size, various publications!®?!
describe results obtained from different machine learning
approaches. However, and more generally for PET-based
prognostic assessment, there are no specific benchmark studies
or consensus as to a more adequate approach in the
literature.?'**3¢ Moreover, machine learning classifiers tend
to be considered more naturally than regressors for the selection
of PET-derived features®'; for example, in the form of a k-near-
est neighbor classifier for patient outcome!'! or a neural network
classifier for therapeutic response.'® In the sarcoma dataset, we
consider here that patient outcome information is available in the
form of overall patient survival (alive or dead) and duration of
survival at last follow-up, so assessment of variable importance
may be performed both in classification and regression terms.
Here, we follow the classification approach. The incorporation
of time-to-event data in a feature selection study using, e.g.,
random survival forests®’ and other adapted machine learning
techniques™® will be considered in future work.
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Classifiers. The statistical methods used include stepwise
selection (both forward and backward) for multivariate logistic
regression,” simulated annealing based on linear discriminant
analysis*® (leaps-and-bounds led to comparable results), the
LASSO,*! random forests,*> neural networks,*** and support
vector machines (SVMs).*!#346

Settings and tuning. 1In terms of specific settings, forward-
stepwise selection for logistic regression was initialized with
grade as baseline. The LASSO regularization parameter was
selected via cross-validated misclassification error.*’ Random
forests were tuned for the number of variables randomly
sampled as candidates at each split and using 500 trees (choice
of the latter did not impact results significantly).** Two neural
networks were compared: a first network with one hidden layer
of size 10 and another network with two hidden layers of respec-
tive sizes 5 and 2. Both neural networks were trained on scaled
input data without tuning using five repetitions for training, a
nonlinear activation function, and a conservative 0.01 learning
rate.** SVMs were applied to scaled input data and using radial
kernels and were tuned for regularization cost and kernel
smoothing.*® In all cases, tuning was achieved on the basis
of 10-fold cross-validation.

Performance and variable selection rates. A total of
M = 100, 70% to 30% split-set cross-validation loops were car-
ried out using randomized training sets of 127 subjects and test
sets of the remaining 55 subjects. This cross-validation was
performed primarily in order to assess and account for the vari-
ability in feature selection. The machine learning classifiers
were retuned at every cross-validation step for the correspond-
ing training set. 0424349

The classification framework was formed on the basis of
binary patient outcome. Variable importance and/or variable
selection rates were assessed from the training set. For neural
networks and random forests, final variable sets were obtained
from each algorithm by retaining the top K variables, ranked
by decreasing order of importance, successively for all values
of Ke{6,...,16} (yielding 11 models for each of these
approaches). Variable importance was defined as the Gini
index*%! for random forests and using the Olden metric
for neural networks.’>** Classification rate, ROCs, and AUCs
were evaluated from performance on the test sets. With the
results from these experiments, presented in the next section,
we aim to demonstrate that various selection schemes (i) tend
to elect structural variables (including metabolic gradients)
and (ii) attempt to combine structural and texture features in
the final feature set.

4 Results

In the outputs presented below, g, g.n, and g.w, respectively,
denote g, §, and gy; 0.0.25 and 0.0.95, respectively, the 25th
and 95th percentiles; .HIST, .GLCM, and .GLSZM features
derived from the histogram, GLCM, and GLSZM, respectively.

4.1 Feature Selection from Outcome-Based
Classifiers
4.1.1 Outcome-based classification performance

Figure 3 shows the cross-validated ROCs obtained by averaging
ROC:s across all M = 1000 cross-validation samples for all clas-
sifiers (except the single-layer neural network, which did not
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Fig. 3 Receiver operating characteristic curves for the classifiers for
outcome-guided feature selection (SVM: support vector machines;
F/B-logistic: forward- and backward stepwise logistic regression;
NN: neural networks; RF: random forest). AUCs are specified in
increasing order (inset). Random forests, forward-stepwise logistic
regression, and the LASSO yielded effective discrimination rates.

perform better than the two-layer network and was left out of
further analyses). The corresponding cross-validated AUCs
indicate that the LASSO, forward-stepwise logistic regression,
and random forest models yield close, acceptable performance,
and outperform the other classifiers. Interestingly, different
classifiers tend to select very different feature sets, as we
see next.

4.1.2 Feature selection rates per classifier

The top plot of Fig. 4 summarizes cross-validated variable selec-
tion rates for each classifier. This method-specific summary
highlights features that were selected for over 50% of the M =
1000 cross-validation samples—a darker box indicating a higher
selection rate. Rates are shown for “smaller” (k = 6) and
“larger” (k = 16) models in order to emphasize how feature
selection evolved with k. Surprisingly, the random forests
and the neural networks did not elect grade consistently as
one of the most predominant features, unlike the more tradi-
tional methods (stepwise logistic regression, LASSO, and simu-
lated annealing). Some structural variables, and in particular,
‘Ho and H,;, are selected rather consistently. Random forests
and neural networks noticeably favor a selection of structural
features over grade (the former may capture grade-related
aspects of the tumor characteristicsz). For radiomic features,
the selection process is less systematic, in that variables are
elected either less often or in different combinations for varying
cross-validation samples.

Table 2 presents the multivariate prognostic analyses based
on the most popular models obtained from five selection
schemes: forward-stepwise logistic regression selection, simu-
lated annealing, the LASSO, random forests, and neural net-
works. For each method, the k = 15 most frequent variables
were identified. Of these subsets, those variables selected for
over 50% of Monte Carlo repetitions were used together into

Apr—Jun 2018 « Vol. 5(2)



Wolsztynski et al.: Positron emission tomography-based assessment of metabolic gradient and other prognostic features in sarcoma

Selection rates per model
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Fig. 4 (a) Feature selection rates per classifier. F/B-log: forward- and backward stepwise logistic regres-
sion; SA-k: simulated annealing; RF-k: random forest; NN-k: neural networks; where “-k” denotes using
the k most important features on average from that model (hence considering 6-variable and 16-variable
models). Selection rates below 50% were coded in white; rates above this threshold are represented with
a proportionally darker color. The two vertical lines are supplied as visual guides to identify the routine
(left-most), structural (central), and textural (right-most) subsets of variables. (b) Feature selection rates
overall, i.e., combined across all M = 1000 cross-validated experiments, for the same subset of six
classifiers comprising of both logistic classifiers, the LASSO, and simulated annealing, random forest
and neural network classifiers with k = 16. Features are ranked in decreasing order of popularity and

color-coded according to feature frame.

a multivariate model. The table indicates that clinical and struc-
tural features are selected consistently by all methods and that at
least one gradient summary is among these variables deemed
most important by the selection scheme.

There was more variability in the selection of textural fea-
tures (partly due to the textural frame being larger than the
other two feature frames). These lower selection rates do
not indicate that this quantitation strategy is less effective
for prognosis (Fig. 5, described further, indicates the contrary),
but rather that several groupings of these features seem to hold
comparable prognostic potential. In other words, different
subgroups are in turn important for different cross-validation
samples of the cohort. This suggests that the information cap-
tured by these conventional radiomic features may be more
versatile.
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4.1.3 Overall feature selection trends

The bottom plot of Fig. 4 summarizes cross-validated variable
selection rates aggregated across the following classifiers:
the backward- and forward-stepwise logistic models, and the
k = 16 most important variables elected by simulated annealing,
random forests, and neural networks (thus allowing as many fea-
tures as possible from our framework). Only one type of each
classifier was considered here in order to not artificially inflate
these selection rates.

This graphic highlights the prevailing importance of the rou-
tine clinical variables, as would be expected from experience
with sarcoma. It also emphasizes the high impact of structural
features H, H;, and the first quartiles of normalized metabolic
gradients (these three variables were all selected for over 50% of
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Table2 Cox proportional hazard model analyses of multivariate prognostic models comprising of only clinical and structural variables, only clinical
and radiomics variables, combining both, or obtained from forward logistic selection, simulated annealing, the LASSO, random forests and neural
networks with k = 15 variables. In each model, the variables selected by the corresponding technique for over 50% of the M = 1000 cross-
validation sets were used. This cut-off selection rate was chosen arbitrarily but different values yield to similar conclusions. This table indicates
both the most frequently selected features for each model, and contributions that are significant at the 5% significance level (in bold).

Model [HR (p)]
Variable Structural Radiomics Combined F-logistic SA LASSO RF NN
Grade (int) 0.46 (0.0020) 0.44 (0.0009) 0.48 (0.0034) —0.47 (0.0029) 0.46 (0.0032) 0.47 (0.0061) — —

Grade (high)
Sex (male)
Subtype (cart)
Subtype (STS)
SUVmean
SUVmax

TLG

Ho

Hi

Gp.25)

gy j0.25]

Gpo.95)

Jy j0.95]

PCAminor
PCAeIongation

Max. grad.Grayyst

0.21 (0.0035) 0.20 (0.0022) 0.21 (0.0030)

1.13 (0.2658)

1.89 (<10-5)

1.46 (0.0101)

1.56 (0.0007)

1.47 (0.0062)

1.78 (0.0017)

1.99 (0.0009)

—0.21 (0.0030) 0.19 (0.0022) 0.21 (0.0047)

1.45 (0.1116)

0.67 (0.5541)

1.14 (0.6119)

1.34 (0.2177)

1.24 (.0259) 1.63 (0.0105) 1.24 (0.2011)

0.99 (0.9012)

1.42 (0.0001) 1.23 (0.0871) 1.24 (0.0818)

1.35 (0.0217)

1.36 (0.0139)

0.83 (0.0438) 0.68 (0.0026) 0.83 (0.0744)

1.41 (0.0077)

0.81 (0.5959)
1.09 (0.6597)
1.54 (0.0166)
1.07 (0.7337)

0.93 (0.5722)

0.88 (0.6935)
1.02 (0.9327)

0.96 (0.7048)

1.00 (0.9806)
0.96 (0.8053)
2.32 (0.0004)
1.13 (0.4705)

1.94 (0.0072)

1.16 (0.1955)

CoVyist — 0.42 (0.0002) 0.44 (0.0053) — — — — —
Skewnessyst — — — — — — — 1.00 (0.9961)
Entropynst — 0.03 (0.0003) 0.12 (0.0443) — — — 0.45 (0.2353) —
Contrastg cm — — — — 0.85 (0.1851) — — —
EntropygLcm — 84.59 (0.0019) 15.56 (0.0603) — — — 1.83 (0.3316) —
Homogeneityg, cm — 6.35 (0.0074) 2.79 (0.1274) — — — — —
Intensityg szm — — — — 0.95 (0.6064) — — —
Concordance 0.72 0.72 0.74 0.70 0.73 0.73 0.69 0.70

cross-validation samples). This analysis aligns with previous
experience™ of the two structural heterogeneity measures
‘Hy and H;, but it also underlines the potential role of meta-
bolic gradient as a additional prognostic variable. The most
popular radiomic variables were GLCM and GLSZM features,
but many have comparable rates, because different radiomic
combinations tend to be used for different cross-validation
samples.

Furthermore, our results indicate that most model selection
techniques tend to associate both structural and textural features.
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Figure 5 illustrates that in a majority of cases, classifiers elect
models that combine structural and textural features (as well as
clinical ones). This figure indicates rates for the two stepwise
logistic models, the LASSO, simulated annealing, random for-
est, and neural network classifiers with a required k = 6 varia-
bles. It is remarkable that these two families of features tend to
be combined even for smaller models. These sets of experimen-
tal results show that although the nature of the features finally
selected varies greatly with the choice of feature selection tech-
nique, models that are deemed optimal most of the times
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Tendency to combine structural and radiomics features

F-log
» B-log 91.6%
LASSO
= SA-6
RF-6
= NN-6
Model-specific rates (%)
routine structural radiomic combined
F-log 0.0 11.8 0.2 88.0
B-log 0.0 0.0 0.1 99.9
LASSO | 0.0 10.9 0.0 89.1
SA-6 0.0 2.6 0.5 96.9
RF-6 0.0 16.8 0.2 83.0
NN-6 0.0 3.3 4.0 92.7
7.6%
0% 0.8%
clinical only clinical+structural clinical+radiomic combined

Fig. 5 Rates of selection of either clinical-only models, structural-only models, radiomics-only models, or
models that combine (at least) structural and radiomic features, out of all cross-validation samples and
from the logistic models, the LASSO and six-variable simulated annealing, random forest and neural

network classifiers considered.

combine both types of PET-based quantitations of tumor
characteristics.

4.2 Qutcomes Analyses

4.2.1 Outcomes analyses from conventional models

Table 2 includes structural-only and radiomics-only prognostic
models to explicitly demonstrate the prognostic potential of
either feature frame in sarcoma. These two models were selected
as they include the same clinical variables, have optimal AIC,
and achieve high concordance compared to other structural-only
and radiomics-only models. This analysis establishes the signifi-
cance of texture analysis for prognostic modeling of overall sur-
vival (Vallieres et al.?° showed the predictive potential of texture
analysis in a joint PET-MRI predictive model for the presence of
lung metastasis in sarcoma). Similarly, structural variables H;
and Jjoos) are prognostic when used instead of the radiomic
features.

Figure 6 shows Kaplan—Meier analyses obtained from vari-
ous multivariate risk models. Each analysis stratifies the sar-
coma cohort into lower- and higher-risk groups on the basis
of maximum log-rank test statistic so as to maximize the dicho-
tomic separation. In all cases, separation was statistically signifi-
cant (p < 1077). The left-hand-side panel shows output from
three traditional models: the structural model of Table 2
(solid lines), the prognostic model comprising of the PCA com-
ponents of Sec. 3.2.2 (dashed lines), and the k-means centroid
model Eq. (8), using the 15 cluster centroids as risk predictors
(solid lines). Although risk stratification varies with the model,
risk separation remains comparable.

In the multivariate Cox proportional hazard analysis for the
k-means centroid model Eq. (8) used in Fig. 6, significant cluster
centroids were those of clusters C;, C7, Cg, and Cy (p < 1074,
p =0.0369, p=0.0129, and p = 0.0096, respectively),
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which are all summaries of routine clinical and structural assess-
ment (cf. Table 1). In this model, the grouping of a relatively
small number of structural features captures critical prognostic
information for the cohort, unlike the summaries of conven-
tional radiomic features.

4.2.2 Outcome analyses from machine learning classifica-
tion output

In terms of prognostic validation, multivariate proportional haz-
ard analyses summarized in Table 2 show that at least one struc-
tural variable is significant in each of the prognostic models and
that structural variables remain significant risk factors in the
absence of grade. It also demonstrates that structural assessment
of sarcoma tumors is useful in the presence of various combi-
nations of conventional radiomic features. Although no radio-
mic feature is prognostic in this presentation, some were
significant in cross-validation survival analyses.

The right-hand-side panel of Fig. 6 illustrates similar
Kaplan-Meier analyses using models obtained from the
LASSO (dashed lines), random forests (solid lines), and neural
networks (dotted lines) methodologies of Sec. 3.3.2. These
curves are provided to illustrate that although the underlying
multivariate models may be quite different, they may still cap-
ture common characteristics of overall patient risk. The choice
of a selection technique used in building a prognostic model
may not necessarily be critical in this regard.

5 Discussion
5.1 Summary of Findings

Building on the results of recent spatial modeling approaches for
the analysis of sarcoma,”? this paper presents a variable, namely
a measure of metabolic gradient, for further characterization of
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Fig. 6 Kaplan-Meier survival curve estimates for dichotomic (low- versus high-) risk group segregation
on the basis of various feature selections. For each model, the corresponding two Kaplan-Meier curves
were obtained by maximizing the risk group separation in terms of highest log-rank test statistic via grid
search. (a) Analyses using models derived from PCA model, k-means centroids Eq. (8), and AlC-based
selection of structural variables (out of H,, H;, and the gradient summaries). (b) Similar Kaplan-Meier
analyses for models obtained from machine learning techniques (LASSO, random forests, and neural
networks). All models, although different, yield comparable survival analysis performances and signifi-

cant risk stratification (log-rank test p < 1077).

the metabolic activity in sarcoma tumors based on FDG-PET
imaging data. A previous uptake profiling approach® has
been adapted to allow for a coherent calculation of gradients
of the metabolic uptake profile obtained from a spatial model
of the tracer uptake distribution. The profile and gradients
are evaluated at each voxel and can therefore be mapped
onto the imaged volume of interest for visualization. This sam-
ple of gradients can also be summarized into a single value (for
example, its 95th percentile), to provide opportunities for multi-
variate prognostic evaluation along with other features derived
from the structural representation of the Vol. Here, we used this
information in three forms by considering the raw, uptake-nor-
malized, and uptake-weighted gradients. Each of these summa-
ries has its own practical interpretation, but overall they all
evaluate local rates of change in glycolysis.

This paper also demonstrates that the proposed model-based
structural variables (heterogeneity and metabolic gradients)
complement characteristics captured by radiomic features, in
that each quantitation methodology captures distinct parts of
the information space. Ellipsoidal morphologic features were
especially of interest given they are based on the same reference
shape as is our model. In previous analyses (e.g., by O’Sullivan
et al.>*), morphology was not found to be an independent risk
factor for sarcoma prognosis. Here, we found no correlation
between our metrics and those morphologic features, which
rather capture volumetric aspects. Similarly, no relationships
were found between metabolic gradient summaries and conven-
tional histogram gradient metrics.

Different mechanisms were considered for feature selection,
including PCA and machine learning techniques, which are par-
ticularly suited to the PET imaging analysis context, where the
number of covariates is likely to be (much) greater than the size
of the cohort. In total, 37 schemes were considered, including
the LASSO, random forests, and neural network models. It was
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seen that feature selection varied with the technique considered.
Overall, structural variables assessing heterogeneity and meta-
bolic gradients were rated among the most important prognostic
variables across all methods, along with routine variables, such
as tumor grade and SUVmean. The importance of these features
may vary with the disease and imaging modality but appears to
be relevant in the case of FDG-PET imaging of sarcoma.

In summary, the contribution of this paper is threefold. (i) It
defines a promising approach for evaluating the tumor metabolic
gradient based on FDG-PET imaging data and validates its stat-
istical significance in prognostic modeling of overall patient
survival. Through this process, the paper also demonstrates
the (separate) prognostic utility of typical texture features in
sarcoma. (ii) It demonstrates that descriptors derived from our
spatial model of PET tracer uptake capture aspects of patient
information that complement those described by morphologic
and textural features. (iii) It illustrates that structural and conven-
tional radiomic features can be successfully combined for multi-
variate prognostic modeling from a range of statistical learning
techniques.

5.2 Discussion

Structural variables allow for both quantitative and qualitative
assessment due to interpretability of their underlying model
and could be used in various ways in clinical settings. For exam-
ple, image mapping of the metabolic rates could be used to
guide understanding of the metabolic process, e.g., in predicting
areas in the volume more likely to see an increase in glycolysis
at short term. More generally, both structural and textural fea-
tures are typically used to measure (some form of) intratumoral
heterogeneity, and the literature often understands or summa-
rizes these quantitations without explicit distinction in many
contributions.!>>!7 Some descriptions of these approaches
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acknowledge subtle differences in what they capture, by refer-
ring to, e.g., spatial or textural heterogeneity.">> It is usually
accepted that PET imaging allows one to assess macroscopic
heterogeneity, which is not clearly linked to microscopic hetero-
geneity in the literature. Recent works suggest that only a small
number of texture features may actually correlate with micro-
scopic assessment (notably some work on mice®®), but no report
clearly establishes a correlation with other macroscopic assess-
ments. On the other hand, structural analyses, such as the ellip-
soidal-based template approach considered here, have links to
histologic grading of sarcomas® (spatial modeling of the tracer
uptake distribution also has the ability to capture other character-
istics of the disease). These two methodologies may in fact cap-
ture very different aspects of the tumor histologic profile. Simple
examples can highlight that texture features assess tumor char-
acteristics that are not structural in nature; a toy example pre-
sented in Appendix B illustrates this.

Incorporation of subtype into the analysis was not found sig-
nificant in any of the prognostic models present in this work—
this is consistent with the result reported by Eary et al.> The
observed complementarity between structural and radiomic var-
iables may merit more detailed examination of sarcoma sub-
types information. Further exploration of this issue may be
warranted.

The structural methodology proposed here is segmentation-
insensitive by nature, as technically it does not rely critically on
the whole sample of observations. For example, lower extreme
values can be removed or down-weigthed for model-fitting
without impacting the output analysis. This is not true for tex-
tural analyses, where any processing of the input sample will
directly affect the GLCM and other critical features that the
quantitation may rely on.

The clinical dataset analyzed here is attractive by its size (sar-
coma having relatively low prevalence) and the breadth of
patient follow-up information. It was, however, acquired
using an old-generation tomograph using FBP reconstruction.
Many publications have highlighted the significant and varying
influence of image reconstruction settings on texture features in
18F-FDG PET***8 and the question also arises for our model-
based quantitation. A simulation study presented in Appendix C
illustrates the relative stability of model-based quantitations
with respect to the choice of PET reconstruction technique
applied to a 2-D simulated phantom. It shows that for both
FBP and maximum likelihood (ML) reconstruction techniques,
error characteristics for Hy, H,, and gjo 5 are comparable and
with decreasing variance as count increases. Our modeling
approach was also successfully carried out on a clinical PET/
CT nonsmall cell lung dataset acquired between 2012 and
2015 on a GE Discovery VCT with OSEM reconstruction.
Exploratory analyses demonstrated a similar correlation struc-
ture between our structural variables and a set of textural fea-
tures comparable to the one used here.’**°

Final feature selection based on machine learning classifiers
suggests a less stable role found for radiomic features. These
could either be represented significantly or on the contrary,
given much lower importance depending on the method used.
This also depends on the classification reference, i.e., what
patient outcome or disease information is used to guide the
selection problem, if no histological information is available.
It seems unlikely that a consensus may be reached as to what
feature selection method should be used when implementing
radiomics analyses. These considerations may again change
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when larger sets of texture features are included or when cen-
sored time-to-event data is taken into account;*®®! this will be
the scope of future investigations.

Appendix A: Description of Algorithm

1. Initial ellipsoid location and orientation are calculated
using weighted mean and covariance matrix (u°, %)
of {X;}. At each iteration, ellipsoidal coordinates are
updated via spectral decomposition:

D = A_%,

> =TIDIT, x> x* =TDT(x—u)

to generate ellipsoidal coordinates for voxels
i=1,...,n, in the form:

ui(0) = (xf =) Z7 (xF = ),

where 6 = (u, Z). A monotonically decreasing uptake
profile is obtained nonparametrically from mean iso-
tonic regression® for heterogeneity evaluation.’

2. For bitonic regression, a range of mode values
{7 }Y_, are considered. Given any mode point, the
best unimodal fit is found by solving a quadratic pro-
gramming problem > w;[y; — f(u;|z,,)]%, where f is
piecewise constant over a defined set of knots. The
knots are set at percentiles of the u-distribution. The
mode yielding optimal fit is used. One could project
the final fit onto a set of B-splines, if desired, although
this is optional.

3. Using a final regular unimodal curve, e.g., using
B-splines, is preferable in order to compute metabolic
uptake profile gradients for each voxel. Gradients can
be evaluated, e.g., using central divided differences
from either of the iso- and bitonic regression curves
derived above.

An open-source implementation of this approach in
R¥ is available at https://github.com/ericwol/mia.

Appendix B: Toy Example

This toy example demonstrates the inability of some popular
textural features in capturing structural changes in the volumet-
ric uptake pattern. Here, a 3-D ellipsoidal structure (A) and is
spatially rearranged to form two alternative patterns B and C, as
shown in Fig. 7. The histograms of the three volumes being
identical, all first-order texture features are equal for the three
patterns since they are all based on the histogram (cf.
Table 3). Overall, if all the second-order features considered
in this example do vary significantly between patterns A and
C (although second-order entropy by only 20%), some of them,
including maximum probability, entropy, uniformity, correla-
tion, and homogeneity, incur only minor variations between
patterns A and B, which is a three-dimensional rearrangement
of quadrants of the volume of pattern A.
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(@) Pattern A (b) Pattern B (c) Pattern C

Fig. 7 Toy patterns (mid-volume transverse slices). (a) Pattern A, (b) pattern B, and (c) pattern C.

Table 3 Percentage-changes in quantitation from pattern A for texture features, illustrating that first-order features are spatially insensitive. Some
second-order (GLCM) features also show a lack of sensitivity to drastic structural changes in the spatial distribution of image intensities such as
between patterns A and B. It is also notable that changes in contrast have different signs whether we consider pattern B or C.

Percentage-change in quantitation from pattern A

First-order feature Pattern B Pattern C Second order feature Pattern B Pattern C
Entropy 0% 0% Max. probability 0.4% -83.4%
Energy 0% 0% Entropy 0.5% 21.1%
Mean 0% 0% Uniformity —-0.8% —75.8%
Variance 0% 0% Correlation —2.0% -99.5%
Skewness 0% 0% Homogeneity -3.0% —55.2%
Kurtosis 0% 0% Dissimilarity 9.1% 352.8%
Roughness 0% 0% Autocorrelation —17.7% —44.0%
CoV 0% 0% Contrast 18.1% -1683.7%
(a) (b) L . (c) ROI: early stage (d) ROI2: late stage
Phantom Projection (sinogram) tumor profile tumor profile
ROI2
Q Q
RO X £
2 -3
=] 2
Radius Radius
(e) FBP Ng=10* ) ML, N = 10* (9) FBP, Ng =10° (h) ML, N = 10®

Fig. 8 (a)-(d) 2-D phantom data and (e)—(h) reconstruction examples, using filtered backprojection (FBP)
and maximum likelihood (ML) at low (N¢ = 10*) and high (N¢ = 108) count levels. Note that reconstruc-
tions are set to zero in background (defined as the region with no attenuation).
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Appendix C: Effect of Reconstruction

A numerical study was used to explore how heterogeneity and
metabolic gradient quantitation derived from our analysis
approach varied with dose and the type of reconstruction process
used—FBP or ML. A simplified (128 x 128) 2-D circular tissue
phantom including ellipsoidal tumor structures with early
(ROI1) and late (ROI2) stage profiles was considered. Uniform
attenuation within the circular FoV of the tissue is assumed.

The projection domain was discretized uniformly over distance
(183 values) and angle (181 values). For a given expected count
N, proportional to the injected dose, Poisson data were simu-
lated and subsequently reconstructed using both FBP and full
ML (1000 EM iterations starting from the true). Raw reconstruc-
tions were filtered (smoothed) using a Gaussian kernel whose
bandwidth was optimized to minimize the mean square of
the reconstruction error over the circular FoV, where attenua-
tion is nonzero. Expected counts ranged over five levels

(a) MSE(H0), ROH (b) MSE(H0), ROI2
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Fig. 9 Monte Carlo MSE’s for count levels N varying in {10*,10%,108,107,108} for H, (top), H;
(center), and first quartiles of normalized metabolic gradients Eq. (6) (bottom), for both (a) ROI1 and

(b) ROI2.
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(a)

FBP- and ML-reconstructed ROI1 FBP- and ML-reconstructed ROI2
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Fig. 10 Correlations between Monte Carlo feature estimates obtained from FBP- and ML-reconstructed
(2) ROI1 and (b) ROI2, for count levels N¢ varying in {104, 10%,10%,107, 108}. Correlations for structural
features Hy, H4, and §[0_25] [Eq. (6)] are shown in black solid lines; those for GLCM features in gray,
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dashed lines.

N¢ € {10*,10°,10°,107,10%}. Sample reconstructions are
shown in Fig. 8.

In order to obtain a realistic understanding of statistical varia-
tion, 100 Monte Carlo replicates were obtained at each count.
Thus, a total of 500 FBP and ML reconstructed images were
generated for analysis. Rol data for both tumor regions from
each reconstruction were analyzed to extract structural (ellipsoi-
dal modelling) variables. The variables were compared to the
average over the replicate values at the highest count data—
this is regarded as the true. The observed deviations between
individual data estimates and the true are summarized by box-
plots in Fig. 9. Error characteristics are dominated by variability;
bias plays a negligible role. For both FBP and ML, variance is
seen to diminish with count—this indicates that the structural var-
iables become more reliable with increasing count—which is in
substantial agreement with an asymptotic analysis of hetero-
geneity provided by O’Sullivan et al.>* At the lowest count,
there is an indication that FBP-based structural variables of
ROI2 are more variable than ML-based ones; but this is not
the cased for ROIl. The simulation clearly shows whatever
differences there may be between ML- and FBP-based structural
variables, they diminish with count.

We also evaluated texture variables for the simulated FBP
and ML data. A full analysis of these data is beyond the
scope of this work. Figure 10 shows the relationship (measured
by correlations over the replicate samples) between variables
obtained from the FBP and ML data using both structural
and texture variables. As indicated by previous studies,’*>6-8
a number of texture features shows poor alignment between
the two types of reconstructions. The data show that the struc-
tural variables are less sensitive to the reconstruction methodol-
ogy used. A more complete treatment of the issues raised here
would be of interest. In future work, we plan to report on this in
a 3-D setting.
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