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Abstract. We design, fabricate, and characterize a frequency-selective surface (FSS) with direc-
tional thermal emission and absorption for long-wave infrared wavelengths. The FSS consists of
an array of patch antennas connected by microstrips, the ensemble of which supports leaky-
wave-type modes with forward and backward propagating branches. The branches are designed
to intersect at 9.8 ym and have a broadside beam with 20-deg full width at half maximum at this
wavelength. The absorption along these branches is near unity. Measurement of the hemispheri-
cal directional reflectometer shows good agreement with simulation. The ability to control the
spectral and directional emittance/absorptance profiles of surfaces has significant applications
for radiation heat transfer and sensing. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JNP.9.093040]
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1 Introduction

A blackbody radiates the maximum amount of thermal energy into the far-field. The spectral
distribution of this radiation is given by Planck’s law and has a diffuse Lambertian profile with-
out polarization selectivity. While real materials deviate from the blackbody response on the
basis of their electromagnetic response (principally, permittivity at optical and infrared wave-
lengths) and surface roughness, the emitted radiation remains largely isotropic and with gen-
erally only gradual variations in the spectral distribution.! These characteristics of natural
surfaces result from the fact that the thermal radiation is incoherent.'™

Controlling the angular distribution of thermal radiation has potential applications related to
thermophotovoltaics, solar thermal energy collection, and thermal management. Controlling the
angular distribution of thermal radiation requires a degree of coherence. This has been accom-
plished experimentally using polar materials’ and metallic gratings® to produce very narrow
angular distributions [less than 1-deg full width at half maximum (FWHM)]. This corresponds
to long-coherence lengths of greater than 100 um.? These designs exhibit a leaky-wave/diffrac-
tive response with the angle of emission dependent on the wavelength. However, Cruz-Cabrera
et al.* demonstrated directional emissivity near grazing angles of incidence over controlled
wavelength intervals using subwavelength periodic two-dimensional array of resonators.
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Frequency-selective surfaces (FSSs) consist of subwavelength metal elements. Control of the
geometry and material selection allows the scattering parameters of the surface to be engi-
neered.’ This makes FSS a type of metamaterial (a metasurface) with electromagnetic properties
typically not found in nature. FSS has been used to control the spectral,’® phase,’™'! and polari-
zation'? responses of incident radiation. This is often achieved via scaling established radio fre-
quency designs to infrared wavelengths'® which has significance at infrared wavelengths
because it controls the emissivity of the surface, and hence heat transfer via radiation. For exam-
ple, Liu et al.'* engineered the spectral emissivity of surface cross elements. In these cases, the
angular distribution of the emitted radiation is still close to Lambertian.

Phased-array antennas are another RF concept that has been scaled to the IR.!>'® In these
cases, two or more antenna elements are connected to a load using transmission lines. These
devices have been used to generate a prescribed angular sensitivity for detectors, both thermo-
piles and metal-oxide-metal diodes. Significantly better response was reported from the diodes
because of the distributed electromagnetic absorptance of the antennas and feed structure.'®

In this paper, we design, fabricate, and test an FSS based on a patch antenna/microstrip-
phased array to create a surface with angularly dependent thermal emission/absorption. The
structure supports guided leaky-wave-type modes with forward and backward propagating
branches coupled to transverse magnetic (TM)-polarized radiation. The choice of microstrip
transmission lines leads to significantly better propagation lengths, and hence increased angular
selectivity compared with previous coplanar strip designs. Because of metal losses at IR wave-
lengths, there is a distributed load throughout the FSS which differs from conventional RF
design. However, after optimization, we are able to demonstrate a structure with high absorp-
tance. These experimental results show reasonable spectral/directional agreement with the sim-
ulation. This work differs from previous reports because the thermal energy couples to the
resonant patches and propagates along guided modes as opposed to via surface waves. In
other words, it combines the functions of a leaky-wave antenna and a series array. The ability
to achieve an angular response including near-unity absorption over a compact area may be
useful for future sensors and emitters. This paper presents the design and fabrication procedures
along with experimental results for the device.

2 Device Geometry and Fabrication

Figure 1 shows the geometry of the FSS. It was a designed and optimized structure for broadside
(normal incidence, @ = 0 deg) directional emission at 45 = 9.72 um. Conceptually, it consists
of a series of patch antennas (a X b = 2.157 X 2.674 um) connected by microstrip transmission
lines (w = 0.730 pum). The pattern is separated from a gold ground plane by a 0.650-ym
standoff of zinc sulfide (ZnS). Both the antennas and the ground plane are gold and are 75-
and 150-nm thick, respectively. The structure is periodic in both the x- and y-directions
(px X py = 4.036 X 4.3625 pm).

Fig. 1 Frequency-selective surface (FSS) unit cell and dimensions.
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Fig. 2 Scanning electron microscope images of FSS.

ANSYS HFSS, a commercial finite-element method full-wave electromagnetic solver, was
used to analyze and optimize the structure. The objective was to produce unity absorptance at
A9 =9.72 ym (peak emission at room temperature from Wien’s displacement law:
Amax = 2898 um - K/T). Floquet port excitation of the unit cell shown in Fig. 1 was used to
simulate the reflectance as a function of angle of incidence and polarization. Ellipsometery
(J.A. Woollam IR VASE) was used to experimentally measure frequency-dependent material
properties. These properties were used in the electromagnetic model to increase its fidelity.'
In optimizing the design, we specifically chose dimensions to minimize diffraction and surface
plasmon polariton modes at the design wavelength. These modes occur when radiation is dif-
fracted along the surface. The m’th mode will be cutoff when

mA

<— 1
1+sin@;’ M

p

where p is the periodicity, 6; is the angle of incidence, and m is the order. At long-wave infrared
wavelengths, the surface plasmon has nearly the same wavelength as a free-space propagating
wave and the energy is not tightly bound to the surface leading to long propagation lengths. All
diffractive modes will be cutoff at p < 4.86 um for A = 9.72 ym.

Figure 2 shows the scanning electron microscope images of the fabricated surface. E-beam
evaporation was used to deposit the gold ground plane on a silicon substrate. The ZnS standoff
was thermally evaporated on top of the ground plane. E-beam lithography lift-off was used to
define the structure. The antennas were also deposited with e-beam evaporation and have a 5-
nm-thick Cr adhesion layer (not included in simulation). We patterned a 2 X 2 cm? structure
using lift-off and e-beam lithography. The relatively large area was required to measure the
far-field using a hemispherical directional reflectometer (HDR). The vast majority of the sample
yielded structures that matched the design; however, there are areas where the lift-off procedure
was incomplete or became attached to the surface and is one source of discrepancy between the
experiment and simulation.

3 Measurements

Figures 3 and 4 show the simulated and measured emittance, £(4, 6, ¢). Emittance can be calcu-
lated from simulated and measured reflectivity using Kirchhoff’s law:

e(1,0,9) = a(2,0,p) =1—p(1,0,9), 2

where a is the absorptance and p is the measured reflectance. Because of the ground plane, there
is no transmittance through the sample.

Previous experimental studies directly measuring the emitted power have demonstrated this
analysis to be valid for similar structured surfaces.'> A SOC-100 (surface optics) HDR was used
to measure the reflectance. This uses an incoherent source to illuminate a gold-coated hemi-
sphere, which then focuses the radiation toward the sample at a solid angle of 2z, illuminating
the sample isotropically. The reflected light can then be collected at any polar angle between
~10 deg and 80 deg. Figures 3 shows the simulated and measured emittance as a function of
wavelength, polar angle, and azimuthal angle, £(4, 0, ¢). Qualitatively there is reasonable agree-
ment between simulation and measurement; although some of the peaks are shifted slightly, the
principal features predicted by the model can be observed experimentally. Unfortunately, optical
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Fig. 3 Comparison between HFSS simulated (top row) and hemispherical directional reflectom-
eter (HDR) experimentally measured (bottom row) spectral/directional emittance: (a) ¢ = 0 deg
transverse magnetic (TM), (b) ¢ =0 deg transverse electric (TE), (c) ¢ =90 deg TM, and
(d) ¢ =90 deg TE.
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Fig. 4 Angular TM absorptance at three different wavelengths for backward propagating branch,
solid lines indicate HFSS simulation and points are measured data.

components used in the measurement apparatus limit the HDR from taking data at normal
incidence.

This structure forms a leaky-wave antenna and supports both backward and forward propa-
gating branches.”” These branches intersect at broadside (9 = 0 deg, 4, = 9.72 um). Of note is
the Fano-type interference between the forward propagating mode and a patch resonance at 0 =
35 deg Ay = 8 um in Fig. 3(a), which is evident in both simulation and experiment.

Figure 4 shows a comparison between measured and simulated angular emittance at
discrete wavelengths for TM polarization [dashed lines in Fig. 3(a)]. The beam width at 1, =
9.72 ym is A@ = 20-deg FWHM. The effective length, L, of the leaky-wave antenna can be
approximated as*

L=~2y/(A@8 - cos 6,), 3)

where 6,, is the angle of the maximum of the beam measured from normal incidence and A# is
the beam width in radians. At Ay = 9.72 um, this corresponds to L = 27.8 um or ~7 unit cells of
the FSS. The figure shows that the array couples light off-axis for the backward propagating
leaky-wave branch when the wavelength is greater than the broadside wavelength.

The experiment validates the simulation sufficiently that we can use the numerical model to
understand the modal structure that produces the directional emittance. The leaky-wave mode is
evident in Fig. 3(a). This mode is forward propagating for shorter wavelengths (if) and backward
propagating for longer wavelengths (iii). Figure 5 shows the simulated field distributions on the
xz-plane for points on these branches and where they converge to form a single beam [point 7 in
Figs. 3(a) and 3(d)]. This mode is also excited under transverse electric (TE) illumination with
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Fig. 5 Selected near-field modes corresponding to points in Fig. 3: (a) normalized magnitude of
the E-field for points j, /i, and iii, and (b) normalized magnitude of z-component of E-field 5 nm
above FSS for points j, iv, and v.

@ = 90 deg. The broad angular-independent mode in the TE plots ~14 um corresponds to the
patch mode of the structure polarized in the y-direction (iv). Because the patches are not con-
nected with microstrips in this direction, there is significantly lower coupling and no coherence,
so the FSS does not create an angular dependence. Figure 5 also shows the second-patch quadru-
pole mode which is sensitive to wavelength but not polarization [the v branch is visible for the TE
illumination conditions in Figs. 3(b) and 3(d)]. Because of symmetry, the quadrupole mode is not
excited at normal incidence.

To illustrate how a thermally generated electric current can couple to the structure, we also
modeled the simulation with a local excitation. Figure 6 shows the system when it is driven by a
local current source. The current source is 500-nm long and centered on a patch. It is oscillating

Bl e B B . ‘wrs (Bl
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Fig. 6 Long-wave (LW)-FSS excited by a local current source. E, for current excitation in the
(a) x-direction (b) y-direction. Far-field pattern for current excitation in the (c) x-direction and
(d) y-direction.
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at 30.84 THz (A = 9.72 um). Figures 6(a) and 6(b) show the electric field in the z-direction, S nm
above the patches, when the current is in the x- and y-directions, respectively. Figures 6(c) and
6(d) show the far-field patterns for the antenna system, respectively. When the current is polar-
ized in the x-direction, the energy is coupled along the microstrips to multiple patch antennas in
agreement with the results from Eq. (3). This produces a much larger effective aperture for the
antenna than a single patch, producing a fan-shaped beam in agreement with Fig. 3. When the
current is polarized in the y-direction, there is minimal coupling of the adjacent patches which
produces a more isotropic far-field pattern.

4 Conclusion

This paper demonstrated directional thermal emission emanating from enhanced coherence pro-
vided by waveguide modes. The ability to control the spectral and directional emittance profiles
of surfaces has significant applications for radiation heat transfer and sensing. The patch anten-
nas that form the basis of this work are relatively broadband. Further selectivity can be achieved
by using narrowband antennas. This work was conducted at room temperature but can be
extended to systems that can efficiently radiate energy at temperatures more applicable to
heat-transfer applications.
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