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Abstract. Our aim was to evaluate a spatiotemporal image-fusion model (STI-FM) for enhanc-
ing the temporal resolution (i.e., from 16 to 8 days) of Landsat-8 surface reflectance images by
utilizing the moderate-resolution imaging spectroradiometer (MODIS) images, and assess its
applicability over a heterogeneous agriculture dominant semiarid region in Jordan. Our proposed
model had two major components: (i) establishing relationships between two 8-day MODIS
composite images acquired at two different times (i.e., time 1 and time 2); and (ii) generating
synthetic Landsat-8 surface reflectance images at time 2 as a function of Landsat-8 images avail-
able at time 1 and the relationship constructed in the first component. We evaluated the synthetic
images with the actual Landsat-8 images and observed strong relations between them. For exam-
ple: the coefficient of determination (r2) was in the range: (i) 0.72 to 0.82; (ii) 0.71 to 0.79; and
(iii) 0.78 to 0.83; for red, near-infrared (NIR), and shortwave infrared (SWIR2.2 μm) spectral
bands, respectively. In addition, root mean square error (RMSE) and absolute average difference
(AAD) values were: (i) in between 0.003 and 0.004, and 0.0002, respectively, for red band; (ii)
0.005 and 0.0003, respectively, for NIR band; and (iii) 0.004 and in between 0.0001 and 0.0002,
respectively, for SWIR2.2 μm band. The developed method would be useful in understanding the
dynamics of environment issues (e.g., agriculture drought and irrigation management), which
require both relatively high spatial (i.e., 30 m) and high temporal resolution (i.e., 8 days) images.
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1 Introduction

Since the 1970s earth observation remote sensing satellites have been providing an enormous
amount of information in the form of images for monitoring various environmental phenomena.1

These images can be categorized into several classes on the basis of their spectral characteristics,
such as (i) visible (i.e., in the range 0.4 to 0.7 μm); (ii) near-infrared (NIR: 0.7 to 0.9 μm);
(iii) shortwave infrared (SWIR: 1.0 to 2.5 μm); (iv) thermal infrared (TIR: 3 to 14 μm); and
(iv) microwave (i.e., 3 mm to 3 m). In general, different satellites may acquire images over
a particular spectral range; however, these images may differ significantly in both spatial
and temporal resolutions. Usually the relatively high spatial resolution images have low temporal
resolution, and vice versa.2 For example, the moderate-resolution imaging spectroradiometer
(MODIS) and Landsat satellites have similar spectral ranges and also provide consistent surface
reflectance3–5 while they vary in their spatial and temporal resolutions (see Table 1 for details).
It is interesting to note that some environmental issues (e.g., agricultural drought, irrigation man-
agement, and grassland) require high spatial (e.g., 30 m) and high temporal (e.g., weekly) res-
olutions6–8 due to the rapid changes in these applications. In order to address this, a new data
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fusion research area (called as spatiotemporal data fusion) has emerged during the past several
years. These techniques have been applied and successfully predicted synthetic high resolution
images for different environmental issues such as vegetation indices,5,9 evapotranspiration,10

urban heat island,11 forest change detection,12 and surface temperature.2 In most of these
instances, these fusion techniques have merged Landsat with MODIS images in order to generate
synthetic images at the spatial resolution of Landsat (i.e., 30 m) and the temporal resolution of
MODIS (i.e., 1 to 8 days).13–18 In addition, some researchers have used other data, such as:
(i) Landsat images and medium resolution imaging spectrometer (MERIS) having spatial res-
olution in the range 300 to 1200 m with 3 days temporal resolution;19,20 and (ii) HJ-1 CCD
satellite images having 30-m spatial resolution with 4 days temporal resolution and
MODIS.21 In general, these techniques can be broadly divided into three groups, (i) the spa-
tial–temporal adaptive reflectance-fusion model (STAR-FM)-based techniques, (ii) unmixing-
based fusion techniques, and (iii) sparse representation-based fusion techniques. Some of the
example cases are briefly described in Table 2.

In general, the above mentioned techniques were complex and required relatively long
processing times. In order to address these, we developed a new data fusion technique called
spatiotemporal image-fusion model (STI-FM) and demonstrated its effectiveness in enhancing
the temporal resolution of Landsat-8 surface temperatures using MODIS data.24 Here, we pro-
posed to evaluate the applicability of the STI-FM with required modifications in generating
a synthetic Landsat-8 image [i.e., synth-Lðt2Þ] for the red, NIR, and SWIR spectral bands by
integrating a pair of MODIS images [i.e., Mðt1Þ and Mðt2Þ] and a Landsat-8 image [i.e., Lðt1Þ].
The rationale behind choosing these spectral bands were that these had been widely used in the
calculation of vegetation greenness and wetness conditions and are effective in monitoring these
parameters in short time periods, such as the plants’ growing seasons. Our aim with regard to this
paper was to implement this technique over a heterogeneous agriculture-dominant semiarid
region in Jordan, Middle East.

2 Materials

2.1 General Description of the Study Area

The country of Jordan is located in the Middle East. It is divided into three major geographic
areas (i.e., Jordan Valley, Mountainous Heights Plateau, and Eastern Desert) [see Fig. 1(a)]. Our
study area [Fig. 1(b)] is located in the northwestern part of the Mountainous Heights Plateau,
where the elevation varies in the range 600 to 1100 m above mean sea level. Geographically, it is
located between 31°47′N to 32°29′N and 35°37′E to 36°00′E covering approximately 3500 km2

[see Fig. 1(b)]. In terms of climate, it experiences Mediterranean climatic conditions with a hot
and dry summer (i.e., average temperature ∼25°C with no rainfall during May to August); and
cool and wet winter (i.e., average temperature ∼5 to 7°C with 250 to 650 mm rainfall during

Table 1 Comparison between spectral, spatial, and temporal resolutions of MODIS and Landsat-
8 images.

Satellite Spectral resolution (in μm) Spatial resolution (in m) Temporal resolution (in day)

MODIS Visible (0.45 to 0.67) 250 to 500 1
NIR (0.841 to 0.876) 250 to 500

SWIR (1.230 to 2.155) 500

TIR (10.78 to 12.27) 1000

Landsat-8 Visible (0. 43 to 0.67) 15 to 30 16
NIR (0.85 to 0.88) 30

SWIR (1.57 to 2.29) 30

TIR (10.6 to 12.51) 100
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Table 2 Description of some of the spatiotemporal data fusion techniques implemented over
the visible and shortwave infrared spectral bands.

Source and name of
the technique Description Comments

Gao et al.;13 spatial–
temporal adaptive
reflectance fusion
model (STARFM)

Predicted synthetic images by fusing Landsat and
MODIS images. It consisted of three main steps:
(i) selecting spectrally similar pixels within a window of
interest using Landsat images; (ii) determining a
weighting function factor as a function of both Landsat
and MODIS images; and (iii) generating synthetic
Landsat images at time 2 [i.e., synth-Lðt2Þ] by
multiplying the weightage factor defined in step (ii) with
the sum of difference between two MODIS images
taken at two different times [i.e., Mðt2Þ −Mðt1Þ] and
Landsat image taken at time 1 [i.e., Lðt1Þ]

There were two issues,
i.e., the window size
was variable depending
on the study area; and
not applicable over
heterogeneous land
cover types15

Zhu et al.;15

enhanced STARFM
(ESTARFM)

Modified the STARFM technique proposed by Gao
et al.13 in order to apply over heterogeneous land cove
types. In this case, they used MODIS images taken at
three times [i.e., Mðt1Þ, Mðt2Þ, and Mðt3Þ] and Landsat
images taken at two times [i.e., Lðt1Þ and Lðt3Þ] in order
to predict synth-Lðt2Þ. The technique had four main
steps: (i) selecting the spectrally similar pixels using two
Landsat images; (ii) calculating the weighting factor for
all similar pixels; (iii) determining a conversion
coefficient for each similar pixel by linear regression of
Landsat and MODIS images [i.e., Lðt1Þ with Mðt1Þ] and
[Lðt3Þ with Mðt3Þ]; and (iv) generating synth-Lðt2Þ by
integrating the outcomes of steps (ii) and (iii), andMðt2Þ

This proposed
technique was
computationally
expensive and unable
to predict synthetic
images for near real
applications as the
generation of such
images were a type of
hindcasting

Zurita-Milla et al.;19

unmixing data fusion
technique

Used an unmixing data fusion technique based on a
linear mixing model. The technique had two main steps:
(i) unmixing MERIS time series images using a high-
resolution land-use map; and (ii) generating high spatial
and temporal synthetic images by assigning the
unmixed signals to the corresponding land-use class
presented in the central pixel of k x k MERIS
neighborhood

The accuracy of this
technique would highly
depend on the quality of
the employed land-use
maps

Zhang et al.;18

enhanced spatial
and temporal data
fusion model
(ESTDFM)

Generated synth-Lðt2Þ by using MODIS images taken at
three times [i.e., Mðt1Þ, Mðt2Þ, and Mðt3Þ] and Landsat
images taken at two times [i.e., Lðt1Þ and Lðt3Þ]. It had
four main steps: (i) classifying Landsat images using
a patch-based ISODATA classification technique and
calculating the abundance of endmembers within
a moving window; (ii) unmixing of the three MODIS
images using those endmembers; (iii) predicting two
synthetic images by calculating the sum of Lðt1Þ and
Lðt3Þ with the corresponding difference images of
unmixed MODIS images; and (iv) the two predicted
images were temporally weighted to generate the final
predicted image

This technique
eliminated the
requirement of a high-
resolution land-use map
as in the case in Zurita-
Milla et al.19 However, it
would also suffer from
the same hindcasting
problem like
ESTARFM15

Huang and Song;22

sparse-
representation-
based
spatiotemporal
reflectance fusion
model (SPSTFM)

Used MODIS images taken at three times [i.e., Mðt1Þ,
Mðt2Þ, and Mðt3Þ] and Landsat images taken at two
times [i.e., Lðt1Þ and Lðt3Þ] to generate synth-Lðt2Þ. The
technique consisted of four steps: (i) enhancing the
three MODIS images to the equivalent spatial resolution
of Landsat image (i.e., 30 m) through a sparse
representation technique; (ii) building a dictionary pair
using the two counterpart MODIS and Landsat images
[i.e., Mðt1Þ and Lðt1Þ; Mðt3Þ and Lðt3Þ] and the other
MODIS image [i.e., Mðt2Þ]; (iii) predicting the difference
image of Landsat data using the learned dictionary pair;
and (iv) reconstructing the predicted Landsat image
using different weighting parameters

The technique provided
better results than the
STARFM-based fusion
techniques; however,
it still had the same
hindcasting problem
like ESTAFM15 and
ESTDFM.18

Furthermore, it was
computationally
expensive
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November to February); and two transition seasons (i.e., spring during March and April; and fall
during September and October). In general, about 70% of the annual evaporation is observed in
the dry season (i.e., May–August) with an annual potential evaporation of ∼1900 mm. In our
study area, the major agriculture activities include: (i) agricultural cereal crops (i.e., wheat and/or
barley grown between November and July) account for ∼65.5% of the area; (ii) orchards (i.e.,
olives, apple, nectarine, etc.) occupy ∼25.5%; and (iii) grazing and forestry account for
∼9.0%.25,26

2.2 Data Requirements and Its Preprocessing

In this study, we employed remote sensing data acquired by two satellite systems: (i) Landsat-8
Operational Land Imager freely available from United States Geological Survey (USGS); and
(ii) MODIS freely available from National Aeronautics and Space Administration (NASA). For
both satellites, we selected the spectral bands of red (i.e., in the range 0.62 to 0.67 μm), NIR (i.e.,
0.84 to 0.88 μm), and SWIR (i.e., 2.10 to 2.29 μm). For Landsat-8, we obtained five almost
cloudy-free images acquired between June and August 2013 at 30-m spatial resolution. On
the other hand, we obtained nine MODIS-based 8-day composite of surface reflectance products
(i.e., MOD09A1) at 500-m spatial resolution for the same period. The 8-day composite images
would lessen the probability of cloud-contamination of the daily MODIS products.27 The
selected dates are presented in Fig. 2.

Table 2 (Continued).

Source and name of
the technique Description Comments

Song and Huang;23

sparse-
representation-
based
spatiotemporal
reflectance fusion
model (SPSTFM)

Employed sparse representation (including dictionary
training and spars coding) in order to enhance the
spatial resolution of MODIS images (known as
transition images) to the equivalent spatial resolution of
Landsat image. Then two transition images taken at t1
and t2 and the Landsat image [i.e., Lðt1Þ] were used to
predict the synth-Lðt2Þ by using a high pass modulation
technique

This technique used
only three input images
to predict the synthetic
image. Thus, it
eliminated the problem
of hindcasting of
SPSTFM;22 however, it
required relatively longer
processing time due to
training a dictionary

0         200 Km
N

0                   20 Km

N
Jordan Valley 
Mountainous Highest
Eastern Desert 
Water Bodies

35oE 37oE 39oE

33oN

31oN

25oN

32o20′N

35o40′ 35o50′ o00′E E 36 E

32o10′N

32o00′N

31o50′N

(b)(a)

Fig. 1 (a) Map of Jordan illustrating three major geographic regions; (b) a Landsat-8 image at
30-m spatial resolution covering the study area as shown by the black polygon.
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2.2.1 Preprocessing of MODIS images

The acquired MODIS surface reflectance products were originally provided in sinusoidal pro-
jection. We used the MODIS reprojection tool (MRT 4.1)28 to subset the images into the spatial
extent of the study area and reproject them into the coordinate system of Landsat-8 images [i.e.,
Universal Transverse Mercator (Zone 36N-WGS84)]. Then, we coregistered these images using
Landsat-8 images to allow for accurate geographic comparisons and to reduce the potential geo-
metric errors (e.g., position and orientation) as effects of spatial miss-registration can influence
the derived information. Finally, we also checked the cloud-contaminated pixels by using the
quality control band (i.e., 500 m flag; another layer available in the MOD09A1 dataset) and
excluded them from further analysis.

2.2.2 Preprocessing of Landsat-8 images

The Landsat-8 images were available in the form of digital numbers (DN). These DN values
were converted into top of atmosphere (TOA) reflectance using the following equation illustrated
in Ref. 29:

ρTOA ¼ M � DNþ A
sinðθSEÞ

; (1)

where ρTOA is the band-specific Landsat-8 TOA reflectance; M is the band-specific multiplica-
tive rescaling factor; A is the band-specific additive rescaling factor; and θSE is the local sun
elevation angle at the scene center. The values of A, M, and θSE were available in the metadata
file of each image.

In order to transform the TOA reflectance into surface reflectance, we employed a simple but
effective atmospheric correction method that would not require any information about the atmos-
phere conditions during the image acquisition period. This was done using MODIS surface
reflectance images based on the fact that MODIS and Landsat have consistent surface reflectance
values.3,4,13,30 This was accomplished in three distinct steps. In the first step, we employed an
averaging method over a moving window of 17 × 17 pixels (i.e., approximately the equivalent of
500 × 500 m) for up-scaling pixels of Landsat-8 ρTOA images into the spatial resolution of
MODIS images (i.e., 500 m). This was done in order to make both the Landsat-8 and
MODIS images similar in the context of their spatial resolutions and to increase the spectral
reliability.31 In this way, the spectral variance between the images would decrease while the
spatial autocorrelation would increase; these were investigated in different studies.32–35 In the
second step, we determined linear relationships between the up-scaled Landsat-8 and
MODIS images for each of the spectral bands by generating scatter plots between them.
The coefficients of the linear relationships (i.e., slope and intercept) were then used with the
original Landsat-8 ρTOA images (i.e., 30 m) in order to generate Landsat-8 surface reflectance
images in the scope of the third step. It would be worthwhile to mention that the use of the
Landsat Ecosystem Disturbance Adaptive Processing System atmospheric correction algorithm
was not applicable for Landsat-8 due to the absence of climate data records.36 Finally, we
employed the Landsat-8 quality assessment (QA) band for determining the cloud-contaminated
pixels and excluded them from further analysis.

MODIS 
8-Day

MOD153
27/5-3/6

MOD161
4-11/6

MOD169  
12-19/6

MOD177 
20-27/6

MOD185 
28/6-5/7

MOD193
6-13/7

MOD201 
14-21/7

MOD209
22-30/7

MOD217
22-30/7

Landsat-8 2 June 18 June 4 July 20 July 5 August

Fig. 2 Acquisition dates of moderate-resolution imaging spectroradiometer (MODIS) and
Landsat-8 imagery used in the study.
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3 Methods

Figure 3 shows a schematic diagram of the STI-FM framework. It consisted of two major com-
ponents, (i) establishing the relationships between MODIS images acquired at two different
times [i.e., Mðt1Þ and Mðt2Þ], and (ii) generating the synthetic Landsat-8 surface reflectance
images at time two [i.e., synth-Lðt2Þ] by combining the Landsat-8 images acquired at time 1
[i.e., Lðt1Þ] and the relationship constructed in the first component and its validation.

In order to establish relations between the two MODIS images [i.e., Mðt1Þ and Mðt2Þ], we
performed the following steps:

• We calculated a ratio image [i.e., Mðt2Þ∕Mðt1Þ] using the pair of MODIS images for each
of the spectral bands of interest in order to determine the rate of the temporal change
between the two dates.

• We plotted Mðt1Þ by Mðt2Þ in order to assess the trends of changes in surface reflectance
between the two images; this could be determined using a pixel-wise linear regression
analysis.

• Based on the results of the previous two steps, the ratio image was classified into three
clusters of land cover change on the basis of assuming that approximately �15% variation
(rate of change) in surface reflectance (i.e., albedo) would be common for various natural
surfaces (e.g., conifer forests, deciduous forest, agriculture crops, grass, etc.).37,38 These
clusters included: (i) negligible changes [i.e., rate of change is within �15%;
Mðt2Þ ≈Mðt1Þ]; (ii) negative change [i.e., <15%;Mðt2Þ < Mðt1Þ]; and (iii) positive change
[i.e., >15%;Mðt2Þ > Mðt1Þ]. We considered that this was an important issue that was not
taken in consideration in other spatial and temporal fusion models. For each of the three
clusters, we produced cluster-specific scatter plots between Mðt1Þ and Mðt2Þ, and per-
formed linear regressions (see Fig. 4 for details).

In generating the synthetic Landsat-8 surface reflectance image [i.e., synth-Lðt2Þ] at 8-day
intervals, we employed the Landsat-8 image acquired at time 1 [i.e., Lðt1Þ] in conjunction with
the classified image and cluster-specific linear regression models derived from the previous
steps. In order to perform this combination, we applied different conditional linear functions
based on MODIS classified image to assign the surface reflectance value of each pixel in
the synthetic image instead of using one linear equation for the entire scene. For example,

Synthetic Landsat-8 surface reflectance at time 2 [i.e., synth-L(t2)]         

MODIS surface 
reflectance at 
time 2, M(t2)

MODIS surface 
reflectance at 
time 1, M(t1)

Landsat-8 surface 
reflectance at time 1, 

L(t1)

Generating regression 
equation for each clusters

Landsat-8 surface 
reflectance at time 2, 

L(t2)

Validation
• Qualitative evaluation
• Quantitative evaluation

Coefficient of determination (r2)
Root mean square error (RMSE)
Absolute average difference (AAD)

Calculating the ratio image
M(t2) / M(t1)

Classifying the ratio image into three 
clusters:

• Negligible change [i.e., M(t2) ≈ M(t1)]
• Negative change [i.e., M(t2) < M(t1)]
• Positive change [i.e., M(t2) > M(t1)]

Fig. 3 Schematic diagram of the proposed spatiotemporal image-fusion model for enhancing
the temporal resolution of Landsat-8 surface reflectance images.
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in order to generate synthetic Landsat-8 image of the day of year (DOY) 185, we first calculated
the linear regression between MODIS image on DOY 169 to 176 and DOY 185 to 192, and
then we applied the regression coefficients to Landsat-8 LST image of DOY 169. Here, our
image-fusion model assumed that the linear relationship between two MODIS images should
be applicable and comparable to the linear relationship between the two corresponding Landsat-
8 images as they would have consistent values. Therefore, the use of this linear regression would
be practical for generating synthetic Landsat-8 images.

3.1 Validating STI-FM

Upon producing the synth-Lðt2Þ images, we evaluated them with the actual Lðt2Þ images
acquired at 16-day intervals as the actual Landsat-8 were only available at every 16 day temporal
resolution. In this case, we used two methods: (i) qualitative evaluation that involved visual
examination and (ii) quantitative evaluation using statistical measurements, such as coefficient
of determination (r2), root mean square error (RMSE), and absolute average difference (AAD).
The equations for these statistical measures are as follows:

r2 ¼

2
64

PðAðtÞ − AðtÞÞðSðtÞ − SðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðAðtÞ − AðtÞÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðAðtÞ − SðtÞÞ2

q
3
75
2

; (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ½SðtÞ − AðtÞ�2

n

s
; (3)

AAD ¼ 1

n

X
jSðtÞ − AðtÞj; (4)

where AðtÞ and SðtÞ are the actual and the synthetic Landsat-8 surface reflectance images; AðtÞ
and SðtÞ are the mean values of the actual and the synthetic Landsat-8 images; and n is the num-
ber of observations.

1:1 line

y3= m3*x+c3
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MODIS surface reflectance at time 1, M(t1)

y1= m1*x+c1

y2= m2*x+c2
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Negative change; M(t2)<M(t1)

Positive change; M(t2)>M(t1)

Fig. 4 Conceptual relationships between the two MODIS images at two different times.
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4 Results and Discussion

4.1 Evaluation of the Relationships Between MODIS Images Acquired at
Two Different Times

Figure 5 shows the relation between 8-day composites of MODIS images acquired in two differ-
ent dates for the spectral bands of red, NIR, and SWIR2.13 μm during the period June 2 to August
12, 2013. It revealed that a strong relation existed for each of the clusters (i.e., negligible change,
negative change, and positive change) over all of the spectral bands during the period of obser-
vation. For example: the r2, slope, and intercept values were in the range: (i) 0.85 to 0.95, 0.95 to
1.07, and 0.003 to 0.01, respectively, for the negligible change cluster; (ii) 0.81 to 0.94, 0.77 to
0.94, and 0.0005 to 0.04, respectively, for the negative change cluster; and (iii) 0.79 to 0.91, 1.05
to 1.21, and 0.01 to 0.08 respectively, for the positive change cluster. Regression analysis showed

Fig. 5 Relation between 8-day composite of MODIS surface reflectance images acquired at time 1
[i.e., Mðt1Þ] and time 2 [i.e., Mðt2Þ] for the spectral bands of red [(a)–(d)], near-infrared (NIR) [(e)–
(h)], and shortwave infrared (SWIR2.13 μm) [(i)–(l)] during the period June 2 to August 12, 2013
[i.e., day of year (DOY) between 153 and 224]. Note that for each of the panels, three clusters
(i.e., negligible change, negative change, and positive change) are formed as per Fig. 3. Also,
the dotted and continue lines represent 1∶1 and regression line, respectively.
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that the negligible change clusters revealed the highest correlation values because no significant
changes occurred in the study area during the two 8-day composite MODIS images of interest at
16-day intervals. Note that we were unable to compare our findings as there were no similar
studies found in the literature so far. Although the use of 8-day composites of MODIS
might reduce the cloud-contamination, it might bring another issue. For example, two consecu-
tive MODIS images might potentially be apart in the range of 2 to 16 days as the 8-day
composite were generated based on the minimum-blue criterion,27 which coincided with the
most clear-sky day during the composite period of interest. The quantification of the impact
of such an 8-day composite against daily data was, in fact, beyond the scope of this paper,
but might be an interesting issue for further exploration.

4.2 Evaluation of the Synthetic Landsat-8 Surface Reflectance Images

Prior to conducting quantitative evaluations, we performed qualitative evaluations by comparing
the actual and synthetic Landsat-8 images. In these cases, we generated pseudocolor composite
images by putting the NIR, red, and SWIR spectral bands in the red, green, and blue color planes
of the computer; and such an example is shown in Fig. 6. Figure 6 shows the actual Landsat-8
image acquired on June 18, 2013 (DOY 169) [Fig. 6(a)] and its corresponding synthetic image
Landsat-8 image [Fig. 6(b)], which was produced using an image pair of Landsat-8 and MODIS
acquired in the DOY 153 and one MODIS image acquired in the DOY 169. In fact, we evaluated
four different land cover types [i.e., agricultural lands in Figs. 6(a1) and 6(b1); forests in Figs. 6(a2)

a b

a1

a2 a3

a4

b1b2

b3

b4

a1a2

a3

a4

b1

b2

b4

b3

a and ai = actual images
b and bi = synthetic images
(i = 1) =  agriculture  
(i = 2) = forest 
(i = 3) = water body
(i = 4) = urban area

N

Fig. 6 Example comparison between pseudocolor composite images by putting the NIR, red, and
SWIR spectral bands in the red, green, and blue color planes of the computer, respectively, for
actual and synthetic Landsat-8 images during June 18, 2013. Note that the panels [(a1), (b1)], [(a2),
(b2)], [(a3), (b3)], and [(a4), (b4)] show enlarged images for agricultural land, forest, water body, and
urban area, respectively, for both actual and synthetic images. Note that the synthetic image was
produced using an image pair of Landsat-8 and MODIS acquired in the DOY 153 and one MODIS
image acquired in the DOY 169.
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and 6(b2); water bodies in Figs. 6(a3) and 6(b3); and urban areas in Figs. 6(a4) and 6(b4)]. In general,
we observed that the visual clues (e.g., location, shape, size, and texture in particular) were repro-
duced in the synthetic images with negligible differences in comparison to that of the actual
images. However, the tones (i.e., the DN representing the surface reflectance values) had some
differences. These might happen due to the use of 500-m spatial resolution MODIS surface reflec-
tance images in calculating the Landsat-8 surface reflectance values at 30-m resolution.

Figure 7 shows the relationship between the actual Landsat-8 surface reflectance images and
the synthetic Landsat-8 surface reflectance images for red, NIR, and SWIR2.2 μm spectral bands
for the DOY 169, 185, 201, and 217. It demonstrated that strong relations existed between the
actual and synthetic images for all the spectral bands of interest over the period of study. In the

Fig. 7 Relation between the actual Landsat-8 surface reflectance image and its corresponding
synthetic Landsat-8 surface reflectance images for the red panels [(a)–(d)], NIR [(e)–(h)], and
SWIR2.2 μm [(i)–(l)] spectral bands during the DOY 169 (i.e., June 18, 2013) [(a), (e), (i)], DOY
185 (i.e., July 4, 2013) [(b), (f), (j)], DOY 201 (i.e., July 20, 2013) [(c), (g), (k)], and DOY 217
(i.e., August 5, 2013) [(d), (h), (l)]. The dotted and continued lines represent 1∶1 and regression
line, respectively.
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context of linear regression analysis, the r2, slope, and intercept values were in the range: (i) 0.72
to 0.82, 0.86 to 0.98, and 0.0009 to 0.042, respectively, for red spectral band; (ii) 0.71 to 0.79,
0.80 to 0.87, and 0.166 to 0.0800, respectively, for NIR spectral band; and (iii) 0.78 to 0.83, 0.91
to 0.94, and 0.0096 to 0.0367, respectively, for SWIR2.2 μm spectral band. In the context of
RMSE analyses, they were: (i) in between 0.003 an d0.004 for red spectral band; (ii) 0.005
for NIR spectral band; and (iii) 0.004 for SWIR2.2 μm spectral band. In addition, the AAD values
were 0.0002, 0.0003, and between 0.0001 and 0.0002 for the red, NIR, and SWIR2.2 μm spectral
bands, respectively.

It would be worthwhile to note that our findings were quite similar or even better in some
cases compared to other studies. For example: (i) Gao et al.13 implemented STARFM over boreal
forest and obtained AAD values of 0.004, 0.0129, and 0.0078 for red, NIR, and SWIR2.2 μm

spectral bands, respectively; (ii) Roy et al.14 applied a semiphysical fusion model over two
study sites in the United States (Oregon and Idaho) and got AAD values of 0.015, 0.22,
and 0.28 for Oregon site for red, NIR, and SWIR2.2 μm spectral bands, respectively; (iii) Zhu
et al.15 applied ESTARFM over heterogeneous regions and achieved AAD values of 0.0095
and 0.0196 for red and NIR spectral bands, respectively; (iv) Walker et al.5 used STARFM
to generate synthetic Landsat ETM+ surface reflectance images over dry-land forests; and
found that the r2 values were 0.85 and 0.51 for red and NIR spectral bands; (v) Song and
Hang23 employed a sparse representation-based synthetic technique over boreal forests
and found r2 values of 0.71 and 0.90; RMSE values of 0.02 and 0.03; and AAD values of
0.01 and 0.21 for red and NIR spectral bands, respectively; and (vi) Zhang et al.18 used
ESTDFM and observed r2 values of 0.73 and 0.82, and AAD values of 0.009 and 0.0167
for red and NIR spectral bands, respectively. It is also important to mention that the proposed
model would be applicable for other satellite systems that would have similar spectral and orbital
characteristics, such as other Landsat series, MODIS, MERIS, and ASTER. In addition, it is also
interesting to point out that the model is a relatively simple and easily reproducible approach,
which might satisfy most of the user’s needs; such a simple and less sophisticated method
might be the most suitable for different applications. Although our results demonstrated strong
relations between actual and synthetic Landsat-8 images, some issues would be worthwhile to
consider for further improvements, such as:

• In this study, we used MODIS surface reflectance images at 500-m spatial resolution.
However, it would be possible to use such images acquired at 250-m spatial resolution
in the case of red and NIR spectral bands in particular, which might enhance the quality
of the synthetic image.31

• One of the major requirements for the input images [i.e., Lðt1Þ, Mðt1Þ, and Mðt2Þ] was to
be free from cloud-contamination. However, it might not be possible to have images com-
pletely free from such contamination. In such events, we might use the cloud-infilling
algorithm described in Chowdhury and Hassan39 that required images acquired at current
and previous dates.

• Although the use of MODIS surface reflectance products to generate Landsat-8 surface
reflectance images led to the prediction of reasonable synthetic Landsat-8 surface reflec-
tance images, it would be interesting to use climate data records and compare its outcome
with the method adopted here. However, such climatic records were not available for
Landsat-8 images at the time of this study.40

5 Concluding Remarks

In this study, we demonstrated the applicability of the STI-FM technique for enhancing the tem-
poral resolution of Landsat-8 images from 16 to 8 days using 8-day MODIS based surface reflec-
tance images and demonstrated its implementation over heterogeneous agriculture-dominant
semiarid region in Jordan. Our results showed that the proposed method could generate synthetic
Landsat-8 surface reflectance images for red, NIR, and SWIR spectral bands with relatively
strong accuracies (r2, RMSE, and AAD values were in the range 0.71 to 0.83; 0.003 to
0.005; and 0.0001 to 0.0003, respectively). In general, our method would be considered as
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a simple one because it would not require any correction parameters or high quality land-use
maps in order to predict the synthetic images. Despite the accuracy and simplicity, we would
recommend that the proposed method should be thoroughly evaluated prior to adoption in other
environmental conditions except for semiarid regions like ours.
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