
Performance comparison of systemic activity correction
in functional near-infrared spectroscopy for methods

with and without short distance channels

Franziska Klein ,a,* Michael Lührs ,b,c Amaia Benitez-Andonegui ,d

Pauline Roehn,a and Cornelia Kranczioch a

aCarl von Ossietzky University of Oldenburg, Neurocognition and
Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany

bMaastricht University, Faculty of Psychology and Neuroscience, Maastricht,
The Netherlands

cBrain Innovation B.V., Maastricht, The Netherlands
dNational Institutes of Mental Health, MEG Core Facility, Bethesda, Maryland,

United States

Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) is a promising tool for neurofeed-
back (NFB) or brain–computer interfaces (BCIs). However, fNIRS signals are typically highly
contaminated by systemic activity (SA) artifacts, and, if not properly corrected, NFB or BCIs
run the risk of being based on noise instead of brain activity. This risk can likely be reduced by
correcting for SA, in particular when short-distance channels (SDCs) are available. Literature
comparing correction methods with and without SDCs is still sparse, specifically comparisons
considering single trials are lacking.

Aim: This study aimed at comparing the performance of SA correction methods with and
without SDCs.

Approach: Semisimulated and real motor task data of healthy older adults were used. Correction
methods without SDCs included a simple and a more advanced spatial filter. Correction
methods with SDCs included a regression approach considering only the closest SDC and two
GLM-based methods, one including all eight SDCs and one using only two a priori selected
SDCs as regressors. All methods were compared with data uncorrected for SA and correction
performance was assessed with quality measures quantifying signal improvement and spatial
specificity at single trial level.

Results: All correction methods were found to improve signal quality and enhance spatial speci-
ficity as compared with the uncorrected data. Methods with SDCs usually outperformed methods
without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the
exact pattern of results and the degree of differences observable between correction methods
varied between semisimulated and real data, and also between quality measures.

Conclusions: Overall, results confirmed that both Δ½HbO� and Δ½HbR� are affected by SA and
that correction methods with SDCs outperform methods without SDCs. Nonetheless, improve-
ments in signal quality can also be achieved without SDCs and should therefore be given priority
over not correcting for SA.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a promising tool in neuroimaging, in particular
in the context of brain–computer interface1 (BCI) or neurofeedback2 (NFB) applications for
motor neurorehabilitation. In active overt3 NFB training, participants learn to self-regulate
their task-related brain activity by receiving feedback with the main goal of facilitating brain
plasticity.2,4,5 For the purpose of motor neurorehabilitation the task can be any motor task,
however, most commonly, participants perform kinesthetic motor imagery, that is, imagining the
sensation of a motor task without actually performing it.2,6,7 To achieve this goal, a spatially
specific brain imaging tool that allows cost-efficient, repeated training is desirable. FNIRS com-
bines these qualities.2,8 Moreover, fNIRS allows for measure difficult populations such as chil-
dren and patients, it is relatively robust against movement, and, because fNIRS can be mobile
and portable, it offers environmental flexibility.5,8–10 One major drawback of fNIRS, however, is
the contamination of the measured signals with task-evoked systemic extracerebral and cerebral
activity11,12 (in short: systemic activity, SA). FNIRS captures hemodynamic activity by trans-
mitting NIR light through the brain from a light source to a light detector. On this journey, the
light does not only penetrate the cerebral tissue but also the extracerebral layers (scalp and skin),
resulting in a signal that includes both cerebral and extracerebral hemodynamic activity.11,12 The
problems arising from the SA artifact are diverse: the artifact differs between signal types
oxygenated (Δ½HbO�) and deoxygenated (Δ½HbR�) hemoglobin,11–13 between and within sub-
jects as well as tasks.14 Furthermore, it is not homogeneously distributed across the head12,13 and
it can mimic task-related activity.12,13 Since the frequency of the artifacts can overlap with the
task frequency, the conventionally used temporal filters are not sufficient. The consequence is
that statistical results might either be inflated due to false positives or depleted by false
negatives.11,12,15,16 For NFB and BCI applications this could mean that they are potentially based
on noise and not on brain activity.

So far, the gold standard for systemic artifact correction (SAC) of the extracerebral part of the
SA artifact involves short-distance channels (SDCs). For SDCs, NIR light source and detector
are placed at a distance of <10 mm11–13,17 (ideally at 8.4 mm for adults18). Because of the short
distance, the SDC measures mostly extracerebral SA, which can then be used to correct the data,
e.g., by applying a regression-based approach.13,17,19–21 The most promising approach so far is to
add the SDC data as (additional) regressors to the General Linear Model (GLM).13,17,21 The
optimum number of SDCs within this approach is still unknown, but it has been shown for
up to eight SDCs that results keep improving when adding more SDCs.17 Also, including SDCs
of both signal types together, i.e., Δ½HbO� and Δ½HbR�, improves the results.17 However, not all
fNIRS researchers have access or will have access to SDCs in the near future. For instance, von
Lühmann and colleagues21 found that only 4% of published fNIRS BCI studies used SDCs for
correction. For instances in which no SDCs are available, a number of alternative SA correction
methods have been proposed, e.g., based on spatial filters15,16,22–24 or by using individual base-
line measurements for a filter based on principal component analysis.17,25

Awareness of the SA artifact and its need for correction is steadily growing and has already
resulted in a number of publications proposing and/or comparing different correction
methods.13,15–17,21,23,24,26,27 What is still scarce are performance comparisons of the proposed
correction methods that can guide researchers in their choice. Particularly with respect to
researchers who are not equipped with SDCs, there is a growing need for performance compar-
isons of methods with and without SDCs. To address this need, in this exploratory study, the
performance of two spatial filters without SDC was compared with three regression-based SDC
correction methods. Requirements for the chosen methods were that they are not only suitable
for offline data analysis but also that they have a straightforward implementation in online sce-
narios, e.g., BCI or NFB applications. Also with consideration of BCI and NFB implementa-
tions, performance of the SA correction methods was evaluated at the single trial level wherever
possible. Comparisons were based on measures quantifying signal improvement and spatial
specificity. Expectations were that (i) signal quality will improve and spatial specificity will
increase after the application of SAC methods compared with no correction, irrespective of
whether SDCs were applied or not but that (ii) signal quality and spatial specificity improve-
ments will be stronger for SAC methods with SDCs as compared with those without SDCs.
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2 Materials and Methods

2.1 Subjects and Data Sets

For the current study two existing data sets were used. Because in real data the true underlying
hemodynamic response function is unknown, the first data set was used to generate ground-truth
semisimulated (SIM) data by adding a hemodynamic response function to resting state data (SIM
DATA). The second data set consisted of real data of motor imagery (MI) and motor execution
(ME). While MI data were chosen for their relevance for motor neurorehabilitation, ME data
were included because of their more stable hemodynamic response.

2.1.1 SIM data

Semisimulated data were generated based on resting-state measurements from N ¼ 30 individ-
uals that originated from an intermittent NFB study (unpublished). One participant was excluded
because the rest data was missing. For the remaining 29 subjects, ∼3 min of fNIRS data were
recorded while subjects were looking at a black fixation cross on a gray background displayed
on a computer screen. After applying the channel-based exclusion criteria of the present study
(cf. Sec. 2.3.1 paragraph channel pruning for details),N ¼ 23 older adults (11 females, 12 males;
age [mean ± SD]: ½65.52� 4.13� years; range: 58 to 71 years) were included for the final
analyses.

2.1.2 ME and MI data

The real data set comprised ME and MI data. Details of the study design can be found in Klein
et al.28 In short, N ¼ 32 healthy older adults performed five motor tasks, i.e., a self-paced
sequential finger tapping task that was physically performed with either the left (ME LEFT)
or the right (ME RIGHT) hand or kinesthetically imagined with either the left or the right hand.
The fifth task was the kinesthetic imagination of an arbitrarily chosen whole-body movement
involving both arms and legs. Each task consisted of 12 trials and the trial structure was a
blocked design with 15 s of task period preceded and followed by 18 to 22 s of rest period.
The order of tasks was pseudorandomized, with the restriction that not all of the three MI tasks
appeared consecutively. Furthermore, a 15 s break after six trials of the same task and between
two tasks was included in which subjects were allowed to slightly move their head, shoulders,
and/or limbs if they felt that this helps for relaxation. All three MI tasks were combined into one
MI task set (36 trials). After applying study specific exclusion criteria (cf. Sec. 2.3.1 paragraph
channel pruning), N ¼ 24 subjects (13 females, 11 males; age [mean ± SD]: ½63.63� 4.73�
years; range: 56 to 71 years) remained for analysis.

Participants of both studies gave written informed consent and were paid 10 Euros/h as reim-
bursement. General inclusion criteria for both studies were right-handedness, >4 h of sleep, and
no history of neurological, psychiatric, or psychological diseases (cf. Klein et al.,28 for more
details and all exclusion criteria). Both studies were approved by either the regular (resting-state
data) or the medical (real data) Ethics Committee of the University of Oldenburg.

2.2 Functional Near-Infrared Spectroscopy (fNIRS)

FNIRS data were recorded using a NIRScout 816 device (NIRStar 15.2, NIRx Medizintechnik
GmbH, Berlin, Germany) including 20 regular distance channels (in short: regular channels) and
eight short distance channels (NIRx Medizintechnik GmbH, Berlin, Germany). The eight LED
sources (intensity 5 mW∕wavelength) had a distance of approximately 3 cm to the eight (regular
distance) detectors and a distance of 0.8 cm to the short distance detectors. The regions of inter-
ests (ROIs) were bilateral M1 and SMA. For designing the probe layout, initially, ROI masks
were generated based on the automated anatomical labeling (AAL) atlas as implemented in the
wfupickatlas in SPM12 (v2.429,30). Bilateral M1 was represented by left and right precentral
gyrus (3D dilatation = 1) and SMA was represented by bilateral supplementary motor area
(3D dilatation = 1). The masks were loaded into the into the fNIRS Optodes’ Location
Decider (fOLD) toolbox (v2.231; https://github.com/nirx/fOLD-public) where the specificity was
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kept at 30% (brain atlas: SPM12). One restriction for the probe design was that the probe should
be compatible with both the NIRScout system (i.e., our version with 12 detectors and 8 sources,
one detector used for SDC bundle, diminishing the number of available detectors to 11; NIRx
Medizintechnik, Berlin, Germany) as well as the NIRSport2 system (i.e., version with eight
detectors and eight sources, one detector used for SDC bundle, diminishing the number of avail-
able detectors to 7; NIRx Medizintechnik, Berlin, Germany). The second restriction was that the
distribution of the channels should be primarily focused on the SMA. To meet the criterion to be
compatible with both fNIRS systems, optodes CCP5h and CCP6h were removed for analysis,
resulting in 16 out of the 20 regular channels and eight SDCs [cf. Fig. 1(d) right]. The final probe
layout is completely covered by the mask generated by the wfupickatlas and is visualized in
Fig. 1(d) and matches with the following adjustments in the fOLD toolbox: For ROI M1,
BrainAtlas: Brodmann; anatomical landmarks: four—primary motor cortex; specificity: 20%;
for ROI SMA, both BrainAtlas: AAL2; anatomical landmarks: Supp_Motor_Area_L and
Supp_Motor_Area_R; specificity: 10% or SMA portion of BrainAtlas: Brodmann; anatomical
landmarks: six—premotor and supplementary motor area; specificity: 30%. The SMA channel
distribution was slightly increased by additionally adding optodes to the EEG 10-5 positions
FC1h and FC2h [cf. Fig. 1(d) left]. Note that ROI M1 (Brodmann area 4) and premotor areas
(part of Brodman area 6) are highly overlapping and thus channels in M1 LEFT and M1 RIGHT
might not exclusively represent M1. The NIRS optodes were placed according to the
international 10-5 system in a custom-made cap, in which Cz, Nz, and Iz positions as well
as left and right ears were used as markers for correctly positioning the cap.32 Optodes were
attached to the cap with (spring loaded) grommets (NIRx Medizintechnik GmbH, Berlin,
Germany) in order to reduce optode movement and to improve the contact between optodes and
scalp. The sources emitted NIR light at wavelengths of 760 and 850 nm and raw light intensity
was sampled at a rate of 7.8125 Hz.

2.2.1 Additional unused data

Optode positions and fiducial points were digitized with an optical digitizer (Xensor, ANT
Neuro, The Netherlands). Because most of the digitizer data of the SIM data set was corrupted
due to missing or inaccurate optode locations, digitzer data was not further considered.
Moreover, the data sets contain electromyography data that were used in a previous publication28

but are of no relevance for the present study.

2.3 Data Processing and Statistical Analysis

2.3.1 fNIRS analysis

FNIRS data processing was conducted with a combination of the NIRS Brain AnalyzIR
toolbox33 (https://github.com/huppertt/nirs-toolbox) and custom made scripts. For a better over-
view, in Fig. 1 the workflow from data types (A, E) over the preprocessing pipeline (B), the
applied correction methods (F) to the generated quality measures (G) is visualized.

Quality check and channel pruning. Channel quality was assessed by means of the qt-nirs
toolbox that uses the scalp coupling index (SCI34,35) and the peak spectral power (PSP35) for
evaluating signal quality (SCI threshold = 0.6, Q threshold = 0.65, and PSP threshold =
0.1; https://github.com/lpollonini/qt-nirs). Note that the GLM-based correction methods are
using the AR-IRLS model36 (cf. Sec. 2.3.2), which is relatively robust against channels with
poor signal quality and thus these channels do not necessarily need to be removed.
However, as the quality assessment is important for other correction methods it was however
performed as a general step in the processing pipeline. The first inclusion criterion was that all
short-distance channels remained for analyses, which was the case for 25 participants of the SIM
data set and for 24 of the ME/MI data set. For the SIM data, the second inclusion criterion
concerned the consistent number of identical channels for adding the simulated HRF across
subjects. Here, the aim was to find the same two channels across subjects that remain within
an ROI after channel pruning. This was the case for channels 6 and 8 of ROI M1 LEFT in N ¼
23 subjects [cf. Figs. 1(d) and 1(e)]. Across the final sample of the SIM data, on average (±SD)
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Fig. 1 Illustration of the data processing stream in the present study. First, (a) both data sets
underwent the (b) preprocessing stream of which the first step involved a quality check by using
the qt-toolbox. Based on that, channels with poor quality were pruned. (c) The channel frequency
across subjects after pruning for the SIM and the ME/MI data sets. (d) The probe layout and the
channel layout including regular channels and short distance channels (SDCs) as well as the
ROIs. (e) Semisimulated data were generated based on the rest data after the data were con-
verted from raw data to optical density changes. Here, canonical HRFs were added to channels
6 and 8 with 100% and 50% amplitudes, respectively. After data were band-pass filtered, (f) the
correction methods were applied, which resulted in six different data sets. NO SAC refers to the
data that was preprocessed but was not corrected for SA. Correction methods without SDCs
included the common average reference (CAR) and the global component removal (GCR) meth-
ods and methods with SDCs comprised the short separation regression (SSR), GLM with all
SDCs as regressors (GLM ALL), and the GLM with one SDC (SDCs 4 and 7) regressor for each
hemisphere (GLM BH). For each method, a GLM was performed. Based on the GLM output of
GLM ALL the channel selection for the subsequent analyses was conducted. (h) The resulting
channel frequencies across subjects for each task (columns) and data types (rows) are visu-
alized. Data of the selected channel were then epoched and baseline corrected and finally,
based on single trials the (g) quality measures for signal improvement sRMSE, COR, and
CNR and for spatial specificity SDC CORMAT were calculated. Spatial specificity measure
BETA MAPS was not based on single trials but on the individual GLM output resulting from each
method.
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2.26 (± 2.56; ranging from 0 to 8 channels) regular channels were pruned. Pruned channels
were replaced by NaNs in the respective data set.

For the ME/MI data, the second inclusion criterion was that in each of the three ROIs at least
two channels remained for analysis after pruning. Based on this, all N = 24 subjects were con-
sidered for analysis and on average across subjects 2.71 of all regular channels (SD± 3.20;
ranging from 0 to 9 channels) were pruned. Data of the pruned channels were replaced by
NaNs in the respective data set. A visualization of the frequency of the remaining channels
of both data sets after pruning can be found in Fig. 1(c) and exact numbers are documented
in Tables S21–S26 in the Supplementary Material.

Preprocessing. Preprocessing was applied to all channels, including both short and regular-
distance channels. Raw data were transformed into optical density changes and were then
corrected for possible motion artifacts by means of the temporal derivative distribution repair
(TDDR) method.37 Afterwards, data were converted into hemoglobin concentration changes
by means of the modified Beer–Lambert law (mBLL). Therefore, the individual age-related38

differential pathlength factor (DPF) was used in order to calculate the partial pathlength factor
[PPF = DPF × partial volume factor (PVF = 1/60)], which was used for the mBLL. To generate
the SIM data, the canonical HRF was hereupon added to the rest data [see following paragraph
Generation of semisimulated (SIM) data for details]. Then, data were first low-pass filtered
with a zero-phase digital Butterworth filter (cut-off = 0.09 Hz; order = 2) and then high-pass
filtered with a zero-phase digital Butterworth filter (cut-off = 0.01 Hz; order = 2). The cut-off
frequencies of [0.01, 0.09] Hz were selected based on the recommendations by Pinti et al.;39

however, departing from this, in the present data analysis, no finite impulse response (FIR)
filter with a high filter order (>1000) was applied because the SIM data had no sufficient
length for this filter order (∼3 min of rest data) and we wanted to keep the preprocessing
the same across data sets.

Generation of semisimulated (SIM) data. Resting-state data of the first data set were used to
generate the SIM data. Canonical HRFs (peak at 6 s) with different amplitudes were generated
and added to the rest data of neighboring channels 6 and 8, located in the ROI M1 LEFT [cf.
Fig. 1(c)]. Semisimulated data were generated for two channels and with different amplitudes to
simulate a spatial pattern with a signal strength gradient (cf. Sec. 2.4.3). The amplitude for
channel 6 was 10 μM for Δ½HbO� and 10∕3 μM for Δ½HbR� (100% amplitude) and 5 μM for
Δ½HbO� and 5∕3 μM for Δ½HbR� (50% amplitude) for channel 8. For each subject, a total of
five trials were simulated as a blocked design with 15 s of task period preceded and followed by
18 to 22 s of rest period.

2.3.2 Systemic activity correction (SAC) methods

No systemic activity correction (NO SAC). Data after the band-pass filtered preprocessing stage
served as a reference measure and are referred to as no systemic activity corrected (NO SAC)
data.

Common average reference (CAR). A very simple correction method without the use of
SDCs is the common average reference (CAR) spatial filter, which has its origin in EEG
analysis.22 Based on the idea that a global signal is present in all channels, a spatial filter can
be generated by simply subtracting the average time signal across all N channels from each
single channel xi, ði ¼ 1; : : : ; NÞ to reduce the global signal influence, resulting in the corrected
channels xCARi

[cf. Eq. (1)]22

EQ-TARGET;temp:intralink-;e001;116;182xCARi
¼ xi −

1

N

XN
j¼1

xj: (1)

Global Component Removal (GCR). The second correction method without using SDCs is
the global component removal (GCR) method.23,24 The GCR is a more advanced spatial filter
based on Gaussian spatial filtering and singular value decomposition (SVD). The Gaussian
kernel smoother G is a two-dimensional kernel smoother that is applied to remove detail and
noise from a data set.23 It requires the Montreal Neurological Institute (MNI) coordinates of
each channel that are stored in a N × N distance matrix D
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EQ-TARGET;temp:intralink-;e002;116;735GðDÞ ¼ e
−D2

2σ2 ; (2)

where σ represents the width of the kernel and was shown to be effective with a value of
σ ¼ 46 deg.40 The SVD decomposes the data matrix Y task into the three matrices U, Σ, and VT

EQ-TARGET;temp:intralink-;e003;116;684Y task ¼ UΣVT; (3)

where the n ×m matrix U represents the temporal information of the n channels, the n × n
diagonal matrix Σ consists of the singular values, i.e., the square root of the eigenvalues, and
the n × n matrix VT represents the transpose of the spatial information. The vectors vi of V are
then smoothed by the Gaussian kernel G

EQ-TARGET;temp:intralink-;e004;116;604v�i ¼ vi � G; (4)

which results in the vectors v�i of matrix V�. The convolution with G removes the localized
neuronal pattern and, therefore, V� represents only the spatial information of the global
component.23 By replacing V with V� in the SVD formula, the waveforms of the GC Yglobal

can be reconstructed

EQ-TARGET;temp:intralink-;e005;116;523Yglobal ¼ UΣV�; (5)

and to get the neuronal component Yneuronal, the GC Yglobal can then simply be subtracted from
the data Y task

EQ-TARGET;temp:intralink-;e006;116;467Yneuronal ¼ YGCR ¼ Y task − Yglobal: (6)

Short Separation Regression (SSR). A simple and easy to implement SAC method that
involves SDCs is the short separation regression (SSR).11,19 By simply applying Eq. (7), it was
shown that SA can be reduced

EQ-TARGET;temp:intralink-;e007;116;398ySSR ¼ yRC − αySDC: (7)

Here, α is defined as the quotient of two scalar products (h·; ·i)

EQ-TARGET;temp:intralink-;e008;116;354α ¼ hySDC; yRCi
hySDC; ySDCi

: (8)

In this method, ySDC can be either the closest SDC, the SDC showing the strongest corre-
lation with the regular channel yRC or an average across all available SDCs. In the present study
ySDC represents the signal of the closest SDC to each regular channel determined by the
Euclidian distance.

General Linear Model with all SDCs as Regressors (GLM ALL). The most recommended
SAC method when using SDCs is to incorporate the SDCs as regressors within the general linear
model (GLM).13,17 With this approach one can add the SDC regressors XSDC in addition to the
task-related regressors Xtask directly to the GLM analysis

EQ-TARGET;temp:intralink-;e009;116;212Y ¼ ½Xtask XSDC � ·
�
βtask
βSDC

�
þ ϵ; (9)

where βtask and βSDC represent the beta values of the task and of the SDC, respectively, and ϵ the
residuals of that model. However, in an NFB or BCI experiment, one might be more interested in
further processing the corrected time signal data; therefore, the GLM can be applied for SAC by
adding only the SDC channels to the design matrix XSDC

EQ-TARGET;temp:intralink-;e010;116;119Y ¼ XSDC · βSDC þ ϵ: (10)

In this model, each SDC time course in XSDC results in a beta value in βSDC estimating its
contribution to the time signals in Y and the part that can not be explained by the model is
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included in the residual term ϵ. By subtracting the product of design matrix XSDC and beta values
βSDC from the data Y, ϵ results in the cleaned data set YGLMALL

EQ-TARGET;temp:intralink-;e011;116;711YGLMALL ¼ ϵ ¼ Y − XSDC · βSDC: (11)

As recommended by Santosa and colleagues,17 for the GLM ALL method all eight SDCs of
both Δ½HbO� and Δ½HbR� were included in the present study as regressors for running the GLM.
For solving the GLM, an autoregressive iterative least square (AR-IRLS36) algorithm imple-
mented in the Brain AnalyzIR toolbox33 (https://github.com/huppertt/nirs-toolbox) was applied.

General Linear Model with one SDC on Both Hemispheres as Regressors (GLM BH).
Similar to the GLM ALL method, the GLM BH correction method uses SDCs as regressors
within the GLM in order to correct for SA. However, here only two SDCs were used for
correction to pretend to be in a scenario where only a small number of SDCs are available.41,42

As for GLM ALL, by subtracting the product of design matrix XSDCBH
and beta values βSDCBH

from the uncorrected data Y, ϵ results in the cleaned data set YGLMBH

EQ-TARGET;temp:intralink-;e012;116;559YGLMBH ¼ ϵ ¼ Y − XSDCBH
· βSDCBH

: (12)

For the GLM BH method, SDCs 4 and 7 were chosen because they cover both hemispheres
(BH) and were included in all of the three ROIs [cf. Fig. 1(d)]. Also for this GLM method,
regressors of both Δ½HbO� and Δ½HbR� of the respective channels were included in the model.

2.4 Channel Selection and Quality Measures

2.4.1 Channel selection

The majority of quality measures were calculated for selected channels. To enhance comparabil-
ity across SDC methods, the same channel set was used for all correction methods. Channels
were not selected from the whole channel pool but selection was restricted to the task-specific
ROI. The task-specific ROI was defined a priori as the ROI that most likely shows the strongest
activation for a given task. For ME LEFT the task-specific ROI was M1 RIGHT, for ME RIGHT
and SIM it was M1 LEFT for MI it was SMA.

For each subject, the best channel was selected separately for each task (SIM, ME LEFT, ME
RIGHT, and MI) and signal type (Δ½HbO� and Δ½HbR�), resulting in four tasks × two signal
types = eight channels per subject. The channel selection was based on the individual output of
two AR-ILS36 GLMs (one for SIM data and one for real data) run on the GLM ALL corrected
data because it was expected that this correction method results in the cleanest data.13,17 For tasks
ME LEFT, ME RIGHT, and MI, besides the three task-related regressors, regressors of the
instruction and the breaks were added to the GLM. Additionally, first and second derivatives
of each regressor were included in the model. For SIM data, the GLM included one task-related
regressor consisting of all simulated onsets. From the GLM outputs, the individual channels with
the highest (Δ½HbO�) and lowest (Δ½HbR�) beta values were selected from within the task-
specific ROIs. The resulting channel frequencies across tasks and signal types are visualized
in Fig. 1(h).

2.4.2 Quality measures for signal improvement

Signal improvement was assessed with three different measures expected to be reflective of
single trial noise reduction after applying SAC. It was expected that for SAC methods that
effectively remove SA, quality measures for signal improvement should be enhanced relative
to uncorrected data. It was also expected that the measures demonstrate a superiority of SDC
methods compared with methods without SDCs.

For the individually selected channels (see Sec. 2.4.1), measures were calculated for data
epoched ½−5; 25� s around stimulus onset and baseline corrected with the average of the signal
from five seconds prior to stimulus onset. For ME LEFT and ME RIGHT, quality measures were
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first calculated separately and then averaged for each subject to generate a single value
termed ME.

Scaled root mean square error (sRMSE). For this quality measure, a linear regression was
fitted (using the function lm() of the ‘stats’ package v4.0.243 and rescale() of the ‘scales’ package
v1.1.1 [https://github.com/r-lib/scales] in R43 in combination with RStudio44) between a single
trial epoch of either Δ½HbO� orΔ½HbR� scaled to [0, 1] ys and a single trial canonical HRF scaled
to [0, 1] xs

EQ-TARGET;temp:intralink-;e013;116;651ys ¼ xs · β þ ϵs; (13)

where β represents the strength of the fit and the residual term ϵs is a measure of the error of
the fit. The scaling of the epochs was performed using the min–max normalization

EQ-TARGET;temp:intralink-;e014;116;597xs ¼
x −minðxÞ

maxðxÞ −minðxÞ : (14)

Then, the residuals ϵs of the model fit were extracted and the sRMSE was calculated as
follows:

EQ-TARGET;temp:intralink-;e015;116;527sRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ϵs;i
n

r
: (15)

For each subject and selected channel, the single trial sRMSE values were then averaged
across trials to have a single value per subject. When comparing different models resulting from
different SAC methods, a low sRMSE value indicates low error of the corresponding model and
is therefore interpreted as stronger signal improvement as compared with a model with a higher
sRMSE value. Note that the RMSE is an important and often applied measure to validate the
performance of a linear regression model. However, since the RMSE is a scale-dependent mea-
sure, it is only meaningful when comparing models based on the same data.45–47 If it is of interest
to compare several models based on different data sets, as in the present study, a scaling or
normalization step should be performed.47

Correlation (COR). For this quality measure, the Spearman rank correlation coefficient
ρ between a single trial epoch of either Δ½HbO� or Δ½HbR� y and the corresponding canonical
HRF x was calculated (using the function cor() of the ‘stats’ package v4.0.243 in R43 in combi-
nation with RStudio44). To use this value for statistical analysis, each single trial ρ was then
Fisher’s z-transformed (function FisherZ() of the ‘DescTools’ package v0.99.38 [https://
github.com/AndriSignorell/DescTools] in R43 in combination with RStudio44) and for each
subject and selected channel averaged across trials. With respect to the COR quality measure,
when comparing two methods, the method with the higher COR value indicates a stronger
relationship between HRF and trial and therefore a stronger signal improvement.

Contrast-to-noise ratio (CNR). The third single trial quality measure for signal improvement
is the contrast-to-noise ratio25,48,49

EQ-TARGET;temp:intralink-;e016;116;241CNR ¼ meanðytaskÞ −meanðybaselineÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðytaskÞ þ varðybaselineÞ

p ; (16)

where mean and var indicate the mean and variance of either the single trial baseline ybaseline or
the task period ytask. As compared with previous implementations,25,48,49 in the present study,
the task period was slightly adapted by using the averaged data of the peak value �2 s of a
given trial within the time window of ½−5;25� s around stimulus onset [using a custom-made
function in MATLAB based on the MATLAB functions mean() and var()]. For each subject and
selected channel, the single trial CNR were then averaged across trials. The higher the CNR
value the larger the ratio of task-related signal to noise and, correspondingly, the better data
quality.
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2.4.3 Quality measures for spatial specificity

Spatial specificity characterizes how well defined a signal is in space. To prepare the data, the
time series signal of all regular channels were epoched ½−5;25� s around stimulus onset and
baseline corrected with the average of the signal from 5 s prior stimulus onset. In addition, the
beta values resulting from the GLMs of each correction method were extracted for both Δ½HbO�
and Δ½HbR�.

Correlation matrices with SDCs (SDC CORMAT). For each single trial, a correlation
matrix16 [Spearman correlation using the MATLAB function corr()] was calculated based on
the data of each of the 16 regular channels concatenated to the data of the eight SDCs from
the NO SAC data. Matrices consisted thus of correlations between all regular channels as well
as between SDCs and all regular channels. For pruned channels, correlations were replaced by a
NaNs. The single trial matrices were then averaged [using function nanmean()] first within a
subject and then across subjects separately for each method (NO SAC, CAR, GCR, SSR, GLM
ALL, and GLM BH), data type (Δ½HbO� and Δ½HbR�) and task (SIM, ME LEFT, ME RIGHT,
and MI), resulting in a total of 6 × 2 × 4 ¼ 48 correlation matrices with dimensions 24 × 24.
A more spatially specific signal would, on a descriptive level, be indicated by (i) reduced
correlations between regular channels and SDCs as well as (ii) exclusively high correlations
in the respective task-specific ROIs.

Topographical beta maps (BETA MAPS). For this quality measure no single trial data were
considered, instead, the whole time series was of interest. For both data sets (SIM data and real
data) and each correction method a separate AR-ILS36 GLM was applied, resulting in two data
sets × six correction methods = 12 GLMs per subject. For the SIM data one task-related regressor
consisting of all simulated onsets was added to the model. For the real (ME/MI) data, besides the
three task-related regressors (ME LEFT, ME RIGHT, and MI) also regressors of the instruction
and the breaks were added. Additionally, first and second derivatives of each regressor were
included in the model.

Beta maps28 were generated based on the GLM outputs by averaging beta values [using the
MATLAB function nanmean()] for each regular channel across subjects separately for SDC
method (NO SAC, CAR, GCR, SSR, GLM ALL, and GLM BH), data type (Δ½HbO� and
Δ½HbR�), and task (SIM, ME LEFT, ME RIGHT, and MI), resulting in a total of 6 × 2 × 4 ¼
48 beta maps. Beta values of pruned regular channels were replaced by an NaNs. For the topo-
graphical beta maps, spatial specificity would be judged as poor if most of the channels show
strong activation and as good if mainly channels of the expected task-specific ROI show strong
activation. That is, for the SIM data, only channels 6 and 8 should be activated, for ME LEFT
channels of ROI M1 RIGHT, for ME RIGHT channels of ROI M1 LEFT, and for MI channels in
ROI SMA should be activated.

2.5 Statistical Analyses

Statistical analyses were conducted with MATLAB 2019a, R (version 4.0.2, “Taking Off
Again”43) in combination with RStudio (v1.3.109344) and Jeffreys’s Amazing Statistics
Program (JASP; v0.16.150). Bayesian ANOVAs (BANOVAs) and corresponding posthoc tests
were conducted in JASP, and individual Bayesian t-tests were performed in R in combination
with the BayesFactor package (function ttestBF; v0.9.12-4.251).

Except for generating the correlation matrices, all statistical analyses were conducted within
the framework of Bayesian statistics instead of the inferential framework. The advantage of using
Bayesian statistics over the frequentist approach is that it allows to interpret both the alternative
hypothesis (H1) and the null hypothesis (H0). Note that instead of reporting a p-value in the
Bayesian framework, a Bayes factor (BF10) helps to quantify how much more likely the data are
under either the H0 or the H1.

52,53 Moreover, as BF10 reflects how likely the evidence for either
H0 orH1 is, correction for multiple comparisons is not required.54 In the present work, the Bayes
factors BF10 will be classified into different categories following the guidelines by Lee and
Wagenmakers,52 which are as follows: BF10 < 100 extreme evidence for H0,

1
100

< BF10 <
1
30

very strong evidence for H0,
1
30
< BF10 <

1
10

strong evidence for H0,
1
10
< BF10 <

1
3
moderate

evidence for H0,
1
3
< BF10 < 1 anecdotal evidence for H0, 1 < BBF10 < 3 anecdotal evidence
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for H1, 3 < BF10 < 10 moderate evidence for H1, 10 < BF10 < 30 strong evidence for H1,
30 < BF10 < 100 very strong evidence for H1, BF10 > 100 extreme evidence for H1.

For better readability, only a subset of the results of the vast number of statistical comparisons
are reported in the main body of the manuscripts. These are results with Bayes factors >3 (mod-
erate to extreme evidence in favor of H1). However, all statistical results as well as the mean
value (±SD) of each variable of interest are reported in tables in the Supplementary Material.

2.5.1 Signal improvement

For the comparison of quality measures sRMSE, COR, and CNR for each task (SIM, ME, and
MI) and signal type (Δ½HbO� and Δ½HbR�) a one factorial Bayesian repeated-measures ANOVA
(rmBANOVA) with the factor METHOD (NO SAC, CAR, GCR, SSR, GLM ALL, and GLM
BH) compared with the null model was conducted and Bayes factors BF10 were reported. Prior
odds PðMÞ were set as the default of PðMÞ ¼ 0.5. Posthoc analyses were only conducted if the
rmBANOVA showed at least moderate (BF10 > 3) evidence favoring the alternative hypothesis
(H1). As implemented by default in JASP, the posthoc analyses are based on the default t-test
with a Cauchy (0, 1ffiffi

2
p ) prior, i.e., prior odds were set as the default value of PðMÞ ¼ 0.26 and

posterior odds PðMjdataÞ were corrected for multiple testing by fixing to 0.5 the prior proba-
bility that the H0 holds across all comparisons.50

For all three measures the general expectation was that (i) all correction methods show lower
(sRMSE) or higher (COR and CNR) values, respectively, as compared with NO SAC and that
(ii) values resulting from correction methods with SDCs (SSR, GLM ALL, and GLM BH) are
lower (sRMSE) or higher (COR and CNR), respectively, as compared with values resulting from
correction methods without SDCs (CAR and GCR).

2.5.2 Spatial specificity

Correlation Matrices with SDCs (SDC CORMAT). On a purely descriptive level, it was expected
that data from corrected channels show less correlation with the SDCs and that matrices show
higher spatial specificity by showing stronger correlations within ROIs as compared with the NO
SAC data.

For statistical analysis, a Bayesian paired t-test was performed on the lower triangular part of
the correlation matrices for any two pairs of correction methods (total of 15 pairs) within task
(SIM, ME LEFT, ME RIGHT, and MI) and signal type (Δ½HbO� and Δ½HbR�). In total, 15 × 4

tasks × 2 signal types = 120 t-tests were conducted for which Bayes factors BF10 were reported.

The default of a medium prior with PðMÞ ¼
ffiffi
2

p
2
was applied. Across tasks and signal types, we

expected (i) that matrices resulting from any correction method will differ from the correlation
matrix of NO SAC as well as (ii) differences between correlation matrices resulting from meth-
ods with SDC (SSR, GLMALL, and GLM BH) and those resulting from methods without SDCs
(CAR and GCR).

Topographical beta maps (BETA MAPS). For visual inspection and qualitative comparisons,
the beta values of theGLMswere used to generate average topographical betamaps for eachmethod
(NO SAC, CAR, GCR, SSR, GLM ALL, and GLM BH), signal type (Δ½HbO� and Δ½HbR�), and
task (SIM,ME LEFT,MERIGHT, andMI), resulting in a total of six methods× two signal types×
four tasks = 48 topographical beta maps. For statistical comparisons, for each of the 16 regular
channels of any of these betamaps anone-sampleBayesian t-testwas conducted byusing the default

of a medium prior with PðMÞ ¼
ffiffi
2

p
2
and Bayes factors BF10 are reported.

On a purely descriptive level, the general expectation within each task and signal type was
that (i) spatial specificity increases after applying any SAC methods as compared with NO SAC
and that (ii) methods with SDC correction show a higher spatial specificity as compared with
methods without SDCs. Statistically, this would be reflected by the strongest Bayes factors in
channels 6 and 8 of the SIM DATA and for ME LEFT and ME RIGHT by the strongest Bayes
factors resulting from channels on the hemisphere contralateral to the performing hand. For MI
data, the expectation is less strong, but the general expectation would be to get the strongest
Bayes factors for ROI SMA.
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3 Results

3.1 Signal Improvement

3.1.1 Scaled root mean square error (sRMSE)

The mean sRMSE values (�SEM) are visualized in Fig. 2. Descriptively, the sRMSE values of
Δ½HbO� show only for the SIM data a clear difference between data of all SAC methods and the
data of NO SAC [cf. Fig. 2(a)]. For Δ½HbR�, the pattern for the correction methods of the SIM
data is less clear. However, mean sRMSE values of all correction methods seem to decrease as

Fig. 2 Illustration of the sRMSE results including all three data types (columns; SIM, ME, and
MI) of (a) Δ½HbO� and (b) Δ½HbR�. Boxes represent mean sRMSE values and error bars represent
standard error of the mean (SEM) across participants. Below each subfigure statistical results
are displayed by color coded stars representing Bayes factors BF10 > 3, which indicate evidence
favoring the alternative hypothesis H1, i.e., that there are differences between two correction
methods. For details of statistical results including BF10 < 3, see Tables S1–S6 in the
Supplementary Material.
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compared with NO SAC [cf. Fig. 2(b)]. For both data types of ME and MI data, descriptively, the
mean sRMSE values either increase for the correction methods or seem to be comparable to
those of the NO SAC data.

SIM data. Detailed statistical results are reported in Tables S1 and S2 in the Supplementary
Material. With respect to the Δ½HbO� data, the rmBANOVA revealed extreme evidence favoring
theH1. Post hoc tests revealed very strong to extreme evidence that all of the correction methods
differed from NO SAC in that their sRMSE values were lower than that of NO SAC (all < NO
SAC). Additionally, the comparisons between GLM ALL and SSR, as well as GLM BH, indi-
cated strong evidence and between GLM ALL and GCR moderate evidence for a difference in
favor of GLM ALL (GLM ALL < SSR, GLM BH, GCR).

ForΔ½HbR�, data did not provide evidence for a difference in sRMSE between SACmethods.
Instead, rmBANOVA indicated anecdotal evidence favoring the H0.

ME Data. Detailed statistical results are reported in Tables S3 and S4 in the Supplementary
Material. For the Δ½HbO� data, the rmBANOVA revealed extreme evidence favoring the H1.
Posthoc tests indicated that evidence was strong to very strong evidence for a raised sRMSE
for GCR. This included the comparisons between GCR and NO SAC, GCR and GLM
ALL, and GCR and GLM BH (GCR > NO SAC, GLM ALL, GLM BH). Similarly, there
was strong evidence for a higher sRMSE for CAR compared with NO SAC, CAR compared
with GLM BH, and extreme evidence for CAR compared with GLM ALL (CAR > NO SAC,
GLM ALL, GLM BH). Note that for the comparisons with NO SAC the opposite direction was
expected, that is, expected were lower sRMSE values for GCR and CAR as compared with
NO SAC.

ForΔ½HbR�, data did not provide evidence for a difference in sRMSE between SACmethods.
Instead, rmBANOVA indicated anecdotal evidence favoring the H0.

MI Data. Detailed statistical results are reported in Tables S5 and S6 in the Supplementary
Material. For the Δ½HbO� data, the rmBANOVA revealed anecdotal evidence favoring the H0.
Regarding the Δ½HbR� data, the rmBANOVA revealed moderate evidence favoring the H0.

3.1.2 Correlation (COR)

The means of the Fisher’s z-transformed Spearman correlations COR (�SEM) are illustrated
in Fig. 3. Descriptively, for both Δ½HbO� and Δ½HbR� SIM data mean COR values were higher
for all SAC methods as compared with NO SAC. For ME Δ½HbO� data, only the SAC methods
with SDCs showed an increase in COR as compared with NO SAC, whereas both methods
without SDCs showed a decrease in COR. For Δ½HbR� of ME data and both Δ½HbO� and
Δ½HbR� of the MI data, COR values of the SAC methods either decreased or were comparable
to NO SAC.

SIM data. Detailed statistical results are reported in Tables S7 and S8 in the Supplementary
Material. For Δ½HbO�, the rmBANOVA revealed extreme evidence favoring the H1. Posthoc
tests indicated extreme evidence for the differences between NO SAC and all other correction
methods, resulting from higher COR values of the correction methods as compared with NO
SAC. For GLM ALL, there was also extreme evidence for higher COR values compared with
GCR, SSR, and GLM BH and very strong evidence for higher COR values compared with CAR
(GLM ALL > GCR, SSR, GLM BH, and CAR).

For Δ½HbR�, the rmBANOVA revealed moderate evidence favoring the H1. Posthoc tests
indicated higher COR values for GLM ALL and GLM BH compared with NO SAC, with
extreme evidence for the difference between NO SAC and GLM ALL and strong evidence for
differences between GLM BH and NO SAC (GLM ALL and GLM BH > NO SAC).

ME data. Detailed statistical results are reported in Tables S9 and S10 in the Supplementary
Material. For the Δ½HbO� data, the rmBANOVA revealed extreme evidence favoring the H1.
Posthoc tests indicated extreme evidence for differences between GLM ALL and and GCR and
between GLM ALL and CAR with higher COR values for GLM ALL in both comparisons
(GLM ALL > GCR, CAR). Moreover, there was evidence for particularly low COR values
for GCR, with moderate evidence for differences between GCR and SSR and between GCR and
GLM BH (SSR, GLM BH > GCR). There was also moderate evidence for the difference
between CAR and GLM BH, with higher COR values for GLM BH (GLM BH > CAR).
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With respect to the Δ½HbR� data, the rmBANOVA revealed anecdotal evidence favoring
the H1.

MI data. Detailed statistical results are reported in Tables S11 and S12 of the Supplementary
Material. For both Δ½HbO� and Δ½HbR�, the rmBANOVAs revealed anecdotal evidence favoring
the H1.

3.1.3 Contrast-to-noise ratio (CNR)

The mean CNRs (�SEM) are illustrated in Figs. 4(a) and 4(b). Descriptively, with respect to the
SIM data of both Δ½HbO� and Δ½HbR� all SAC methods show increased CNR values as com-
pared with NO SAC. For Δ½HbO� of the ME data, all SAC methods with SDCs show increased

Fig. 3 Illustration of the Fisher’s z-transformed Spearman correlation (COR) results including all
three data types (columns: SIM, ME, and MI) of (a) Δ½HbO� and (b) Δ½HbR�. Circles represent
mean COR values and error bars represent standard error of the mean across participants.
Below each subfigure statistical results are displayed by color coded stars representing Bayes
factors BF10 > 3 which indicate evidence favoring the alternative hypothesis H1, i.e., that there
are differences between two correction methods. For details of statistical results including
BF10 < 3, see Tables S7–S12 in the Supplementary Material.
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CNR values as compared with NO SAC and for Δ½HbR� of the ME data, only both GLM meth-
ods show increased CNR values. In contrast, methods without SDCs show slightly decreased
CNR values as compared with NO SAC. With respect to both data types of the MI data, all
methods seem to be comparable with NO SAC.

SIM data. Detailed statistical results are reported in Tables S13 and S14 in the
Supplementary Material. With respect to the Δ½HbO� data, the rmBANOVA revealed extreme
evidence favoring the H1. As compared with NO SAC, posthoc tests revealed extreme evi-
dence for differences to GLM ALL, very strong evidence for differences to GLM BH, strong
evidence for differences to CAR and SSR and moderate evidence for differences to GCR,

Fig. 4 Illustration of the contrast-to-noise ratio (CNR) results including all three data types (col-
umns: SIM, ME, and MI) of (a) Δ½HbO� and (b) Δ½HbR�. Diamonds represent mean CNR values
and error bars represent standard error of the mean across participants. Below each subfigure
statistical results are displayed by color coded stars representing Bayes factors BF10 > 3, which
indicate evidence favoring the alternative hypothesis H1, i.e., that there are differences between
two correction methods. For details of statistical results including BF10 < 3, see Tables S13–S18 in
the Supplementary Material.
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all resulting from higher CNR values in favor of the correction methods as compared with
NO SAC (NO SAC < CAR, GCR, SSR, GLM BH, and GLM ALL). Moreover, there was
very strong evidence for differences between GLM ALL and GCR and between GLM ALL
and GLM BH and moderate evidence for differences between GLM ALL and CAR as well as
between GLMALL and SSR, reflecting the overall highest CNR for GLM ALL (GLMALL >
GCR, SSR, GLM BH, and CAR).

Regarding the Δ½HbR� data, the rmBANOVA revealed anecdotal evidence favoring the H0.
ME data. Detailed statistical results are reported in Tables S15 and S16 in the

Supplementary Material. For Δ½HbO�, the rmBANOVA revealed extreme evidence favoring
the H1. Posthoc tests revealed extreme evidence for differences between GLM ALL and
NO SAC, CAR as well as GCR, strong evidence for differences between GLM ALL and
GLM BH, and moderate evidence for differences between GLM ALL and SSR, all resulting
from higher CNR values of GLM ALL as compared with all other methods (GLM ALL >
CAR, GCR, SSR, GLM BH, and NO SAC). Evidence was strong for a difference between
GCR and SSR and extreme evidence was found for differences between GCR and GLM BH,
with reduced CNR values for GCR (SSR, GLM BH > GCR). Moreover, evidence was strong
for a smaller CNR for CAR compared with GLM BH and moderate for a smaller CNR for CAR
compared with SSR (GLM BH, SSR > CAR). There was extreme evidence for differences
between GLM BH and GCR, and strong evidence was found for the difference between NO
SAC and GLM BH as well as CAR and GLM BH with higher CNR for GLM BH (GLM BH >
NO SAC).

For Δ½HbR�, the rmBANOVA indicated extreme evidence favoring the H1. Posthoc tests
indicated that this was related to reduced CNR values for CAR compared with GLM ALL, for
which strong evidence was found (GLMALL > CAR). Similarly, there was strong evidence for
differences between GCR and GLM ALL and moderate evidence between GCR and GLM BH
reflecting smaller CNR values for GCR (GLM ALL, GLM BH > GCR).

MI data. Detailed statistical results are reported in Tables S17 and S18 in the Supplementary
Material. Regarding both the Δ½HbO� and the Δ½HbR� data, the rmBANOVA revealed anecdotal
evidence favoring the H0.

3.2 Spatial Specificity

3.2.1 Correlation matrices with SDCs (SDC CORMAT)

Overall and across tasks, descriptively, the correlation matrices ofΔ½HbO� for NO SAC showed a
strong influence of the SA across channels, indicated by high correlation coefficients between
regular channels as well as between regular channels and SDCs. The high correlations are
already attenuated but not absent when considering Δ½HbR� [cf. Figs. 5(a), 6(a), and 7(a)].
For both signal types correlations with SDCs are highly reduced after applying correction meth-
ods irrespective of using SDCs for correction or not. However, negative correlations between
regular channels as well as between regular channels and SDCs resulted from correction with
methods CAR and GCR.

Statistical analyses were run with Bayesian paired t-tests, performed on the lower triangular
part of the correlation matrices for any two pairs of correction methods. The results of all t-tests
are summarized in Tables S19 and S20 in the Supplementary Material.

SIM data. As visualized in Fig. 5(a), for bothΔ½HbO� andΔ½HbR�, nearly all SDC CORMAT
comparisons indicated extreme evidence for differences between correction methods. Exceptions
were comparisons between CAR and GCR with respect to Δ½HbO� and Δ½HbR� as well as
between methods GLM ALL and GLM BH for the Δ½HbR� data.

ME data. For both ME LEFT and ME RIGHT [cf. Fig. 6(a)], results indicated extreme evi-
dence for differences between correlation matrices. Exceptions were the comparisons between
CAR and GCR for both Δ½HbO� and Δ½HbR� of ME LEFT and ME RIGHT and between SSR
and GLM BH for both Δ½HbO� and Δ½HbR� of ME LEFT and for Δ½HbR� of ME RIGHT.

MI data. As illustrated in Fig. 7(a), all comparisons between correlation matrices resulted in
extreme evidence for differences. Sole exception was the comparison between CAR and GCR.
This pattern was identical for Δ½HbO� and Δ½HbR�.
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3.2.2 Topographical beta maps (BETA MAPS)

The beta maps for each method are visualized for SIM in Fig. 5(b), ME in Fig. 6(b), and MI in
Fig. 7(b). As expected, descriptively, the beta maps of the SIM data showed the strongest acti-
vation in channel 6 (100% amplitude) directly followed by channel 8 (50% amplitude) across
methods and data types. For the real data, visual inspection shows all SAC methods differ clearly
from the NO SAC data for which beta values indicated comparable activation across channels.
For instance, a clearer lateralization in the ME beta maps can be seen after correction
[cf. Fig. 6(b)]. In addition, clear differences between SAC methods with and without SDCs are
visible across tasks. That is, for SAC methods without SDCs but not for SAC methods with
SDCs beta maps show either unexpectedly negative (Δ½HbO�) or positive (Δ½HbR�) beta values
for some channels.

SIM data. With respect to the Δ½HbO� BETA MAPS [cf. Fig. 5(b) top], for all methods the
one sample Bayesian t-tests of channels 6 and 8 revealed extreme evidence for differing pos-
itively from zero. This was expected because these channels contain the simulated hemodynamic
response. Two additional channels differed positively from zero for method GLM ALL. For
methods, CAR and GCR one sample Bayesian t-tests indicated at least moderate evidence for
a difference from zero at five and seven additional channels, respectively. Differences were
mostly but not exclusively due to negative beta values (cf. Table 21 in the Supplementary
Material for exact values).

Regarding the Δ½HbR� BETA MAPS [cf. Fig. 5(b) bottom], results indicated as expected
extreme evidence for a negative difference from zero for data of simulated channels 6 and 8
of all methods. Only methods CAR, GCR, and SSR resulted in additional channels mostly with

Fig. 5 Illustration of the spatial specificity results for SIM data. (a) The averaged correlation matri-
ces ofΔ½HbO� andΔ½HbO�. Colored stars below a correlation matrix represent Bayes factors of the
statistical comparison between the respective matrix and the matrix belonging to the correction
method that is indicated by the colored polygon above the Bayes factor. Note that the order of the
regular channels in the matrix is arbitrarily chosen in that the order always starts in the lower left
corner with channels outside the ROI (in ascending order, indicated by white circles) and are fol-
lowed by channels inside the ROI (in ascending order, indicated by gray circles and corresponding
to ROI M1 left). (b) Visualizes the topographical beta maps (BETA MAPS) of Δ½HbO� and Δ½HbR�.
Each circle represents a channel with its corresponding mean beta value. The star within a circle
represents the Bayes factor resulting from the Bayesian t -test of the beta values of the respective
channel. The black oval marks the ROI, M1 LEFT.
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evidence for positive differences from zero (cf. Table 22 in the Supplementary Material for exact
values).

ME data. Regarding the Δ½HbO� data of both ME LEFT and ME RIGHT [cf. Fig. 6(b) top
two rows], BETA MAPS for method NO SAC showed moderate to extreme evidence for differ-
ing positively from zero across all channels (16/16). For CAR one sample Bayesian t-tests indi-
cated that a small number of channels differed positively (ME LEFT: 1/6 in ROI M1 RIGHT;

Fig. 6 Illustration of the spatial specificity results of ME LEFT andMERIGHT data. (a) The averaged
correlation matrices of Δ½HbO� and Δ½HbR�. Colored stars below a correlation matrix represent
Bayes factors of the statistical comparison between the respective matrix and the matrix belonging
to the correction method that is indicated by the colored polygon above the Bayes factor. Note that
the order of the regular channels in the matrix is arbitrarily chosen in that the order always starts in
the lower left corner with channels outside the ROI (in ascending order, indicated by white circles)
and are followed by channels inside the ROI (in ascending order, indicated by gray circles and cor-
responding to ROI M1 left). (b) shows the topographical beta maps (BETA MAPS) of Δ½HbO� and
Δ½HbR�. Each circle represents a channel with its corresponding mean beta value. The star within
a circle represents the Bayes factor resulting from the Bayesian t -test of the beta values of the
respective channel. The black ovals mark the ROIs, M1 LEFT and RIGHT.
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ME RIGHT: 2/6 in ROI M1 LEFT) or for negatively (both ME LEFT and ME RIGHT: 2/16 in
ROI SMA) from zero. Results were similar for GCR (positive differences ME LEFT: 3/16 in all
ROIs, 1/16 in M1 RIGHT; ME RIGHT: 1/16 in ROI SMA; negative differences ME LEFT: 2/16
in all ROIs; ME RIGHT: 1/16 in ROI SMA). Statistical analysis of BETAMAPS of method SSR
showed for most channels moderate to extreme evidence for differing positively from zero (ME
LEFT: 12/16 in all ROIs, 5/6 in M1 RIGHT; ME RIGHT: 12/16 in all ROIs, 5/6 in M1 LEFT).
BETA MAPS for methods GLM ALL and GLM BH differed with moderate to extreme evi-
dence positively from zero in a medium number of channels (GLMALL: ME LEFT: 10/16 in all
ROIs, 5/6 in M1 RIGHT; ME RIGHT: 7/16 in all ROIs, 5/6 in M1 LEFT; GLM BH: ME LEFT:
8/16 in all ROIs, 4/6 in M1 RIGHT; ME RIGHT: 7/16 in all ROIs, 5/6 in M1 LEFT) (cf. Table
S23 in the Supplementary Material for exact values).

For Δ½HbR� of NO SAC, for ME LEFT data 14 of 16, and for ME RIGHT data of 12 of
16 channels provided evidence for moderate to extreme evidence for negatively differing
from zero as indicated by the results of one sample Bayesian t-tests [cf. Fig. 6(b) bottom
two rows]. Statistical results for methods CAR and GCR revealed in more channels evidence
for differing positively from zero (CAR: ME LEFT: 3/16 in all ROIs; ME RIGHT: 5/16 in all
ROIs; GCR: ME LEFT: 3/7 in all ROIs; ME RIGHT: 4/16 in all ROIs) than for differing
negatively from zero (CAR: ME LEFT: 1/6 in ROI M1 RIGHT; ME RIGHT: 0/16; GCR:
ME LEFT: 3/16 in all ROIs; ME RIGHT: 1/8 in ROI SMA), which would however be the
expected direction. Results for SSR showed moderate to extreme evidence for most channels
to differ negatively from zero (ME LEFT: 14/16 in all ROIs, 6/6 in M1 RIGHT; ME RIGHT:
10/16 in all ROIs, 4/6 in M1 LEFT). For GLM ALL and GLM BH, the number of channels
with evidence for differing negatively from zero was similar or slightly reduced compared
with SSR (GLM ALL: ME LEFT: 13/16 in all ROIs, 5/6 in M1 RIGHT; ME RIGHT: 8/16 in
all ROIs, 4/6 in M1 LEFT; GLM BH: ME LEFT: 13/16 in all ROIs, 5/6 in M1 RIGHT;
ME RIGHT: 11/16 in all ROIs, 4/6 in M1 LEFT). For more details see Table S24 in the
Supplementary Material.

MI data. Regarding the Δ½HbO� data of NO SAC, data of 15 out of 16 channels across all
ROIs provided moderate to extreme evidence for differing positively from zero [cf. Fig. 7(b)
top]. Regarding CAR and GCR, there was evidence for one channel to differ positively
(ROI M1 LEFT) and for one channel to differ negatively (SMA) from zero. For SSR, 12 out
of 16 channels across all ROIs differed positively from zero with moderate to extreme evidence.
For GLM ALL, data of 8 out of 16 and for GLM BH 10 out of 16 channels across all ROIs
provided moderate to very strong evidence for differing positively from zero (cf. Table S25 in
the Supplementary Material for exact values).

With respect to Δ½HbR�, one sample Bayesian t-tests provided moderate to extreme evidence
for beta values to differ negatively from zero in 11 out of 16 channels across all ROIs for NO
SAC [cf. Fig. 7(b) bottom]. For method CAR, for 5 out of 16 channels across all ROIs evidence
was at least moderate for a positive difference from zero, whereas for three further channels
evidence was at least moderate for a negative difference (ROIs M1 LEFT and M1 RIGHT).
For GCR, there was evidence for differing positively from zero for 5 out of 16 channels
across all ROIs and for differing negatively from zero for 4 out of 16 channels across all ROIs.
Method SSR was linked to evidence indicating a negative difference from zero for 10 out of
16 channels across all ROIs. For GLM ALL, this was only the case for 7 and for GLM BH for
8 out of 16 channels and across all ROIs (cf. Table S26 in the Supplementary Material for
exact values).

4 Discussion

The present study aimed at comparing SA correction (SAC) methods with (SSR, GLMALL, and
GLM BH) and without (CAR and GCR) short distance channels (SDCs) as well as preprocessed
but otherwise uncorrected data (NO SAC) on the single trial level. SAC methods were applied
to semisimulated (SIM) and real (ME and MI) data of healthy older adults. Quality measures
quantified signal improvement and spatial specificity associated with SAC correction for both
Δ½HbO� and Δ½HbR�.
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4.1 Signal Improvement

Signal improvement was assessed on a single trial basis using scaled root mean squared error
(sRMSE), Spearman correlation (COR), and contrast-to-noise ratio (CNR). Across all tasks and
quality measures, we observed that the (uncorrected) Δ½HbO� data is more affected by SA as
compare with the (uncorrected) Δ½HbR� data. In addition, both semisimulated and real data the
quality measures changed forΔ½HbR� after correction, which confirms thatΔ½HbR� is influenced
by SA too and should thereby be corrected accordingly.28

Across all three measures, the effect of SA correction was most prominent for SIM data,
which is in line with previous findings.13 Of the SAC methods applied, GLM ALL outper-
formed all other approaches for SIM data. For the real data, descriptively, GLM ALL also
tended to rank first, however, statistically this could only be confirmed for a subset of com-
parisons. Moreover, for the real data but not the SIM data, methods without SDCs showed in
most cases a signal decline rather than an improvement. Potential reasons for the varying
results between SIM data and the real data might be the different signal-to-noise ratios
(SNR) and the lacking task-related activation in the SDCs of the SIM data.13 The latter might
have resulted in an overestimation of the effect of the correction methods for the SIM data,
because here, in contrast to real data, the SA measured at SDCs and the synthetic canonical
HRF are virtually uncorrelated. Moreover, quality measures sRMSE and COR were based on
the assumption that the underlying hemodynamic response in the signal corresponds to
a canonical HRF peaking at 6s after stimulus onset. This assumption is met perfectly for
SIM data, but, in all likelihood, to a much smaller degree for the real data. This likely resulted
in reduced sensitivity of measures sRMSE and COR for the assessment of signal improvement

Fig. 7 Illustration of the spatial specificity results for SIM data. (a) The averaged correlation matri-
ces ofΔ½HbO� and Δ½HbR�. Colored stars below a correlation matrix represent Bayes factors of the
statistical comparison between the respective matrix and the matrix belonging to the correction
method that is indicated by the colored polygon above the Bayes factor. Note that the order of the
regular channels in the matrix is arbitrarily chosen in that the order always starts in the lower left
corner with channels outside the ROI (in ascending order, indicated by white circles) and are fol-
lowed by channels inside the ROI (in ascending order, indicated by gray circles and corresponding
to ROI M1 left). (b) The topographical beta maps (BETA MAPS) of Δ½HbO� and Δ½HbR�. Each
circle represents a channel with its corresponding mean beta value. The star within a circle rep-
resents the Bayes factor resulting from the Bayesian t -test of the beta values of the respective
channel. The black oval marks the ROI, SMA.
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in real data. To improve the sensitivity of HRF-based quality measures a GLM-based decon-
volution could be applied in future studies to estimate the individual unknown task-related
HRF.55,56 The individually estimated HRF could then be used for quality measures sRMSE
and COR. In general, however, it would be beneficial to have quality measures assessing signal
improvement that have less assumptions regarding shape and timing properties of the under-
lying signal. In the present study, this class of quality measure was represented by the CNR, in
which the ratio of the baseline and the peak of a given trial is evaluated independent of the
general shape or the peak latency. Across the quality, measures quantifying signal improve-
ment COR and CNR seemed indeed to be the most sensitive quality measure as they picked up
the expected differences in signal improvement also for real data. The CNR is, however, also
not without problems, as one of its defining features reflects the activation strength resulting
from a task or event. This could, e.g., have contributed to the larger CNR differences between
corrected and uncorrected data for ME DATA compared with MI DATA [cf. Figs. 4(a) and
4(b)], in spite of the underlying data set being the same.

To sum up, single trial signal improvement was clearest and most consistent for the SIM data.
It was generally higher for methods with SDCs as compared with methods without SDCs and as
compared with the uncorrected data. The overall best performing method was GLM ALL.
However, neither signal improvement quality measure seems suitable to exclusively quantify
signal improvement alone, because measures are either dependent on potentially inaccurate
assumptions regarding the shape of the HRF or because they are influenced by the magnitude
of the activation resulting from a task or event. For the given real data set, however, CNR seems
to be the most sensitive quality measure followed by COR. In contrast, the sRMSE quality mea-
sure was not able to reliably reflect the differences between correction methods.

4.2 Spatial Specificity

Spatial specificity was investigated by means of Spearman correlation matrices (SDC
CORMAT) at the single trial level and by considering topographical beta maps (BETA
MAPS) resulting from GLM analyses based on the whole time series. Spatial specificity mea-
sures were primarily intended to be used as descriptive measures, statistical comparisons were
performed only complementary.

Overall, uncorrected (NO SAC) Δ½HbO� and Δ½HbR� data were clearly affected by SA.
However, spatial specificity of Δ½HbO� data was already much lower as compared with
Δ½HbR� data as was evident from very high correlations between regular channels as well as
between regular channels and SDCs (SDC CORMAT). Also, for NO SAC Δ½HbO�, and here
in particular for real data, beta activation was strong across nearly all regular channels (cf.
Figs. 5(b), 6(b) and 7(b)). Across all tasks and data types, correlations between regular channels
and SDCs were highly reduced for all applied correction methods. Likewise, beta activation
revealed in most cases a more defined spatial pattern following SAC correction. For both spatial
specificity measures, methods without SDCs (CAR and GCR) resulted in negative correlations
and negative activation. This pattern is highly suggestive of an overcorrection resulting from
these methods, which is also a problem for other methods without SDCs, e.g., ICA-based
methods.55

Summarized, both SDC CORMAT and BETA MAPS seem well suited for picking up
improvements in spatial specificity following SA correction but also for spotting potential over-
correction. A drawback is that not all the differences between matrices and maps that are easily
spotted by the eye are suitable for statistical testing. Moreover, a single trial equivalent of the
BETA MAPS measure would be useful for assessing changes in spatial specificity at the single
trial level, at which NFB and BCIs work.

4.3 Correction Methods

4.3.1 Common average reference (CAR)

The CAR method22 is a spatial filter for which in the present study the averaged signal across all
regular channels was subtracted from each individual channel. Of the two methods without
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SDCs, CAR resulted in a greater signal improvement. Surprisingly, for the SIM data, signal
improvement following CAR was larger as compared with SSR and GLM BH across all three
quality measures. However, for the real data CAR seems to overcorrect the data. Overcorrection
was also suggested by spatial specificity measures with negative correlations (SDC CORMAT)
and negative beta values (BETA MAPS) across all tasks. On the other hand, channels indicated
as active by BETA MAPS were comparable to the methods with SDCs, as for instance reflected
in the lateralization pattern for the ME DATA [cf. Fig. 6(b)]. This indicates a good spatial speci-
ficity of CAR for strongly activating tasks.

The negativity in the signal following CAR is not surprising given that strongly activated
channels affect the amplitude of the averaged signal and channels with no or lower amplitudes
get pushed into the reversed direction. Aworkaround would be to omit the channels in the critical
ROI from the averaged signal. However, this only works if the ROI covers the peak activation
and when channels outside of the ROI are not expected to be active. This is rather unlikely
for any but purely perceptual tasks, and even here it is doubtful. A more advanced version of
this method could be to regress out the average across all channels, e.g., by using the SSR19

method,15 instead of simply subtracting it. Moreover, for the implemented version of the
CAR method or any modification thereof, a proper channel quality check and channel pruning
are important in order to avoid to subtract data of poor quality into a given channel.

Overall, although it can result in artificial negativity of inactive channels, CAR seems to be a
good and easy-to-implement choice if no SDCs are available and if only data of one channel or
a very circumscribed ROI covering the peak activation will be used for (online) processing.

4.3.2 Global component removal (GCR)

The GCR method23 is a spatial filter that combines a Gaussian kernel smoothing by taking into
account the MNE coordinates of the channel positions and a singular value decomposition.
Regarding the signal improvement measures, for SIM the results indicated a signal improvement
across all quality measures. For the real data the opposite was evident, that is, results indicated
a signal decline. Overcorrection was indicated by strong negative correlations between regular
channels and between regular channels and SDCs, and by negative beta activation across tasks
and data types. The reason for the artificial negative activation is probably the combination of the
relatively low spatial coverage and the large-sized kernel.23 Although the probe in the present
study falls into the recommended minimum area23 it seems that this method needs a much higher
head coverage. In a recent study,24 it was shown that higher-density data corrected by means of
the GCR was comparable with that corrected by a regression-based approach using SDCs.
However, this approach considered only the first two principal components24 resulting from
a principal component analysis (PCA) of the SDC data and therefore missed potentially impor-
tant spatial information that could have made a difference to the results.

On the whole, the GCR method performed well for SIM data but not for the real data.
Therefore, it should be used with care and should only be applied with sufficiently high spatial
coverage to avoid overcorrection. To decide whether the number of channels is sufficient, a
comparison of the beta output of a GLM (as done for BETA MAPS) before and after correction
might be helpful.

4.3.3 Short separation regression (SSR)

The SSR method19 is a simple regression method. In the present study, we applied SSR-based
correction using the spatially closest SDC to a given regular channel. For both signal
improvement and spatial specificity measures, out of the correction methods with SDCs the
SSR performed poorest and in some cases performed worse than methods without SDCs.
Moreover, for real data, the spatial specificity measures suggested a stronger impact of
SA after correction compared with the two GLM methods (cf. Figs. 6–9). One explanation
for this limited performance might be that the closest SDC is not necessarily the best choice
for SSR. Alternatively, the SDC with the highest correlation, with the average across SDCs
or with the first n principal components resulting from a PCA based on all SDCs24 could
be used.
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In spite of these shortcomings, given the simplicity of the SSR method especially regarding
online implementation, it can still be recommended. However, one important step before
applying this method, especially when considering the closest SDC for correction, is the signal
quality check. If SDCs or regular channels of poor signal quality are not properly pruned
before correction, regular channels might either be corrupted, remain uncorrected or SA will
get amplified.

4.3.4 General linear model with all SDCs as regressors (GLM ALL)

In the present study, of the selected SAC methods, the GLM ALL method13,17 was overall
performing best. For this correction method, all eight SDCs of both Δ½HbO� and Δ½HbR� were
included as regressors to the SAC GLM, because previous work provided evidence that the SA is
not a homogeneous but rather a heterogeneous artifact13,57 and therefore, a higher number of
SDCs covering a large portion of the head improves correction.17

That the GLMALL method seems to be the most accurate method for SA correction is in line
with previous findings.13,17 Although the AR-ILS36 GLM is generally computational more inten-
sive as compared with the ordinary least squares (OLS) GLM, its feasibility for online appli-
cation has been shown58 and it has been implemented in online preprocessing tools such as
TurboSatori.59 Moreover, AR-ILS can handle the presence of motion artifacts very well.36

This is, however, not the case for the other SA correction methods and hence, could have been
a gain for the GLM-based approaches. However, if motion artifacts were present in our data sets
then usually at the beginning/end of the recording or during the breaks and only in very rare cases
during the task blocks. Hence, even if some motion artifacts survived the TDDR correction,
the advantage of the AR-ILS GLM over the other correction methods should be low.

In spite of the good performance of GLM ALL, it is likely that results can still be improved
by adding more information to the GLM. For instance, gains can be expected by adding

Fig. 8 Illustration of the averaged time series data of both Δ½HbO� and Δ½HbR� including all
channels for all correction methods. For method NO SAC, additionally, the averaged time
series data of the SDCs is visualized (top left panel). The black ovals mark the ROI, M1 LEFT
and RIGHT.
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additional regressors based on auxiliary recorded physiological measures like blood pressure and
oxygen saturation,55 information extracted from the fNIRS measurement itself like Mayer
waves,13 or a global signal regressor generated from the SDCs.13 Another promising way would
be to increase the number of SDCs as it was shown that the number of SDCs has a strong effect
on the correction performance of the GLM, i.e., the more information in terms of SDCs is avail-
able the better the correction performance.17 Another promising approach would be to cover
blind spots by, e.g., adding short separation sources to the detectors the same way as for the
available hardware solutions short separation detectors are added to the sources.13 Moreover,
in the present study for method GLM ALL but also for method GLM BH, two GLMs were
applied consecutively. That is, first a GLM was applied only for SA correction by including
all SDCs as regressors. From this GLM, SAC corrected data was extracted for further evaluation,
among others based on a second GLM in which task-induced activation was modeled. This two-
step procedure was chosen because it provided the SAC corrected data required as input for all
quality measures. In principle, if only the task-related activation is of interest, it would also be
possible to run a single GLM with both the SDC regressors and the task-related regressors.
Indeed, for BCI and NFB online scenarios in which the feedback is based on the GLM output
this would seem like the natural choice. One major issue with this one-step approach is, however,
the risk of multicollinearity due to the strong task-evoked activity in the SDCs, which can lead to
unpredictable results.17 To prevent this problem a two-step GLM approach as applied in the
present study should be considered, even if the main focus of the GLM analysis is the extraction
of task-related activation.

In sum, the GLM ALL method strongly increased both signal quality and spatial specificity in
the present data sets. Accordingly, of the evaluated methods, it is the best choice for SA correction
if SDCs are available. Within a real-time GLM calculation, it can be easily applied for online SA
correction either by implementing it independently or by using available toolboxes.59

Fig. 9 Illustration of the averaged time series data of both Δ½HbO� and Δ½HbR� including all chan-
nels for all correction methods. For method NO SAC, additionally, the averaged time series data of
the SDCs is visualized (top left panel). The black oval marks the ROI, SMA.
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4.3.5 General linear model with one SDC on both hemispheres
as regressors (GLM BH)

For the GLM BHmethod only two out of the eight available SDCs (SDC 4 and 7 of bothΔ½HbO�
and Δ½HbR�) were included in the GLM for correction. The intention was to evaluate GLM
correction performance for constellations in which only a small number of SDCs are available.
GLM BH produced overall satisfying results that were, however, inferior to the results from
GLM ALL. The finding of overall inferiority to a GLM relying on larger numbers of SDCs
is in line with previous findings.17 On closer inspection, results for GLM BH were comparable
to those of the SSR method. For spatial specificity, however, GLM BH results were, descrip-
tively, more comparable to GLMALL. As a workaround for unavailable SDCs, some researchers
help themselves by sacrificing one or two regular channels and placing the vacated sources and
detectors as close as possible to each other to create a self-made SDC.41,42 This approach should
be considered with care because depending on the manufacturer the resulting distance between
source and detector is likely ≥10 mm. SDCs placed at distances ≥10 mm may capture different
signals than SDCs placed at the recommended 8 mm as used in the present study because of NIR
light penetrating to cortical brain tissue.18 This will likely influence the recovery of the true brain
signal and bears the risk of overcorrection.18 This is, however, similarly true for all correction
methods using SDCs, regardless of the number of SDCs used. Moreover, if not handled cor-
rectly, e.g., by the recording software, self-made SDCs can possibly lead to a saturation of the
self-made SDCs. Nevertheless, if properly used, self-made SDCs are should still be better than
using no SDCs.

In sum, with a reduced set of 8-mm SDCs, GLM BH achieved satisfying results for GLM-
based correction, but results were somewhat inferior to GLM ALL. Similar to GLM-ALL, this
method can easily be implemented online as part of a real-time GLM calculation.

4.3.6 Recommendations

Based on the present results and in line with previous findings,13,17 the best performing SA cor-
rection method is the GLMALLmethod directly followed by the GLM BH and the SSR method.
For the GLM ALL method all eight SDCs were used as regressors, for the GLM BH method two
predefined SDCs were used and for SSR only the spatially closest SDC was used for correction.
These results indicate that correction performance increases with the number of SDCs used for
the correction, which is in line with findings of Santosa and colleagues17 who investigated the
effect of the number of SDCs for a GLM-based correction approach. In the study by Santosa
et al.17 the maximum number of available SDCs was likewise eight, however, the authors pre-
dicted that the performance will likely increase with more SDCs. The methods without SDCs
showed a lower performance compared with the methods with SDCs and tended to overcorrect
the data. However, based on the performance results of CAR and GCR and given the strong
influence of the SA artifact, the application of either of these or another correction method17,27

should be preferred over the option to neglect the SA correction step. Based on the present results
and especially if only a limited optode coverage is available (cf. next Sec. 4.4), we would
recommend the CAR method over the GCR method because the overcorrection seems slightly
lower and CAR results in a higher spatial specificity as compared with the GCR method.

4.4 Limitations

The present study is subject to several limitations. First of all, although most of the quality mea-
sures investigated in the present study were calculated based on single trials in order to mimic an
online scenario, it is highly recommended to perform a validation additionally in an online
scenario60 in order to ensure comparable results when methods have to perform with (nearly)
real-time output.

In the present study, only data from healthy older adults were analyzed. There is evidence that
the hemodynamic response differs between age groups with respect to, e.g., shape7 and strength.61

Therefore, the present findings might not generalize to younger individuals. However, whether
there are age-related differences regarding the SA remains to be shown.
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One limitation regarding the SIM data is that it was based on a relatively short rest recording
lasting ∼3 min, allowing the simulation of only five block-designed trials. For the same purpose,
previous studies used for the same purpose longer periods of rest data ranging from 517 to
15 min13 and could thus create a higher number of semisimulated trials. A higher number of
trials usually increases the reliability of the signal of interest. However, given that the SNR for
semisimulated data is generally somewhat higher as compared with real data, also a low number
of trials should be acceptable for the purpose of comparing the performance of correction
methods.

Moreover, and more importantly, no task-evoked activation was added to the SDCs for the
SIM data, though previous studies62,63 implicate that the SA captured by the SDCs also contains
a task-evoked component. This was also evident in the present study as can be seen in all figures
depicting SDC and regular channel activation: In figures showing group-level real data (cf.
Figs. 8 and 9), task-related SA mimicking brain activation is evident in almost all SDCs.
The task-related nature of the SDC signal becomes particularly obvious when comparing
SDCs of SIM data to those resulting from the real data set (cf. Figs. 8–10). Moreover, single
trial data (cf. single trial and single subject data of selected channels as well as SDCs in figures of
the Supplementary Material) demonstrate not only that most SDCs are affected by task-evoked
SA, but also that the artifact is quite diverse: SA differs between SDCs (heterogeneity13) within
the same trial, between subjects, between signal types14 Δ½HbO� and Δ½HbR�), and between
tasks.14 Moreover, it is not necessarily the closest SDC that shows the highest similarity with
the uncorrected data. Perhaps due to this diversity, so far, there exist no recommendations on how
to best semisimulate task-evoked SA in SDCs, and hence, studies on simulated data restrict
simulated evoked activity to regular channels.13,21 For making results from SDC correction of
semisimulated data more realistic, however, semisimulating task-evoked SA is a highly desirable
next step. Important impulses for it could come from a systematic collection of information on,

Fig. 10 Illustration of the averaged time series data of both Δ½HbO� and Δ½HbR� including all chan-
nels for all correction methods. For method NO SAC, additionally, the averaged time series data
of the SDCs is visualized (top left panel). The black oval marks the ROI, channels 6 and 8 of
M1 LEFT.
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e.g., the spatial distribution of task-evoked SA across the head, its peak latency as compared with
a regular channel, amplitude characteristics of task-evoked SA, or differences between Δ½HbO�
and Δ½HbR�.

For the present study, the effect of correction method was evaluated for both Δ½HbO� and
Δ½HbR� data, following the most recent recommendations in the field.56 Beyond that, it would
also be possible to evaluate performance for total hemoglobin concentration changes8 (i.e.,
Δ½HbR� ¼ Δ½HbO� þ Δ½HbR�) and the difference between types of concentration changes64

(i.e., Δ½HbDiff� ¼ Δ½HbO� − Δ½HbR�), both data types are however rarely reported in current
publications.

One more specific limitation of the present study concerns the GCR method. More precisely,
for this correction method MNI coordinates are used for the smoothing process and therefore, it
would be recommended to use individual coordinates of the channels.23 However, since much of
the digitizer data of the SIM data set were corrupted we decided to use uniform optode locations
estimated by means of the ICBM-152 head model (ICBM 152 Nonlinear atlases version 2009) in
the NIRSite toolbox (v2020.7; NIRx Medizintechnik GmbH, Berlin, Germany), positioned
according to the International 10-20 system. For reasons of unity, the same procedure was
applied to the real data. While individual optode positions might of course be more accurate,
for the GCR method the distances between channels are of importance. Very likely, the distances
would be similar to those of the common optode locations because all optodes were attached to a
flexible cap with slits generated according to the 10-20 system. Another issue with respect to the
GCR method concerns the optode coverage. Zhang and colleagues23 recommended to cover an
area of at least 9 cm2, otherwise, the correction might result in artificial negative activity.23

Although we cover >9 cm2 with our optode layout, we saw in our data a substantial amount
of channels resulting in reversed amplitudes.

5 Conclusions

This study aimed to evaluate SA correction methods with and without SDCs with regard to
signal improvement and spatial specificity on a single trial level. The single trial level was chosen
to simulate the application of the correction methods in a real-time online scenario, such as NFB
or BCIs. Although methods with SDCs did result in a more accurate SA correction for both
Δ½HbO� and Δ½HbR� as compared with methods without SDCs, our study confirms that without
SDCs some improvement can be achieved too. Therefore, SA correction should become the
norm for any preprocessing pipeline.12,13
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