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Abstract. Functional near-infrared spectroscopy (fNIRS) signals originate in hemoglobin changes in both the
superficial layer of the head and the brain. Under the assumption that the changes in the blood flow in the scalp
are spatially homogeneous in the region of interest, a variety of methods for reducing the superficial signals has
been proposed. To clarify the spatial distributions of the superficial signals, the superficial signals from the fore-
head during a verbal-fluency task were investigated by using ten source–detector pairs separated by 5 mm,
whereas fNIRS signals were also detected from two source–detector pairs separated by 30 mm. The fNIRS
signals strongly correlated with the superficial signals at some channels on the forehead. Hierarchical cluster
analysis was performed on the temporal cross-correlation coefficients for two channels of both the NIRS signals,
and the analysis results demonstrate spatially heterogeneous distributions and network structures of the super-
ficial signals from within the forehead. The results also show that the assumption stated above is invalid for
homogeneous superficial signals from any region of interest of 15-mm diameter or larger on the forehead.
They also suggest that the spatially heterogeneous distributions may be attributable to vascular networks,
including supraorbital, supratrochlear, and superficial temporal vessels. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.21.6.066009]
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1 Introduction
Near-infrared spectroscopy (NIRS) can estimate relative
changes in tissue oxygenated hemoglobin (oxy-Hb) and deoxy-
genated hemoglobin (deoxy-Hb) noninvasively by irradiating
near-infrared light on the surface of the body and detecting
the reflecting light emerging a few centimeters from the incident
position.1–3 This technique was originally designed for clinical
monitoring of tissue oxygenation, and it has also been developed
into a useful tool in neuroimaging studies, with so-called func-
tional near-infrared spectroscopy (fNIRS), which estimates the
changes in cerebral Hb associated with hemodynamic responses
to neuronal activation.4–7 Since fNIRS has several advantages
over other imaging techniques, such as portability and fewer
physical restrictions, it has now found a wide range of
applications in the field of brain science (e.g., cognitive
neuroscience,8–12 motor rehabilitation,13–18 and neuropsychiatric
disorders19–23). However, the fNIRS signal is extremely vulner-
able to contamination by hemodynamic changes in the superfi-
cial layers of the head (i.e., the skin, skull, and cerebrospinal
fluid), because the sensitivity of the fNIRS signal to hemoglobin
changes in the superficial layers is around 20 times higher than
to that in deeper layers (i.e., the brain).24

It has been already shown that the fNIRS signal is contami-
nated by task-related hemoglobin changes in the skin blood flow

during a locomotor task on a treadmill.25 It has also been
reported that such fNIRS signal contamination occurred in all
measurement areas on the forehead during a verbal-fluency
task (VFT).26 This report made a striking impact on the fNIRS
community, since fNIRS measurements on the forehead during
a VFT had been approved as one of the “advanced medical
technologies” for aiding differential diagnosis of depressive
symptoms by the Ministry of Health, Labor, and Welfare of
Japan in 2009.27

To reduce the fNIRS signal contamination, numerous meth-
ods have been proposed. They can be categorized as methods
that (1) use data postprocessing based on physiological differ-
ences between cerebral and skin hemoglobin signals,25,28 (2) use
some additional short-distance channels other than the fNIRS
channels,29–33 and (3) analyze temporal profiles of photons
detected by time-resolved spectroscopy.2,34,35 As for these
methods, a variety of assumptions has been made. One of the
most common assumptions made in regard to methods (1) and
(2) is that a task-related superficial NIRS signal is spatially
homogeneous across the scalp and forehead. However, this
assumption has not yet been validated.

Localization, time course, and physiological origin of task-
evoked superficial fNIRS signals during a continuous perfor-
mance task (CRT) have recently been examined.36 It was
observed that the sources of the task-evoked systemic fNIRS
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signals are colocalized with draining of veins in the scalp, and
the physiological origin of a systemic artifact is a task-evoked
sympathetic arterial vasoconstriction followed by a decrease in
venous volume.36 However, unlike the VFT and other cognitive
tasks, the CRTwas accompanied by decreases in the intensity of
fNIRS signals. The findings of that study, therefore, might have
been specific to the CRT. It has also been shown that the corre-
lation between baseline NIRS signals measured at two different
locations on the left motor area decreases as the relative distance
between the two measurements increases. This finding indicated
that a superficial NIRS signal is spatially inhomogeneous.37

However, the inhomogeneous distribution has not been directly
confirmed by assessing task-related superficial signals.

The aim of this study is to clarify the distribution pattern of
task-related superficial signals. First, the hemoglobin signals in
the superficial layer of the forehead during a VFTwere collected
from 10 source–detector pairs at a short separation of 5 mm.
Second, the temporal cross correlations of the oxy-Hb between
any two channels were calculated, and the calculated correla-
tions were subjected to cluster analysis.

2 Materials and Methods

2.1 Subjects

Sixteen healthy volunteers [12 males, 4 females, mean age�
standard deviation (SD), 27.1� 11.0 years] participated in
this study. All had no history of neurological or psychiatric
disorders, and written informed consent was obtained from all
of them. This study was approved by the ethics committee of
Tokyo Metropolitan Institute of Medical Science.

2.2 Letter-Cued Verbal-Fluency Task

The letter-cued VFT, which consisted of two blocks (Fig. 1),
was used to induce hemodynamic changes.26 Each block con-
sisted of a 60-s-long word-generation period that was preceded
for 30 s and followed for 70 s by control periods (Fig. 1). During
the control periods, participants were instructed to repeat the five
Japanese vowels: /a/, /i/, /u/, /e/, and /o/ (the first five letters in
the Japanese alphabet), at a rate of approximately one syllable
per second. During the word-generation period, three characters
of the Japanese phonetic syllables called hiragana were dis-
played on the computer screen one-by-one with an interval

of 20 s, and the subjects had to generate and announce as many
words as possible in the 20-s period that started with each char-
acter. Three phonetic characters, pronounced as /to/, /se/, and
/o/, were displayed in that order in one block, and three others,
/a/, /ki/, and /ha/, were displayed in the other. In addition, to
avoid any moving and gaze shifting artifacts, the subjects were
instructed to look at the crosshair in the middle of the computer
screen during the control periods and not to shift their gaze
during the task period.

2.3 Data Acquisition

The subjects sat on a comfortable chair in the examination room.
A video-monitoring system and an audio system were used to
monitor the subject’s movements and count the number of cor-
rectly generated words during the 60-s activation period, which
was defined as the task performance.38 A multichannel continu-
ous-wave NIRS imaging system (FOIRE 3000, Shimadzu Corp.,
Kyoto, Japan), which employs three laser diodes at differing
wavelengths (780, 805, and 830 nm) as light sources, was used.
The arrangements and positions of the light sources, detectors,
and the corresponding channels are shown in Fig. 2. It has
been reported that more than 99.6% of photons detected at a
source–detector distance of 5 mm do not reach the gray matter
of the brain in any adults.26 Thus, to measure hemoglobin signals
from the superficial layer, 10 source–detector pairs (T1-R1, T2-
R2, T3-R3, T4-R4, T5-R5, T6-R6, T7-R7, T8-R8, T9-R9, and
T10-R10) with a short separation of 5 mm (NEAR channels)
were placed on the horizontal line of the forehead 35 mm
above the nasion. In addition, to measure fNIRS signals, which
are defined as those arising from both the extracerebral and cer-
ebral tissue (BA10), two detectors (R11 and R12) were placed at
a source–detector separation of 40 mm from T1 and T6 (FAR
channels), respectively. To achieve this optode arrangement, a
special small optode (length: 10 mm, wide: 5 mm, and thickness:
3 mm) is used in our experiments. The optodes were firmly fixed
on the forehead using a pressure-sensitive adhesive sheet.

Each detection optical fiber in the NIRS imaging system was
connected to a photomultiplier tube, the sensitivity of which was
tuned at the three above-mentioned wavelengths. During signal
acquisition, each of the three laser diodes sequentially delivered
a 5-ms pulse of light to a source fiber, followed by 10-ms inter-
vals of dark signal acquisition. In this study, the laser lights from
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Fig. 1 A letter-cued VFT consisting of two blocks. Each block consisted of a 60-s-long word-generation
period that was preceded for 30 s and followed for 70 s by control periods. During the word-generation
periods, the participant had to generate as many words as possible that started with a character that was
displayed every 20 s. During the control periods, the participant was instructed to repeat five vowels: /a/,
/i/, /u/, /e/, and /o/.
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the 10 source optical fibers (T1 to T10) were emitted sequen-
tially. As a result, signals at all the 12 channels were obtained
every 160 ms.

3 Data Analysis

3.1 Preprocessing

Oxy-Hb and deoxy-Hb signals were calculated by solving a
simultaneous equation from the modified Beer–Lambert’s law39

with a set of molecular absorption coefficients40 and the absorb-
ance changes at three wavelength (780, 805, and 830 nm) as
measured by the NIRS system.25 The modified Beer–Lambert’s
law is expressed as A ¼ − log I∕I0 ¼ εCBLþ G, where A is
the attenuation measured in optical density, I and I0 are the
intensities of the detected and incident light, ε is the molar
absorption coefficient, C is the concentration of chromophore
(e.g., Hb), B is a pathlength factor dependent upon the absorp-
tion and scattering coefficients and the scattering phase function,
L is the interoptode distance between the source and detector,
and G is an unknown geometry-dependent factor.39 The oxy-Hb
and the deoxy-Hb signals were preprocessed using 85-points
cubic Savitzky–Golay smoothing.41 Although some recent stud-
ies have suggested that deoxy-Hb signals are more sensitive to
activity-related changes in regional cerebral blood flow, oxy-Hb
signals have exclusively been investigated in fNIRS studies,
because deoxy-Hb signals have been thought to be unreliable
due to their low-signal intensities and nonnegligible cross talk
errors.42 It has also been reported that oxy-Hb signals are sig-
nificantly contaminated by extracranial signals, whereas deoxy-
Hb signals are not.36 Thus, the oxy-Hb signals were analyzed
to examine the spatial distribution pattern of skin blood flow
changes.

3.2 Temporal Cross Correlations Between
Near-Infrared Spectroscopy Signals

The relationships between the oxy-Hb signals obtained from
the fNIRS (two channels) and those from the superficial
layer (10 channels) on the forehead during the letter-cued VFT
were examined first. For this purpose, the 20 (2 channels ×
10 channels) temporal cross-correlation matrix elements
between these signals were calculated. In addition, to investigate
spatial distributions of the oxy-Hb signals from the superficial
layer in the forehead during the task, the 45 (the number of
combinations of 2 channels from the 10 channels) temporal

cross-correlation matrix elements for the 10 channels of the
superficial layer were calculated.

3.3 Coefficients of Spatial Distributions

To evaluate spatial distributions of the oxy-Hb signals in the
superficial layers, a new statistical value, namely, the coefficient
of spatial uniformity (CSU) is defined as

EQ-TARGET;temp:intralink-;e001;326;487CSU ¼ hri∕σ; (1)

where hri and σ are, respectively, the arithmetic mean and SD of
the 45 temporal cross-correlation coefficients between the
oxy-Hb signals in the superficial layer.

3.4 Hierarchical Variable Cluster Analysis

To investigate the characteristics of the temporal cross correla-
tions of the measured NIRS signals on the 12 channels, the tem-
poral cross correlations were hierarchically clustered by using
the PROC VARCLUS procedure of the software package SAS
(SAS/STAT, Cary, NC, 13.2 User’s guide The VARCLUS
Procedure43).

The VARCLUS procedure is a method of directly clustering
correlation matrices. The VARCLUS algorithm begins with all
variables in a single cluster, and repeats the following steps.

1. Principal-component analysis determines whether the
selected cluster should be further split. If the second
principal component is larger than one, the cluster is
divided into two cluster components; otherwise, the
procedure stops splitting.

2. Orthoblique rotation assigns each variable to the clus-
ter components with which it has the higher squared
correlation.

3. The variables are iteratively reassigned to clusters to
maximize the variance accounted for by the cluster
components.

4 Results and Discussion

4.1 Time Courses of Near-Infrared Spectroscopy
Signals

An example of time courses of oxy-Hb signals measured from
a single participant is shown in Fig. 3, and the channel

Fig. 2 Illustration of optodes for measuring superficial-layer signals. Ten source–detector pairs (T1-R1,
T2-R2, T3-R3, T4-R4, T5-R5, T6-R6, T7-R7, T8-R8, T9-R9, and T10-R10) with a short separation of
5 mm were placed on the horizontal line of the forehead 35 mm above the nasion. Two additional detec-
tors (R11 and R12) were placed with a source–detector separation of 40 mm for T1 and T6, respectively.
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arrangements are shown in Fig. 2. The top and the middle rows
in Fig. 3 correspond to the oxy-Hb signals of superficial layers
on the right and the left sides of the forehead, respectively.
The bottom row corresponds to the oxy-Hb signals of the
fNIRS performed on the forehead. First, it should be noted that
the intensities of the oxy-Hb signals on most of the channels
significantly increase during the VFT.

The ch 11 fNIRS signal from the right side strongly corre-
lates with the ch 7 (r ¼ 0.79) and ch 8 (r ¼ 0.84) signals from
the superficial layers. The ch 12 fNIRS signal from the left side
strongly correlates with the ch 1 (r ¼ 0.80), ch 5 (r ¼ 0.73), ch
6 (r ¼ 0.79), and ch 10 (r ¼ 0.86) signals from the superficial
layers. These results confirm the results of the previous studies
indicating that the fNIRS signals are contaminated with super-
ficial signals. The ch 2 signal from the superficial layers is
strongly correlated with the ch 5 (r ¼ 0.76), ch 6 (r ¼ 0.89),
and ch 10 (r ¼ 0.77) signals from the superficial layers. The
ch 3 signal from the superficial layers is strongly correlated
with the ch 7 (r ¼ 0.80), ch 8 (r ¼ 0.77), and ch 9 (r ¼ 0.88)
signals from the superficial layers. Interestingly, however, the ch
2 signal has no correlation with the ch 3 (r ¼ −0.1) signal. This
result suggests that the spatial distribution of superficial signals
from the forehead is heterogeneous. Accordingly, it is not pos-
sible to assume a spatial uniformity of superficial signals when
one measurement area is far from another (i.e., at least by
15 mm).

4.2 Task Performances

First, the differences between the first- and second-task blocks
in terms of group means of task performances [Fig. 4(a)], inte-
gral values of fNIRS oxy-Hb signal [Fig. 4(b)], and integral val-
ues of the superficial oxy-Hb signal [Fig. 4(c)] were compared.
The integral value describes the size of the hemodynamic
response during 60-s activation task periods.38 The task perfor-
mance for the second-task block improved slightly compared to
that for the first-task block [average (SD): 16.7 (3.5) for the first
task and 18.1 (3.2) for the second task]. The integral values of
both the fNIRS and the superficial signals for the second-task
block decreased compared to those for the first-task block.
However, the first- and second-task blocks show no statistically
significant difference in terms of either task performance or
fNIRS signal strength (P > 0.05, paired t-test).

4.3 Correlations Between Functional Near-Infrared
Spectroscopy Signals and Superficial Signals

To investigate the channel correlations between the fNIRS and
superficial signals, color maps of the temporal cross-correlation
coefficients between the oxy-Hb signals obtained from the
fNIRS (FAR channels) and those from the superficial layer
(NEAR channels) for each subject were produced (Fig. 5). The
numbers (1 to 10) in the horizontal direction represent the chan-
nels of the superficial signals. The numbers (11 and 12) in the

1 ch (–70 mm) 2 ch(–55 mm) 3 ch (–40 mm) 4 ch (–25 mm) 5 ch (–10 mm)

10 ch (10 mm) 9 ch (25 mm) 8 ch (40 mm) 7 ch (55 mm) 6 ch (70 mm)

11 ch (–52.5 mm) 12 ch (52.5 mm)

Fig. 3 Example time courses for the fNIRS (ch 1 to ch 10) signals and superficial (ch 11 and ch 12)
oxy-Hb signals. The gray-shaded regions indicate VFT periods. The number in parentheses for each
channel represents the distance from the midsagittal line.
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vertical direction represent the channels of the fNIRS signals. In
the case of most subjects, the fNIRS signals (ch 11 and ch 12)
are strongly correlated with the superficial signals even in
a remote location of measurement channels, though the ch 11
and ch 12 signals are, respectively, located at positions including
the ch 1, ch 2, and ch 3 signals and ch 6, ch 7, and ch 8 signals
(which are the measured superficial layer signals, respectively).
For example, in the case of subject 1, the fNIRS signal of ch 11
is strongly correlated with those of ch 6 and ch 7 as well as those
of ch 1 and ch 2, though the ch 6 and ch 7 signals are located at
positions on the opposite side (>100 mm from the position of
the ch 11 signal). This result suggests possible existence of an
anatomical structure through which fNIRS signals propagate to
remote locations in the place.

4.4 Spatial Distributions of Superficial Signals

To investigate spatial distributions of the superficial signals,
color maps of the temporal cross-correlation coefficients
between the oxy-Hb signals from the superficial layer (NEAR
channels) for each subject were produced (Fig. 6). The numbers
(1 to 10) at the base of the color map represent the channels of
the superficial signals. The cross-correlation matrix consists of

45 elements (the number of combinations of two channels
selected from the 10 channels). The vertical direction (layer) of
the color map represents the nearest order of the nearest-
neighbor classification. Specifically, the bottom layer represents
the temporal cross correlations between the NIRS signals on the
nearest-neighbor channels, and the top layer represents the tem-
poral cross correlation between the ch 1 and ch 6 signals. In
addition, the horizontal direction of the color map represents
the spatial distribution of the interchannel correlation of super-
ficial signals from each layer, because the color map corre-
sponds to the spatial position of a signal. Note that several
subjects (except subjects 5, 6, 8, and 15) show low values (green
or blue) of temporal cross-correlation coefficients of the signals
from the bottom layer. These results mean that the assumption of
homogeneous superficial signals does not stand in the case of
any region of interest on the forehead with diameter of 15 mm
or larger. In addition, the temporal cross-correlation coefficients
for the lower layer (short-distance channels) are not neces-
sarily higher than those for the upper layer (long-distance
channels). These results indicate that the spatial distributions
of hemoglobin signals from the superficial layers on the fore-
head are heterogeneous and mottled.
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Fig. 5 Color maps of the temporal cross-correlation coefficients between the fNIRS oxy-Hb signals (FAR
channels) and the superficial oxy-Hb signals (NEAR channels) for each of all individual subjects. Each
row (1 to 10) and each column (11 and 12) in a color map represent FAR channel and NEAR channel,
respectively.
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CSU of the oxy-Hb signals from the superficial layer for each
subject [calculated by mathematical Eq. (1)] are shown in Fig. 7.
These results indicate that the spatial distributions of the super-
ficial signals from the forehead vary significantly across subjects.

4.5 Hierarchical Clustering of Temporal Cross
Correlation Between Near-Infrared
Spectroscopy Signals

To investigate the structure of temporal cross correlation
between the fNIRS and superficial signals on the channels,
hierarchical clustering of the correlation was performed.
Dendrograms of the hierarchical clustering for each subject

are shown in Fig. 8. Although the dendrograms show a variety
of patterns across the subjects, they can be classified into four
types by the number of the clusters (cluster type 1: subjects 5
and 10; cluster type 2: subjects 4, 6, 7, 8, 11, 13, 14, 15, and 16;
cluster type 3: subjects 1, 2, 3, and 12; and cluster type 4: sub-
ject 9).

To understand the physiological meaning of these dendro-
grams, network graphs of the NIRS signals of all subjects, which
are new dendrograms without changing order of the spatial posi-
tions of the channels, were created. Typical network graphs of
hierarchical clustering classified into the four types are shown in
Fig. 9. The frontal branches of superficial temporal vessels run
tortuously upward or downward and forward or backward to the

Subject 1 Subject 2 Subject 3 Subject 4

Subject 5 Subject 6 Subject 7 Subject 8

Subject 12Subject 9 Subject 10 Subject 11

Subject 13 Subject 14 Subject 15 Subject 16

1 2 4 5 10 9 8 73 6

Fig. 6 Color maps of the temporal cross-correlation coefficients for the superficial oxy-Hb signals (NEAR
channels) for each of all individual subjects. The numbers (1 to 10) at the base in the horizontal direction
represent the NEAR channels.
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subject.
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forehead, supplying the muscles, integument, and pericranium
in this region, and anastomosing with the supraorbital and supra-
trochlear vessels. The superficial temporal artery is one of the
temporal branches of the external carotid artery. On the other
hand, the supraorbital and supratrochlear arteries derive from
the ophthalmic artery, which is derived from the internal carotid
artery. The supratrochlear artery exhibits a more superficial
course and has a larger diameter than the supraorbital artery
[1.08� 0.19 mm cf. 0.86� 0.19 mm (SD)].44 The fNIRS sig-
nal is extremely vulnerable to contamination by changes in
blood flow of these vessels in the dermis and hypodermis
because the sensitivity in the superficial layers is higher than
that in the deeper layer.24 Time-resolved-reflectance measure-
ments on a heterogeneous tissue-vessel model have revealed
that the influence of blood vessels on the absorption coefficient
is formulated as a function proportional to the vessel-to-brain
volume ratio, which includes an exponential decay term of ves-
sel diameter.45 The fNIRS signals recorded on the forehead can,
therefore, be contaminated by the superficial signals originating
in these vessels to various degrees. Furthermore, anatomical var-
iations occur in the supratrochlear and supraorbital arteries: the
average distance between the exit of the supratrochlear artery
and the midline was found to be 16.4� 1.7 mm (range, 13
to 20), and the average distance between the exit of the supra-
orbital artery and the midline measured 26.5� 2.6 mm (range,

23 to 35).44 It has also been reported that the supraorbital artery
may be absent in 10% to 20% of individuals.46 Like the arteries,
the external veins of the head and face show significant varia-
tions in morphology, size, and termination. The facial vein
receives the supratrochlear and supraorbital veins and descends
obliquely behind the facial artery.47 Taking these reported results
together with the results of this study suggest that the network
structures of hierarchical clustering shown in Fig. 9 represent the
vascular network structure accompanying anatomical variations.
Since the VFT has been used in the aiding the differential diag-
nosis of depressive symptoms approved officially as the medical
insurance coverage by the Ministry of Health, Labor, and
Welfare of Japan in 2014, we have focused on the VFT in this
study. It is conceivable that the superficial signals vary with
kinds of tasks and/or task designs. Thus, it should be noted that
the cluster patterns shown in Fig. 9 might be specific to the
present experimental conditions.

5 Conclusions
It was observed that fNIRS signals recorded during a letter-cued
VFT strongly correlate with the superficial signals even in a
remote location of measurement channels. It was also observed
spatial heterogeneous distributions and network structures of
superficial signals appear across the forehead. These results
suggest that the spatial heterogeneous distributions of the
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Fig. 8 Dendrograms of hierarchical clustering of temporal cross correlation between NIRS signals for
each subject.
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superficial signals may be accounted for by vascular networks
mainly consisting of supraorbital, supratrochear, and superficial
temporal vessels.
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