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Abstract. The steady-state solution of the Green’s function obtained by the P3 equation in a semi-infinite
medium is presented, the proposed solution is a diffusion-based model. Two time-domain solutions are estab-
lished: one is the solution under extrapolation boundary condition, which we call the optical parameter method,
and the other corresponds to the diffusion equation, which we call the double-diffusion coefficient method. The
spatial-resolved reflectance and the time-resolved reflectance are calculated. The Monte Carlo simulation is
used to verify the P3 equation. The results show that the P3 steady-state equation and the two time-domain
equations are in good agreement with the Monte Carlo simulation. In the steady state, when the distance
between the detector and the light source is less than several free paths, the P3 equation is more accurate
than the diffusion equation. In other cases, the P3 model and the diffusion model have similar results.
However, when the absorption coefficient is large, P3 is more accurate. In the time domain, the optical parameter
method is more accurate, and the double-diffusion coefficient method is more consistent with the diffusion equa-
tion. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.9.095003]
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1 Introduction
Spectroscopy is a common and effective method for calculating
the absorption and scattering coefficients of biological tissues
and other turbid media. The method requires measuring the
reflectance of the medium. An inversion algorithm is then used
to reconstruct the optical properties of the medium, such as the
absorption coefficient and the scattering coefficient. For this
purpose, the diffusion equation is employed,1–4 which, however,
has several limitations in the application. First, the diffusion
theory is applied when the light absorption coefficient is smaller
than the scattering coefficient. Second, the diffusion theory
becomes invalid when the distance between the detector
and the light source increases to several transport mean free
paths.

Some researchers have published methods for extracting tis-
sue optical properties in low-albedo biological media, or meth-
ods for small source–detector separations. Venugopalan et al.5

developed an equation estimating approximate increases in the
diffusion of the radiation transport. Kienle and Patterson6 devel-
oped a method of fitting the optical properties of a reflectivity
measurement of a low exposure medium close to the source by
fitting the data to a series of reflection curves produced by a
single Monte Carlo simulation. Jia et al.7 established the method
of “virtual source” diffuse approximation. These methods, to
some extent, improved the accuracy of the diffusion equations.
However, researchers are still looking for new methods to alle-
viate some of their limitations further. For example, using the
radiative transfer equation,5 called the PN approximation
model, it is difficult to establish a mathematical expression.
However, it can be simplified as a diffusion model (P1

approximation) and P3 approximation. P3 is considered more
accurate than the diffuse approximation and, therefore, has
recently become a major direction of research.

Boas et al.8 established a frequency-dependent solution for
the P3 equation in the media of infinite thickness. Hull and
Foster9 obtained the Green’s function of the steady-state radia-
tion transport equation in the P3 equation. They proved that the
P3 model had better accuracy than the diffusion theory in the
high absorption medium or near the source of the radiation.
Dickey et al.10 pointed out that the radiance and the fluence
expressions based on the P3 equation were used to optically
characterize an intralipid tissue phantom, varying in concentra-
tion of the scatterer and absorber. Chai et al.11 established the P3
equation of the spherical harmonics method. Gao et al.12 derived
the equation set of the P3 equation and its Green’s function
approximate solution. Further, a complete solution of the P3
equation with the extrapolated boundary conditions was also
obtained. However, this progression was the continuation of
the theory first proposed by Boas et al.,8 and the solutions of
the P3 equation had already been derived by Liemert and
Kienle13 in a semi-infinite medium illuminated by a collimated
beam of light. The solution was evaluated with nearly the same
computational effort as needed for solving the standard diffusion
equation. For this purpose, the method used a combination of
the classic spherical harmonics and rotated reference frames
for solving the P3 equations in closed form.

In this paper, a similar method as that of the diffusion
equation is used. The steady-state solutions of the Green’s func-
tion by the P3 equation in the semi-infinite media under extrapo-
lation boundary condition are estimated, the proposed solution
is a diffusion-based model. Further, two frequency-domain
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solutions are estimated and transformed into the time domain
by Fourier transform. The spatially resolved reflectance
and the time-resolved reflectance of the P3 equation are calcu-
lated, and the Monte Carlo simulation is used to verify the
P3 equation. The P3 equation and the diffusion equation are
compared.

2 Theory

2.1 Solution of the Green’s Function of P3 Equation
in the Steady State

We present the solution of the Green’s function of the P3
approximate steady-state equation in the infinite medium
(see Fig. 1).

We assume that an infinitely thin beam is vertically incident
on the medium. All the photons undergo first scatter at depth z0
of one transport mean free path. An isotropic photon source is
established at that point, and therefore the beam is scattered
isotropically at a depth z ¼ z0 ¼ 1∕ðμ 0

s þ uaÞ, where μ 0
s and

ua are the deduced scattering coefficients and the absorption
coefficients, μ 0

s ¼ μsð1 − gÞ, μs and g are the scattering coeffi-
cients and anisotropy factor. The origin of the coordinate system
is a point where the beam enters the turbid medium, and z coor-
dinate has the same direction as the incident beam. The x and y
coordinates lie on the surface of the turbid sample and
ρ ¼ ðx2 þ y2Þ1∕2.

If we use the Henyey–Greenstein phase function, all its
higher-order moments gl can be determined.9 We assume

EQ-TARGET;temp:intralink-;e001;63;262μðlÞt ¼ μa þ μsð1 − glÞ; μð0Þt ¼ μa: (1)

Some scholars1,3,14,15 used inverse Fourier transform to solve
the diffusion equation, that is, the two solutionsΦ0 (ρ; z) andΦ1

(ρ; z) of the diffusion equation were obtained. On the basis of the
diffuse model, we obtain the four solutions Φ0ðρ; zÞ, Φ1ðρ; zÞ,
Φ2ðρ; zÞ and Φ3ðρ; zÞ of the P3 equation by the inverse Fourier
transform in the same way as the diffusion equation. The four
solutions of the P3 equation of Green’s functions are calculated
by Eq. (2) as follows:

EQ-TARGET;temp:intralink-;e002;63;140Φiðρ; zÞ ¼
1

2π

Z
∞

0

ϕiðz; sÞsJ0ðsρÞds i ¼ 0;1; 2;3: (2)

Equation (2) is the inverse Fourier transform. ϕiðz; sÞ is
the result of the Fourier transform that is written in the form

of exponentials when z < z0. The specific expression is
shown by

EQ-TARGET;temp:intralink-;e003;326;730

ϕ0ðz; sÞ ¼ A expð−zv−Þ þ B exp½ðz − z0Þv−�
þ C expð−zvþÞ þ E exp½ðz − z0Þvþ�

ϕ1ðz; sÞ ¼ Ah1ð−v−Þ expð−zv−Þ
þ Bh1ðv−Þ exp½ðz − z0Þv−�
þ Ch1ð−vþÞ expð−zvþÞ
þ Eh1ðvþÞ exp½ðz − z0Þvþ�

ϕ2ðz; sÞ ¼ Ah2ð−v−Þ expð−zv−Þ
þ Bh2ðv−Þ exp½ðz − z0Þv−�
þ Ch2ð−vþÞ expð−zvþÞ
þ Eh2ðvþÞ exp½ðz − z0Þvþ�

ϕ3ðz; sÞ ¼ Ah3ð−v−Þ expð−zv−Þ
þ Bh3ðv−Þ exp½ðz − z0Þv−�
þ Ch3ð−vþÞ expð−zvþÞ
þ Eh3ðvþÞ exp½ðz − z0Þvþ�: (3)

In Eq. (3), νþ and ν− are expressed as

EQ-TARGET;temp:intralink-;e004;326;457vþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a

s
; v− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a

s
; (4)

where a; b, and c are given by

EQ-TARGET;temp:intralink-;e005;326;395

a ¼ 27μð1Þt ;

b ¼ −½27μð1Þt ðα20 þ α23Þ − 28μð3Þt ðα22 − α20Þ�
c ¼ 27μð1Þt α20α

2
3 þ 28μð3Þt ðα20α21 − α22α

2
1Þ: (5)

In Eq. (5),

EQ-TARGET;temp:intralink-;e006;326;305

α20 ¼ ðμa þDs2Þ∕D;D ¼ 1

3μð1Þt

α21 ¼ α22 ¼ s2

a23 ¼ ½μð3Þt þ 3D2s2�∕3D2; D2 ¼
3

35μð2Þt

; (6)

where the constant items A; B;C; E, and hiðνÞ in Eq. (2) can be
expressed as follows:

EQ-TARGET;temp:intralink-;e007;326;186

h1ðvÞ ¼
3ðv2 − α23Þ
2ðv2 − α21Þ

3v

7μð3Þt

ðv2 − α20Þ
2ðv2 − α22Þ

h2ðvÞ ¼ −
ðv2 − α20Þ
2ðv2 − α22Þ

h3ðvÞ ¼ þ3v∕7μð3Þt

ðv2 − α20Þ
2ðv2 − α22Þ

; (7)

Fig. 1 Schematic of the infinite medium. The parameter z is taken in
the vertical direction, and the interface is at z ¼ 0. The initial position
of the photon is at the point (0;0; z0).

Journal of Biomedical Optics 095003-2 September 2017 • Vol. 22(9)

Wang: Approximate P3 solution for the semi-infinite medium: steady state and time domain



EQ-TARGET;temp:intralink-;e008;63;752

A ¼ −
½−1∕2h3ðvþÞ − 1∕3h1ðvþÞ� expf−½ðz0 þ zb1Þv−�g

½h3ðvþÞh1ðv−Þ − h3ðv−Þh1ðvþÞ� expðzb1v−Þ

B ¼ −1∕2h3ðvþÞ − 1∕3h1ðvþÞ
h3ðvþÞh1ðv−Þ − h3ðv−Þh1ðvþÞ

C ¼ −
½1∕3h1ðv−Þ þ 1∕2h3ðv−Þ� expf−½ðz0 þ zb2Þvþ�g
½h3ðvþÞh1ðv−Þ − h3ðv−Þh1ðvþÞ� expðzb2vþÞ

E ¼ 1∕3h1ðv−Þ þ 1∕2h3ðv−Þ
h3ðvþÞh1ðv−Þ − h3ðv−Þh1ðvþÞ

: (8)

In Eq. (4), if s ¼ 0, Eq. (4) is expressed as νþð0Þ and ν−ð0Þ.
Thus, zb1 and zb2 in Eq. (8) can be expressed as shown in

EQ-TARGET;temp:intralink-;e009;63;609zb1 ¼ 2
1þ Reff

1 − Reff

μa
v2−ð0Þ

; zb2 ¼ 2
1þ Reff

1 − Reff

μa
v2þð0Þ

; (9)

If the refractive index of the biological medium is 1.4,
Reff ¼ 0.493. Whereas, if the refractive index is 1.33, Reff ¼
0.431. Reff was calculated according to Haskell et al.2 We
present four solutions of the P3 equation in the steady-state
equation.

To calculate the P3 equation, we present the expression
of the reflectance of the P3 equation, which is also a continuation
of the diffusion equation. The solution of the P3 equation
steady-state spatially resolved reflectance RðρÞ is shown by
Eq. (10)

EQ-TARGET;temp:intralink-;e010;63;454

RðρÞ ¼ k0Φ0ðρ; zÞ þ k1Φ1ðρ; zÞ þ k2Φ2ðρ; zÞ
þ k3Φ3ðρ; zÞjz¼0; (10)

where the coefficients k1; k2; k3, and k4 are the constants
associated with the refractive index. If the refractive index
n ¼ 1.4, then k1 ¼ 0.1177, k2 ¼ −0.3056, k3 ¼ 0.4444, and
k4 ¼ −0.5487. If n ¼ 1.33, then k1 ¼ 0.1320, k2 ¼ −0.3359,
k3 ¼ 0.4806, and k4 ¼ −0.5845.

2.2 Solution of the Green’s Function of P3 Equation
in the Time Domain

The basic idea of the time-domain method is to first establish the
frequency-domain equation, through the Fourier transform, and
then convert it to the time-domain equation. Here, we present
two methods in the time domain.

The first method, we call the optical parameter method.
If we use Eq. (11) instead of Eq. (1), we can get the equation
in the frequency domain

EQ-TARGET;temp:intralink-;e011;63;231μðlÞt ¼ μa þ μsð1 − glÞ þ j
ω

c
; (11)

where ω is an angular frequency of the incident light and c is the
speed at which light travels in the medium. Equations (2)–(10)
can still be applied to the P3 frequency-domain equation.

The second method we call the double-diffusion coefficient
method. In Eqs. (1)–(10), only Eq. (6) is modified by Eq. (12),

EQ-TARGET;temp:intralink-;e012;326;752

α20 ¼ ðμa þDs2 þ j
ω

c
Þ∕D;D ¼ 1

3μð1Þt

α21 ¼ α22 ¼ s2

a23 ¼ ½μð3Þt þ 3D2s2 þþj
ω

c
�∕3D2; D2 ¼

3

35μð2Þt

: (12)

Equation (13) is used in the time-domain and frequency-
domain methods of the diffusion equation

EQ-TARGET;temp:intralink-;e013;326;647α20 ¼ ðμa þDs2 þ j
ω

c
Þ∕D;D ¼ 1

3μð1Þt

; (13)

where D is the coefficient of the diffusion equation. To

correspond to the diffuse equation, we adopt a23 ¼ ½μð3Þt þ
3D2s2 þ j ω

c�∕3D2; D2 ¼ 3

35μð2Þt

. Since the new parameter D2 is

similar to the diffusion coefficient, we name this approximation
method a double-diffusion coefficient method.

We estimate different frequencies and then carry out Fourier
transform for the solution in the time domain.

2.3 Relationship Between P3 Equation and Related
Theory

We compared the relationship between the P3 model and other
related models. Kienle et al.14 used the Fourier approach to solve
the diffusion equation for a two-layered turbid medium. They
then used this method to publish a series of articles including
the study,15 where Eq. (3) was widely used. We also used
this method to solve the diffusion equation 3 and establish
the P3 equation. The spatially resolved reflectance as utilized
in the diffusion equation is given by

EQ-TARGET;temp:intralink-;e014;326;386RðρÞ ¼ C1Φðρ; z ¼ 0Þ þ C2D
∂Φðρ; z ¼ 0Þ

∂z
: (14)

The refractive index of the biological tissue is given by 1.4 and
constants C1 ¼ 0.1117, C2 ¼ 0.3056. From the diffusion
equation, we have Φ1 ¼ −D∂Φðρ; z ¼ 0Þ∕∂z. Using these
values and expression, Eq. (14) takes the form, RðρÞ ¼
C1Φ0ðρ; z ¼ 0Þ þ C2Φ1. This reflectance represents the first
two terms of Eq. (10). Hull and Foster9 resolved a solution
of the spatially resolved reflectance. However, the expression
was more complex and completely different from the one we
presented. Gao et al.12 also employed the equation of reflectance
given by Hull and Foster9

The literature9 presents yet another expression that is differ-
ent from Eq. (10) in our study. The kn in the literature9 depends
on the numerical aperture of the detector and the refractive-
index mismatch. The relationship between Eq. (10) and the
literature9 is expressed by

EQ-TARGET;temp:intralink-;e015;326;178ki ¼
ð2iþ 1Þ

4π
k 0
i ði ¼ 0;1; 2; 3Þ; (15)

where ki is the coefficient in Eq. (10) and k 0
i is the coefficient

in Ref. 9.
In the diffuse equation, D is the diffusion coefficient.

Equation (6) not only has the same definition but also a further
definition, in order to distinguish the diffusion coefficient, we
named D2.
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Hull and Foster9 presented the specific expression of ν,
which was also used by Gao et al.12 Boas et al.8 established a
specific expression of ν in the frequency domain. In the limit,
when the frequency domain is approaching 0, the result8

becomes similar to that of Hull and Foster9 This is expressed
as follows:

EQ-TARGET;temp:intralink-;e016;63;686vþ ¼ 1ffiffiffiffiffi
18

p ðβ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − γa

q
Þ
1
2

; v− ¼ 1ffiffiffiffiffi
18

p ðβ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − γa

q
Þ
1
2

β ¼ 27μaμ
ð1Þ
t þ 28μaμ

ð3Þ
t þ 35μð2Þt μð3Þt

γa ¼ 3780μaμ
ð1Þ
t μð2Þt μð3Þt :

(16)

Equations (4) and (5), in the limit, s ¼ 0, reduce to Eq. (16).
This shows that Eq. (16) has a special form of our model.

Equation (9) is called the extrapolated boundary condition.
The extrapolated boundary conditions for the P3 equation in
Refs. 9 and 12 can be modified to Eq. (17)

EQ-TARGET;temp:intralink-;e017;63;534zb1 ¼ 2A
μa
v2−

; zb2 ¼ 2A
μa
v2þ

: (17)

This is consistent with our Eq. (12). Hull and Foster9 pointed
out the drawback of extrapolated boundary conditions. The
drawback is that it is does not rigorously satisfy boundary
conditions for the higher-order terms. However, it can be dem-
onstrated that this approach yields excellent agreement with
experimental data, suggesting that the boundary condition is
not especially sensitive to these terms.

The solution of the Green’s function by the P3 equation is
similar to the diffusion equation. The P3 model is an extension
of the diffusion equation. Our model has some similarities to the
published P3 equation,9,12 but they have essential differences.
The same similarities are the extrapolation boundary condition
[Eq. (17)], the interrelated coefficients [Eq. (15)].

The differences are that: (a) the solution of Hull and Foster9 is
obtained by polynomial approximation, and our equation is
obtained by strict Fourier transform and inverse transformation,
(b) the solution of Hull is derived assuming the approximation
of a spherically symmetric medium. Our solution is derived
assuming the approximation of a nonspherically symmetric
medium: (c) the calculated reflectance equation is completely
different between our equation and the equation of Hull;
(d) using our equations, we can derive the characteristic param-
eters of Hull and Foster; and (e) our equation is established on
the basis of the diffusion equation, which is the continuation of
the diffusion equation.

3 Results

3.1 Comparison of P3 Equation with Monte Carlo
Simulation and Diffusion Equation in the Steady
State

Monte Carlo simulation is used as a universal means of verifi-
cation. The diffusion equation is often used in biomedical
optics.3,16 We use the Monte Carlo simulation17 to verify our
P3 model and compare the accuracy with the diffuse model.
The Monte Carlo simulation uses a pencil photon that was nor-
mally incident onto the semi-infinite media, and use the
Henyey–Greenstein phase function. The reflectance of Monte

Carlo simulations depicts the results of Monte Carlo simulations
of isotropic point sources in semi-infinite media.

First, we compare the P3 model with the diffusion equation
of the semi-infinite medium using the Monte Carlo simulation.
We use the diffuse equation method of the paper.3,16

If the detection distance is 0.5 to 30 mm, it is assumed
that the scattering coefficient μs ¼ 10 mm−1, g ¼ 0.9, and
the absorption coefficients are μa ¼ 0.002 mm−1 and μa ¼
0.0005 mm−1. The results are shown in Fig. 2(a). The straight
part is the P3 equation result, and the square part is the Monte
Carlo simulation result. From Fig. 2(a), we can see that the P3
equation result is almost the same as the Monte Carlo
simulation.

We compare the relative error (unit: %) among the P3 equa-
tion, the Monte Carlo simulation, and the diffuse equation. As
shown in Figs. 2(b) and 2(c), the relative error is larger except
for the front 1 mm. The relative error of the results is very small.
In other words, the P3 equation is very consistent with the Monte
Carlo simulation results. At the same time, in addition to the
near light source, the relative error between the P3 equation
and the diffuse approximation is close to zero, that is, the P3
equation has the same result as the diffusion equation.

It is assumed that the scattering coefficient μs ¼ 15 mm−1,
g ¼ 0.9, and the absorption coefficients are μa ¼ 0.002 mm−1

and μa ¼ 0.0005 mm−1. The results are shown in Fig. 2(d),
and the relative errors are shown in Figs. 2(e) and 2(f).
These confirm the previous conclusions.

If the detection distance is 0.05 to 3 mm, it is assumed that
the scattering coefficient μs ¼ 10 mm−1, g ¼ 0.9, and the
absorption coefficient is μa ¼ 0.0005 mm−1. The results are
shown in Fig. 3(a). The straight line is the P3 equation result,
the dotted line is the Monte Carlo simulation result. From
Fig. 3(a), we can see that when the detection distance is greater
than a certain value, the result of the P3 equation is almost the
same as the Monte Carlo simulation.

We compare the relative error (unit: %) among the P3 equa-
tion, the Monte Carlo simulation, and the diffuse equation. As
shown in Fig. 3(b), when the detection distance is between 0.6
and 1.5 mm, the relative error of P3 is small, and when the detec-
tion distance is greater than 1.5 mm, the P3 equation has the
same result as the diffuse equation. That is, when the detection
distance is greater than 0.6 mm, the P3 equation is more
accurate.

It is assumed that the scattering coefficient μs ¼ 15 mm−1,
g ¼ 0.9, and the absorption coefficients are μa ¼ μa ¼
0.0005 mm−1. The results are shown in Fig. 3(c), and the rel-
ative error is shown in Fig. 3(d), confirming our conclusions.

The diffusion equation is usually used under the condition
that the absorption coefficient is small. In the same parameters
of Fig. 2(a), we increase the absorption coefficient. The specific
parameters are μs ¼ 10 mm−1, g ¼ 0.9, and μa ¼ 0.05 mm−1.
We compare the P3 equation, diffuse approximation, and Monte
Carlo simulation when the distance of the detector is 0.05
to 3 mm.

The result is shown in Fig. 4(a). Figure 4(b) shows the rel-
ative error between Monte Carlo simulation, P3 equation, and
the diffusion approximation.

Figure 4(b) shows that when the detection distance is more
than 2 mm, P3 has a small error. When the detection distance is
more than 2.5 mm, the relative error of P3 is less than 4%, and
the error of diffusion is greater than 8%. This shows that P3 is
more accurate.
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3.2 Comparison of the P3 Equation with Monte
Carlo Simulation in Time Domain

First, the double-diffusion coefficient method of the P3 equation
in the time domain is compared with Monte Carlo simulation.
Since the double-diffusion coefficient corresponds to the diffu-
sion equation, we add a D2 based on the diffusion equation, so
we first verify this method.

Assuming that the three semi-infinite dielectrics have a
refractive index of 1.4 and their parameters are μs ¼ 10 mm−1,
g ¼ 0.9, and μa ¼ 0.01 mm−1, μa ¼ 0.005 mm−1, and μa ¼
0.05 mm−1, we set two detection distances of 5.5 and 8.5 mm,
respectively. The results are shown in Figs. 5(a) and 5(b), where
the detection distances are 5.5 and 8.5 mm, respectively.

It can be seen from Figs. 5(a) and 5(b) that the time-resolved
reflectance calculated by the double-diffusion coefficient

Fig. 2 Comparison of P3 approximation model with Monte Carlo simulation and diffuse approximation. The
optical parameters of (a) are μs ¼ 10 mm−1, g ¼ 0.9, μa ¼ 0.002 mm−1, and μa ¼ 0.0005 mm−1. The
optical parameter of (b) is μa ¼ 0.0005 mm−1. The optical parameter of (c) is μa ¼ 0.002 mm−1. The optical
parameters of (d) are μs ¼ 15 mm−1, g ¼ 0.9, μa ¼ 0.002 mm−1, and μa ¼ 0.0005 mm−1. The optical
parameter of (e) is μa ¼ 0.0005 mm−1. The optical parameter of (f) is μa ¼ 0.002 mm−1.
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method is consistent with the Monte Carlo simulation, and it is
proved that the time-resolved reflectance calculated by the dou-
ble-diffusion coefficient method is correct.

To further verify the correctness of the double-diffusion coef-
ficient method, we compared the three media with a refractive
index of 1.33. The parameters are μs ¼ 15 mm−1, g ¼ 0.9,
respectively. The absorption coefficients are μa ¼ 0.01 mm−1,
μa ¼ 0.005 mm−1, and μa ¼ 0.05 mm−1, respectively. The
detection distance is 8.5 mm. The results are shown in Fig. 5(c).

It can be seen from Fig. 5(c) that the medium with a refractive
index of 1.33 is consistent with the Monte Carlo simulation,

further proving that the time-domain method of the double-dif-
fusion coefficient method is correct.

We have shown that the time-resolved reflectance calculated
by the double-diffusive coefficient method is consistent with the
Monte Carlo simulation. We have also verified that the time-
resolved reflectance using the optical parametric method is cor-
rect. We could have first used the Monte Carlo simulation to
verify it, but we found that the results are the same as in Fig. 5.

We further compare the two time-domain methods. The
parameters in Fig. 6 are the same as the first two parameters
in Fig. 5(c), using the same detection distance, we can see

Fig. 4 (a) Comparison of P3 approximation with the diffuse approximation and Monte Carlo simulation
and (b) comparison of relative error of P3 approximation with diffusion model and Monte Carlo simulation.

Fig. 3 Comparison of P3 approximation model with Monte Carlo simulation and diffuse approximation.
The optical parameters of (a) and (b) are μs ¼ 10 mm−1, g ¼ 0.9, and μa ¼ 0.0005 mm−1. The optical
parameters of (c) and (d) are μs ¼ 15 mm−1, g ¼ 0.9, and μa ¼ 0.0005 mm−1.
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that the image is completely coincident, without any difference.
This proves that the optical parameter method is accurate.
Because the optical parameter method does not have any
approximation, it is more accurate than the double-diffusion
coefficient method which is the solution corresponding to the
diffusion model.

In order to compare the differences between the two meth-
ods, we calculate the relative error. In time-resolved reflectance,
the relative error is usually calculated using the logarithmic rel-
ative error. The relative error is given as follows:

EQ-TARGET;temp:intralink-;e018;326;268E ¼
���� log RD − log Ru

log RD

���� × 100%; (18)

where log RD represents the time-resolved reflectance calculated
by the double-diffusion coefficient method and log Ru repre-
sents the time-resolved reflectance calculated by the optical
parametric method. The results are shown in Fig. 7(a). The
results show that if the time exceeds 0.2 nm, the error is less
than 0.3%.

Further, we use the relative error of the steady state as fol-
lows:

EQ-TARGET;temp:intralink-;e019;326;135E ¼
����RD − Ru

RD

���� × 100%: (19)

The relative error calculated by Eq. (19), as shown in Fig. 7(b),
comes out to be about 4% when the time is greater than 0.2 ns.

Fig. 5 Comparison of the time-resolved reflectance calculated by P3 theory with Monte Carlo simulation
(a) refractive index n ¼ 1.4, ρ ¼ 5.5 mm; (b) n ¼ 1.4, ρ ¼ 8.5 mm, and (c) n ¼ 1.33, ρ ¼ 8.5 mm.

Fig. 6 Comparison of two time-domain methods of P3 approximation.
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Therefore, the two time-domain methods are correct. The optical
parameter method is better in terms of more accurate solution
whereas the double-diffusion coefficient method excels in its
simplicity.

3.3 Comparison of the P3 Equation with the Diffuse
Equation in Time Domain

We have not only verified the P3 equation but also compared the
time-domain equation of the P3 equation and diffusion model.
Since the two time-domain methods using the P3 model and the
time-domain method of the diffusion model are coincident, we
simply compare the relative errors between the two P3 models
and the diffusion model.

In Figs. 8(a) and 8(b), the relative error equation in the
steady state is used. The parameters of Fig. 8(a) are refractive
index n ¼ 1.4, μs ¼ 10 mm−1, g ¼ 0.9, μa ¼ 0.005 mm−1. The
parameters of Fig. 8(b) are refractive index n ¼ 1.33, μs ¼
15 mm−1, g ¼ 0.9, μa ¼ 0.01 mm−1.

It can be seen from Fig. 8 that when the time exceeds 0.2 ns,
the relative error between the optical parameter method and the
diffuse equation is about 2%; the error between the double-dif-
fusion coefficient method and the diffuse equation is very small.
In fact, the double-diffusive coefficient method is almost iden-
tical to that estimated by the diffuse model. Since the optical
parameter method is an accurate P3 equation time-domain

equation, the result is more accurate than the time-domain equa-
tion of the diffusion model.

If the logarithmic relative error equation is used, it is also
shown that the diffusion equation is relatively consistent with
the double-diffusion coefficient method. Therefore, the accuracy
of the diffusion equation is not as good as that of P3 approxi-
mating the time-domain equation, but the difference is very
small. This is shown in Fig. 9. The parameters are the same
as in Fig. 8(a).

Fig. 7 Comparison of relative errors of two time-domain methods in P3 approximation (a) calculated by
Eq. (18) and (b) calculated by Eq. (19).

Fig. 8 Relative error of P3 approximation and diffusion equation: (a) n ¼ 1.4 and (b) n ¼ 1.33.

Fig. 9 Logarithmic relative error of P3 approximation and diffusion
equation.
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4 Conclusion
The diffusion equation becomes increasingly inaccurate with the
increase of the absorption coefficient value. This justifies the
need to establish a model such as the P3 equation, which is
more accurate than the diffusion equation. However, due to rel-
ative complexity, it is not easy to implement as the mathematical
model. In this paper, the solution of the P3 equation in the steady
state under extrapolation boundary condition is presented in the
form of Fourier transform and inverse transformation, the pro-
posed solution is a diffusion-based model. The solution is con-
sistent with the diffusion model.

Monte Carlo simulation is used to demonstrate the accuracy
of the P3 model in the steady state. The relative errors of the P3
equation, diffuse equation, and Monte Carlo simulation are cal-
culated, which indicates that P3 is more accurate. In the steady
state, the P3 equation is similar to the diffuse equation, and it is
shown that the diffusion equation and P3 equation have almost
the same value under the condition of satisfying the diffusion
equation. Monte Carlo simulation shows that when there is a
large absorption coefficient, the relative error of the diffusion
equation is quite large, whereas the relative error of the P3 equa-
tion is comparatively small.

Based on the steady-state equation of the P3 equation, two
kinds of frequency-domain equations are established: the optical
parameter method and double-diffusion coefficient method, they
are transformed into two time-domain equations by Fourier
transform in the frequency domain.

By utilizing Monte Carlo simulation, we have verified two
different time-domain methods with different refractive indices
and different parameters. The results show that our two methods
are correct.

The time-domain method of the diffusion equation is com-
pared. The results show that the numerical and error values cal-
culated by the double-diffusive coefficient method are consistent
with the diffusion equation. Since the optical parameter method
of the P3 equation does not have any approximation under
extrapolation boundary condition, its accuracy is higher than
that of the double-diffusion coefficient method. Therefore, the
accuracy of the optical parameter method is higher than that of
the diffusion equation. However, the double-diffusion coeffi-
cient method is simpler, and the logarithmic relative error of
the time domain is calculated at about 0.2%, so the error is
almost negligible.

Our research method can lay the foundation for the solution
of the P5 model. We estimate that the P5 model needs to
establish the cubic equation of the v in Eq. (4) and the
reconstruction of Eq. (7). Based on this paper, we can study
the P3 approximate multilayer model, which can replace the
diffusion equation. 3,16,18
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