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Abstract. Spectral data enabling the derivation of a biological tissue sample’s complex refractive index (CRI)
can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI
reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during
diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of
the CRI of a biological sample using Kramers–Kronig (KK) relations in the spatial frequency domain. In this
method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample
surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires
the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to
spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion
approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel
equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was vali-
dated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and
heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury.
CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are
demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a
clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first
report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency
domain. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.9.097004]
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1 Introduction
Successful derivation of a biological tissue sample’s complex
refractive index (CRI) can serve a range of downstream diagnos-
tic and research applications.1–4 In the context of biophotonics,
the real component of CRI (n) is related to the scattering coef-
ficient (μs) while the imaginary part (k) is connected to the total
attenuation coefficient (μtr), which is the sum of μs and the
absorption coefficient, μa.

5 That is, by given n and k parameters,
μs and μa coefficients can be indirectly deduced. Once these
parameters or coefficients are obtained, they may be used in
the clinical context as markers to diagnose metabolic states
or pathological conditions, and monitor efficacy of therapeutic
treatments. Specifically, k or μa reflects the process of light
attenuation by physiologically relevant chromophores, such
as hemoglobin, melanin, carotenes, lipids, water, etc., while
n or μs reflects the structural variation of tissues largely attrib-
uted to changes in the concentration gradient between intra- and
intercellular osmolarity.6,7 The independent derivation of n and k
values, as well as the determination of μs and μa, as a function of
wavelength can provide a comprehensive battery of biochemi-
cal, morphological, and histochemical parameters of tissue.

The range of optical methods applied determine the optical
properties of turbid materials may be broadly divided into direct

and indirect techniques. Direct methods rely directly upon
experimental results, without any model of photon migration.
Indirect methods are more complicated in their use, involve
mathematical models, and/or simulations of light propagation,
and require sophisticated (and sometimes expensive) instrumen-
tation.8–11 Among techniques recently developed for optical
characterization of turbid media and specifically for biomedical
imaging is spatially modulated illumination, known also as spa-
tial frequency-domain imaging.12,13 With this technique, peri-
odic illumination patterns (i.e., sinusoidal grid) at a range of
spatial frequencies and excitation wavelengths are transmitted
to the surface of a sample to separately map its intrinsic optical
parameters over a wide field-of-view in a noncontact and scan-
free fashion. The advantages of this imaging technique include:
capability of depth sectioning, as well as wide-field and wild-
range imaging, ease of use, and relatively low cost due to its
minimal number of optical elements. The technical capabilities
of this platform have been successfully demonstrated over the
last 12 years, with successful demonstration in phantoms,
animal, and human studies.14–21 In the context of this technique,
the present work aimed to apply structured illumination to esti-
mate the real and imaginary component of turbid sample CRI in
the near-infrared (NIR) spectral region (∼650 to 1000 nm).
However, as in conventional imaging platforms, the information
regarding sample phase distribution is lost when recording the
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diffuse reflectance by a camera. In order to retrieve phase data of
biological samples from intensity measurements, several tech-
niques and iterative computational algorithms have been devel-
oped to approach this fundamental challenge.22–27 In this work,
in order to derive the phase spectrum of biological sample from
the amplitude of reflectance, Kramers–Kronig (KK) or the
Hilbert transformation was employed.28,29 Once the phase
information is recovered, a set of equations based on Fresnel’s
reflection coefficient derived from classical electromagnetic
theory28,30 is used to obtain separately the real and imaginary
part of the sample CRI value.

There are several approaches to derive sample refractive
index, including refractometers, optical coherence tomography,
total internal reflection, focused scanning microscopy, ellipsom-
etry, etc., each with its own advantages and disadvantages.31–33

However, the extraction of CRI information through spatially
modulated illumination differs from the aforementioned meth-
ods and grants additional capabilities to this technique by
enlarging its measurement range, as elaborated in this work.

The paper is set out as follows: in Sec. 2, we provide details
of the system operation, data processing, tissue quantification
analysis, and the animal model. Section 3 will be devoted to
experimental results measured from both phantoms and the
mice head experience models of injury. The calibration pro-
cedure to account for the system response will also be including
in this section. Finally, in Sec. 4, we present a brief summary of
results reported in this paper.

2 Methods

2.1 Optical Setup

The schematic diagram of the optical setup is illustrated in
Fig. 1(a). The system consists of four main components: a modi-
fied commercial digital light projector (PLUS, U5-112), filter
wheel (Thorlabs, FW102C) placed before the projector, a CCD
camera (Guppy Pro, F-031B, AVT), and personal computer sta-
tion, Intel® Core™2 Duo Processor E8500 running at 3.16 GHz
with 4 GB memory. The wheel is equipped with four narrow
bandpass filters centered at wavelengths of 690, 880, 920, and
970 nm (Thorlabs, FB Series, BW� 10). At each wavelength,
computer-generated sinusoidal patterns are serially projected
onto the sample surface three times at each specific high spatial
frequency of 0.27 mm−1, at phase offsets of 0 deg, 120 deg, and
240 deg, respectively. A demonstration of these images pro-
jected onto the tissue phantom is presented in Fig. 1(b). The
diffuse reflectance remitted from the sample is imaged onto a
CCD camera (sequence of images), equipped with a zoom im-
aging lens system (Computar), and saved for processing and
analysis offline. CCD exposure time is automatically adjusted
for each sampled wavelength during the calibration process.
The distance between the camera and the sample surface
is 25 cm. Each single repetition lasting up to ∼60 s and
included a total of 12 captured images: one spatial frequency ×

three phases × four wavelengths. The entire setup is controlled
by MATLAB software (MathWorks, Massachusetts), and imag-
ing acquisition, synchronization, and data processing were car-
ried out using in-house developed MATLAB scripts.

2.2 Data Processing

Prior to data analysis, the collected diffuse images were first nor-
malized to the range between 0 and 1 using MATLAB code to
overcome the nonlinearity of the camera quantum efficiency at
the above wavelengths, after which the images were digitally
filtered (fspecial) to eliminate high frequency noise originating
from the camera itself during recording and to increase the sig-
nal-to-noise ratio. Then, a region-of-interest (RoI) was selected
using the “imfreehand” function in MATLAB for further
processing. The modulation amplitude of the diffusely reflected
intensity (demodulated reflectance) RoI images at each wave-
length, RdðλiÞ, was approximated as follows:

EQ-TARGET;temp:intralink-;e001;63;154RdðλiÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I1ðλiÞ − I2ðλi�2 þ ½I1ðλiÞ − I3ðλiÞ�2 þ ½I2ðλiÞ − I3ðλiÞ�2

q
; (1)

where I1ðλiÞ, I2ðλiÞ, and I3ðλiÞ represent the captured adjacent
reflectance images at spatial phases (phase shift) of 0 deg,
120 deg, and 240 deg, respectively, at the highest frequency.

Please note that by averaging the Rd images at each wavelength,
the diffuse reflectance spectra of the sample can be derived. As
mentioned previously, the information regarding sample phase

Fig. 1 (a) Schematic showing the optical system. DLP, digital light
projector; FW, filter wheel; LS, lens system. (b) Example of structured
light patterns projected onto tissue phantom as captured by the CCD
camera.
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distribution, ϕdðλiÞ, is lost when recording the diffuse reflec-
tance and in order to derive the phase information, the KK or
the Hilbert transformation is employed:28,29

EQ-TARGET;temp:intralink-;e002;63;719ϕdðλiÞ ¼
λi
π

Z
∞

0

�
ln½Rdðλ 0Þ∕RdðλiÞ�

λ2i − ðλ 0Þ2
�
dλ 0: (2)

In this manner, the complete information (amplitude and
phase) of the sample is obtained.

2.3 Properties Quantification Analysis

Once the phase information is recovered [Eq. (2)], a set of equa-
tions based on Fresnel’s reflection coefficient at the interface of
two materials derived from classical electromagnetic theory is
used to obtain separately the real and imaginary part of the sam-
ple CRI value ½NðλÞ ¼ nðλÞ þ ikðλÞ�:28,30
EQ-TARGET;temp:intralink-;e003;63;567

nðλiÞ ¼
1 − RdðλiÞ

1þ RdðλiÞ − 2 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RdðλiÞ

p
· cos½ϕdðλiÞ�

;

kðλiÞ ¼
2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RdðλiÞ

p
· sin½ϕðλiÞ�

1þ RdðλiÞ − 2 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RdðλiÞ

p
· cos½ϕdðλiÞ�

: (3)

In these equations, it is assumed that light is incident with an
acute angle (<15 deg) from air to sample. Fresnel laws of reflec-
tion depend upon perpendicular or parallel light polarization
[transverse electric (TE) or transverse magnetic (TM)]. Since
the above equations assume light to be incident, with an
acute angle (<15 deg, ∼normal incidence) from air to the sam-
ple, the polarization state of light can be ignored. The electric
and magnetic fields of an acute incident wave angle are both
constantly tangential to the boundary, regardless of wave polari-
zation. In order to reduce errors in the measurement of RdðλiÞ
due to potential system variabilities (i.e., fluctuations and non-
linearity of projector light source, lens aberrations, and variable
camera collection efficiency), we performed calibration with
tissue-like phantoms of known optical properties over the
near-infrared range.34 The calibration utilized solid phantoms
constructed from intralipid and dyes as reference standards.35

Phantoms’ optical properties over the wavelength range from
650 to 1000 nm were measured by oblique-incidence reflectom-
etry.36 The obtained spectral absorption and respective reduced
scattering graphs were consistent with those determined by the
two-distance steady-state frequency domain photon migration
system used in Ref. 35. Calibration success was defined by
reduction of the difference between the experimental reflectance
Rd to that of a diffusion model theory for semi-infinite medium
[Eq. (10), Ref. 37] by using the Levenberg–Marquardt algorithm
in MATLAB. In this manner, we have a calibrated diffuse spec-
tral reflectance cube with dimensions of 400 × 400 × 4, where
400 × 400 is the 2-D image pixel size and 4 stands for the
number of the wavelengths used. By scanning individual col-
umns of the cube and performing the computation in Eq. (2), a
phase matrix concomitantly is built, where each pixel in the
matrix corresponds to the calculated phase, whereby the sample
spatial phase distribution is reconstructed. Calculating the inte-
gral in Eq. (2) presents two challenges. First, the integral range
extends from zero to infinity, covering an extremely wide
wavelength region while, in practice, the spectrum is obtained
over a finite bandwidth range, potentially affecting the accuracy
of results. Second, there is a pole at λ 0 ¼ λ, which requires an

approximation, typically by Maclaurin or double Fourier trans-
form method.38 In order to overcome these two problems, a
second calibration procedure for the phase similar to the afore-
mentioned was applied with Rd and compared against model
theory [Eq. (11), Ref. 37]. The calibration process culminates
in the derivation of two scale factors, ~KRd

ðλÞ and ~Kϕd
ðλÞ, as

estimators of the diffuse reflectance and phase, respectively.
These factors are used later to multiply Eqs. (1) and (2) to derive
optical properties of unknown samples. The above calibration
procedure was performed immediately before and after each
of the experiments in order to monitor system reliability and
robustness. It should be stressed that it is not yet fully under-
stood how the number of wavelengths measured affects the
accuracy of phase calculation in Eq. (2). Practically speaking,
the data range is unavoidably discrete and finite. Future study
will be dedicated to better understand how this number of wave-
lengths measured affects the resulting n and k values, which is
beyond the scope of the current work. Following the information
of nðλÞ and kðλÞ, the wavelength-dependent optical properties,
such as the total attenuation (μtr) and reduced scattering (μ 0

s)
coefficients, can be obtained as3,5,39

EQ-TARGET;temp:intralink-;e004;326;521μtrðλÞ ¼
�
2 · π
λ

�
kðλÞ; μ 0

sðλÞ ¼
�
nðλÞ
no

− 1

�
2

ξ; (4)

where no is the refractive index of the medium and ξ is the pro-
portionality factor related to particle size, wavelength, and
particle density.39 Since at high spatial frequency (typically >
0.1 mm−1), we are primarily sensitive to scattering changes but
are insensitive to absorption,13,40–42 it can be assumed that μ 0

sðλÞ
α RdðλÞ. High spatial frequency is analogous to small source–
detector separation (SDS), in which the detected reflected light
is dominated by shorter path length photons (short depth). On
the contrary, large SDS is analogous to low-spatial frequency, in
which the detected reflected light is dominated by longer path
length photons (deeper depth); i.e., low spatial frequencies are
maximally sensitive to absorption contrast. Along this line, the
absorption coefficient is proportional to the diffuse reflectance,
following μaðλÞα − log10½RDC

d ðλÞ�,43 where RDC
d ðλÞ is the diffuse

reflectance when unmodulated (fx ¼ 0 mm−1) light illuminates
the sample. RDC

d ðλÞ can be derived from the spatially phase
images by

EQ-TARGET;temp:intralink-;e005;326;290RDC
d ðλÞ ¼ I1 þ I2 þ I3

3

¼ Io þ Io expð−120°Þ þ Io expð−240°Þ
3

¼ Io: (5)

That is, with only three projected AC frames ðI1; I2; I3Þ, sam-
ple optical parameters can be simultaneously derived. The work-
flow pipeline of these procedures is shown in Fig. 2. Please note
that the reflectance data in Eqs. (1) and (5) were obtained by
pixel-to-pixel operation performed upon three measured reflec-
tion images within the selected RoI. For each wavelength, mea-
surements reflect a cube with dimensions of X × Y × 3, where
X × Y is the 2-D RoI image pixel size and 3 stands for the phase
shift number. A full treatment of relationships between diffuse
reflectance and sample intensity may be found in Sec. 3.4 of
Ref. 13. A noteworthy difference between the previous and cur-
rent study lies in the calibration methodology [Eq. (23), Ref. 13].
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2.4 Animal Model

A total of five adult male mice (C57BL/6, ∼12 weeks, ∼27 g)
were used in the research: two mice experienced hypoxia due to
ischemic brain injury induced by an overdose injection of xyla-
zine (poisoning model), and the other three mice underwent heat
stroke induced by increasing their body temperature up to 43°C
using an in-house heat plate system. Body temperature was
monitoring by thermocouple sensor (Lutron, TM-902C) and
thermal camera (FLIR i7) positioned slightly off angle above
the mouse head. The mice were housed in a research animal
facility maintained at 22°C� 2°C and relative humidity ∼50%,
placed under a 12-h reverse light/dark cycle with free access to
food and water. Prior to each experiment, animals were anes-
thetized using a cocktail of ketamine (80 mg∕kg) and xylazine
(20 mg∕kg) through intraperitoneal injection. Anesthetic depth
was assessed periodically by the rear foot reflex. The animal’s
head was fixed, and scalp hair was removed with depilatory
cream. Each mouse’s baseline parameters serve as its own con-
trol, minimizing the number of animals required for this study.
Animal procedures, care, and handling were approved by the
Ariel University Animal Care and Use Committee (IACUC).

2.5 Statistical Analysis

The experimental results are presented asmean� standard error
(μ� σ), and two-way ANOVAwas performed to determine sig-
nificant differences, with a p-value <0.05 used as the signifi-
cance cutoff. Calculations were carried out using MATLAB’s
Statistic Toolbox (MathWorks, United States). We would like
to point out that although the head is a complex structure con-
taining many tissue layers, in mice, these layers are very thin
(skull ∼ 500 μm, brain < 1 cm), and therefore, we consider the
head as a homogenous medium. Hence, the results of the

recovered properties represent the averaged values from sam-
pling of a single volume.

3 Results and Discussion
To demonstrate the utility of the above approach, experiments
were first conducted on tissue phantoms and then on two mouse
model of brain damage. Figure 3 presents results from a repre-
sentative tissue phantom out of the six tested. The wavelength-
dependence of the average real and imaginary parts of the CRI,
along with their standard error, is plotted in Figs. 3(a) and 3(b),
respectively. The data points in the graphs represent the mean
and the bars refer to standard error over 10 repetitions during six
nonconsecutive days of measurements. Error bars in some of the
graphs are not seen because of minute deviation from the mean.
The data were fitted based on the Cornu dispersion equation
while corresponding imaginary indices were fitted to the power
law equation:1,5

EQ-TARGET;temp:intralink-;e006;326;564nðλÞ ¼ Aþ B
λ − C

; kðλÞ ¼ a · λ1−b: (6)

The coefficient of each equation determined with the least-
squares fitting procedure of the data was found to be: A ¼ 1.18,
B ¼ −7.34, C ¼ −767.3, a ¼ 7.66, b ¼ 2.79. λ is the wave-
length in nanometers. Both graphs show monotonous spectral
reduction correlating with increased wavelength as demon-
strated elsewhere. In Fig. 3(a), the average of n across the wave-
lengths is ∼1.25, in comparison to an anticipated refractive
index of ∼1.4. The ∼11% difference may have several origins:
(1) differential geometry employed for reflected light collection,
(2) aberrations in light collection efficiency, (3) errors related to
spatial frequency domain,44,45 (4) utilizing few numbers of NIR
wavelengths, and (5) approximations made using Eqs. (1)–(3).
A correlation between the real and imaginary parts to the mea-
sured reduced scattering and total attenuation coefficients is pre-
sented in Figs. 3(c) and 3(d), respectively. In both graphs, a high
positive Pearson correlation is observed. Finally, a strong pos-
itive correlation between the actual (reference) optical properties
and measured (estimated) values is demonstrated for absorption
[Fig. 3(e)] and reduced scattering [Fig. 3(f)] coefficients, respec-
tively. The high positive correlation indicates good estimation of
the true absorption/scattering coefficient value.

We next investigated the use of the technique with two clin-
ically relevant mouse models of brain damage. Additional band-
pass filters at wavelengths of 780 and 800 nm were added in
these experiments. Figure 4(a) features a representative bare
mouse scalp captured by the CCD camera at 690 nm with spatial
frequency of 0.27 mm−1 at three phase shifts. Each captured
reflectance image in the figure covers an area of 10 × 10 mm,
corresponding to 200 × 200 pixels, resulting in an average spa-
tial resolution of 0.05 mm∕pixel. The selected RoI seen in the
figure is between the anterior coronal suture (bregma) and pos-
terior coronal suture (lambda). The wavelength-dependence of
the real and imaginary indices obtained by our algorithm for
hypoxia model is plotted in Figs. 4(b) and 4(c) and for the heat-
stroke in Figs. 4(d) and 4(e), respectively. Heatstroke occurs
when the body fails to regulate its own temperature and body
temperature continues to rise. Usually, above 40°C, brain dam-
age occurs and death follows if vigorous treatment is not insti-
tuted. The symbols in each plot are the experimental data points
and the lines are fitted based on Eq. (6) to show the spectral
dependence of n and k. The fitting coefficients of each equation
(A, B, C, a, and b) based on Eq. (6), pre- and postinjury, were

Fig. 2 Flowchart of the proposed algorithm for estimation of optical
properties ðμa; μ 0

sÞ and spectral CRI components ðn; kÞ. The flow
steps are repeated for each repetition and wavelength.
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determined with the least-squares principle are presented in
Table 1. The data in Fig. 4 and Table 1 demonstrate changes
in tissue morphology [nðλÞ] and hemodynamics [kðλÞ], relative
to baseline. In particular, since the real part of the CRI correlated

with scattering, the variation we observed in nðλÞ reflects
changes in the mean size, density, and distribution of cellular
scattering substrates (cell membrane, nuclei, lysosomes, per-
oxisomes, mitochondria, and other organelles). Changes in the

Fig. 3 Phantom experiment. (a) Real and (b) imaginary refractive indices plotted versus wavelength.
Data points were fitted based on Eq. (6), respectively. Correlation of real or imaginary refractive indices,
respectively, to (c) reduced scattering coefficient or (d) total attenuation coefficient. (e) Estimated
(extracted) versus reference (expected) values of absorption and (f) reduced scattering coefficients
derived from validation in tissue phantoms. The broken line represents the best-fit linear regression.
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scattering characteristics of such subcellular bodies reflect cel-
lular swelling and membrane damage (edema, leading to intra-
cranial pressure elevation), a well-known mechanism observed
in brain injury.46,47 Generally speaking, common to all head
injuries are excitotoxicity and oxidative stress mechanisms,
primarily caused by excessive glutamate neurotransmission,

invoking a cascade of pathophysiological events leading to
brain edema, increased intracranial pressure, and impaired cer-
ebral perfusion (decreased blood flow), resulting eventually in
neuronal cell death.47–49 The imaginary part of the CRI reflects
the total light attenuation, enabling derivation of hemoglobin
concentration and oxygen saturation levels.50,51 This variation

Fig. 4 (a) Three modulated images captured by the CCD camera from mouse scalp at single spatial
frequency of f x ¼ 0.27 mm−1 at phase shifts of 0 deg, 120 deg, and 240 deg, respectively. RoI is selected
between the anterior coronal suture (bregma) and posterior coronal suture (lambda). Real and imaginary
refractive indices versus wavelength for hypoxia injury (b,c) and heatstroke (d,e), respectively of a rep-
resentative mice. Data points represent the mean and a bar refers to standard error (correspond to the
variation between RoI pixels). Error bars in some of the graphs are not seen because of minute deviation
from the mean.
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in tissue biochemical composition can be explained by the fact
that different molecules, such as hemoglobin, lipids, water, etc.,
absorb specific wavelengths of light, which alters the optical
properties of tissue. The homeostatic response to brain damage
includes decreased oxygen delivery to the brain inducing
anaerobic metabolism and ATP depletion, potentially leading
to permanent brain damage, neurological disorders, or even
death.52 This process affects both portions of the CRI, as
reflected in the discrepancy between pre- and postinjury param-
eter values. The clearly distinguishable shift of the imaginary
index [Figs. 4(c) and 4(e)], reflecting changes in both scattering
and absorption coefficients, suggests the use of this index as an
intrinsic contrast marker to distinguish between normal and
injured brain tissues.We believe that more extensive experimental
data and investigation of other dispersion formulas (i.e., Cauchy,

Conrady, Sellmeier1,53) may demonstrate more extensive shift in
the real refractive index between normal and injury states. The
overall changes in the optical properties correlating with body
temperature elevation or xylazine-induced ischemia agree with
previous studies.54,55

Figures 5 and 6 display a two-dimensional false-color map
and its corresponding pixel histogram profile of the real and
imaginary indices for the heatstroke and hypoxia models at a
representative wavelength of 690 nm, respectively. The color
bar to the right of each map indicates the corresponded value.
Conversion of each index map into histogram distributions dem-
onstrated localized changes in the CRI part levels at single-pixel
resolution and illustrates its distribution within the field-of-view.
The vertical axis in the histogram reflects the number of counts
in each bin and the solid curve is a Gaussian fit with mean and
standard deviation, respectively. As shown, histogram distribu-
tion indicates that pre- and postinjury states possess a character-
istic peak value and distribution, which may serve as biomarkers
of pathophysiological state. To further increase discrepancies
before and after injury state and highlight tissue functional
changes, we calculate the index variance from the mean gradient
intensity (hj∇nj2i, hj∇kj2i) of the obtained maps that appears in
Figs. 5 and 6. Results are given in Fig. 7. As demonstrated,
changes up to 52% relative to baseline were detected, which
emphasize the impact of injury upon CRI segments or indirectly
on tissue morphology and composition. Therefore, in addition to
above histogram characteristics, the mean gradient of the CRI
segments may also serve as an informative optical biomarker
of tissue condition.

As mentioned above, since at high spatial frequency we are
primarily sensitive to scattering changes and therefore, μ 0

sðλÞ α

Table 1 Real and imaginary indices and their corresponding fit
parameters based upon Eq. (6) in animal studies. Coefficients
were obtained with wavelength in the unit of nanometers.

nðλÞ kðλÞ

A B C a b

Preinjury −4 21633 −3317 190.6 2.55

Postinjury −0.7 3090 −810.1 0.224 1.56

Pre-HS 0.65 459.60 42.88 12200 3.17

Post-HS 0.59 443.56 55.80 67.17 2.41

Note: HS, heatstroke.

Fig. 5 Real (n) and imaginary (k ) distribution maps with corresponding histogram (a) before and (b) after
heatstroke onset. Thesemaps were computed based on Eqs. (1)–(3). The horizontal color bar represents
the value of each pixel in the map, such that higher index values correspond to brighter pixels. The ver-
tical axis in each histogram reflects the number of counts in each bin and the solid curve in the histogram
is a Gaussian fit with appropriate mean and standard deviation.
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RdðλÞ, information regarding scattering properties, namely,
amplitude—As and power—sp can be derived by Mie
theory.56 The reduced scattering coefficient is characterized
by an exponential monotone decrease relative to wavelength
via the power law equation written as follows:57,58

EQ-TARGET;temp:intralink-;e007;326;413μ 0
sðλÞ ¼ AS · λ−sp: (7)

By analyzing the spectra of scattered light, information
regarding macroscopic cellular morphology can be retrieved
through As and sp. In particular, sp is related to mean size
of the tissue scattering agents (cell membrane, nuclei, lyso-
somes, peroxisomes, mitochondria, and other organelles in the
cytoplasm) and defines spectral behavior of the reduced scatter-
ing coefficient, whereas As is related to density and distribution
of scattering agents. Scattering parameters, pre- and postinjury,
are presented in Fig. 8, which highlight structural changes more
than 36% relative to baseline. The normalized reduced scattering
spectra for each model pre- and postinjury are demonstrated in
Figs. 9(a) and 9(b), respectively. The reduction in slope can be
attributed to cellular and subcellular edema in response to injury.

4 Conclusion
To our knowledge, in this work we have described for the first
time a practical method for estimating the wavelength-depen-
dent CRI in the spatial frequency domain by projecting three
sinusoidal patterns in the NIR spectral region. A set of assump-
tions and equations enabled the derivation of a range of tissue
optical properties, such as the absorption and scattering indices,
as well as the real and imaginary parts of the CRI. The above
findings demonstrate proof-of-concept for the proposed meth-
ods on tissue phantoms and intact mouse scalp before and
after different models of brain injury. Most notably, this is the
first report we are aware of to calculate the spectral CRI of the
intact mouse head during injury. We found that the imaginary
index, which incorporates absorption and scattering to be highly
sensitive to pathological states, identifying it as a candidate

Fig. 6 Real (n) and imaginary (k ) distribution maps with corresponding histogram (a) before and (b) after
hypoxia onset. These maps were computed based on Eqs. (1)–(3). The horizontal color bar represents
the value of each pixel in the map, such that higher index values correspond to brighter pixels. The ver-
tical axis in each histogram reflects the number of counts in each bin and the solid curve in the histogram
is a Gaussian fit with appropriate mean and standard deviation.

Fig. 7 Refractive indices variance calculated from the mean gradient
intensity of the maps presented in Figs. 5 and 6, respectively, high-
lights changes in tissue morphology and composition following injury.
The percent change for each possibility is given.

Fig. 8 Scattering properties: amplitude—As and power—sp derived
by Eq. (8). Changes more than 36% relative to baseline are demon-
strated that highlights structural changes following injury. The percent
change for each possibility is given. sp is related to mean size of the
tissue scattering agents, while As is related to density and distribution
of the same. HS: heatstroke.
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marker of pathological processes within brain tissue. Although
analyses between mice are not presented and the reported results
(Table 1, Figs. 4–9) are given for representative mice, similar
trends in properties were observed for all mice involved in
this work. Further experiments are currently under way to
develop this finding with larger animal populations and by
using a range of dispersion formulas to calculate the real refrac-
tive index, in order to further improve the algorithms’ sensitivity.
Future studies will be conducted with a larger number of wave-
lengths in order to increase the spectral resolution and accuracy
of the CRI segments. While there are several approaches for
retrieving information about the spectral CRI, the present
work offers an easier, simpler, and lower-cost technique. The
present method will be beneficial to the field of biophotonics
during modeling light propagation in biological tissue and as
a potential diagnostic tool and for monitoring medical treatment
of neurological disorders, specifically for optical imaging sys-
tems operating in the spatial frequency domain.
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