
Enhanced linear-array photoacoustic
beamforming using modified
coherence factor

Moein Mozaffarzadeh
Yan Yan
Mohammad Mehrmohammadi
Bahador Makkiabadi

Moein Mozaffarzadeh, Yan Yan, Mohammad Mehrmohammadi, Bahador Makkiabadi, “Enhanced linear-
array photoacoustic beamforming using modified coherence factor,” J. Biomed. Opt. 23(2),
026005 (2018), doi: 10.1117/1.JBO.23.2.026005.



Enhanced linear-array photoacoustic beamforming
using modified coherence factor

Moein Mozaffarzadeh,a,b Yan Yan,c Mohammad Mehrmohammadi,c and Bahador Makkiabadia,d,*
aResearch Center for Biomedical Technologies and Robotics, Institute for Advanced Medical Technologies, Tehran, Iran
bTarbiat Modares University, Department of Biomedical Engineering, Tehran, Iran
cWayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
dTehran University of Medical Sciences, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran, Iran

Abstract. Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution
of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the
reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However,
using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution
of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is
weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the
numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beam-
former instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF),
has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower
sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show
that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-
noise ratio and full-width-half-maximum, respectively. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.23.2.026005]
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1 Introduction
Photoacoustic imaging (PAI), also called optoacoustic imaging,
is an emerging medical imaging technique that combines the
properties of optical and ultrasound (US) imaging.1,2 PAI is
based on the photoacoustic (PA) effect, and combined US
and PA properties provide structural, functional, and potentially
the molecular information of tissue.3,4 In this imaging modality,
acoustic waves are generated as a result of an electromagnetic
pulse illumination, based on thermoelastic effect.5 Then, the
optical absorption distribution map of the tissue is reconstructed
through a reconstruction algorithm.6 PAI is a scalable imaging
modality used in different preclinical and clinical applications,
e.g., tumor detection,7,8 ocular imaging,9 monitoring oxygena-
tion in blood vessels,10 and functional imaging.5,11 There are two
types of PAI: photoacoustic tomography (PAT) and photoacous-
tic microscopy (PAM).12–14 In PAT, an array of US transducers in
the form of linear, arc, or circular shape is used for data acquis-
ition, and mathematical reconstruction algorithms are used to
obtain optical absorption distribution map of the tissue.15

Recently, low-cost PATand PAM systems have been extensively
investigated.16–19

In linear-array PAI, image reconstruction is done with beam-
formers, as in US imaging. The problem of image reconstruction
in linear-array imaging for PAI and US imaging can be
addressed in almost a same way. There are some modifications
that should be considered in image reconstruction for these
two imaging modalities, and the modifications are directly

concerned with the transmission part.20 In US imaging, US
pulses are transmitted, but in PAI, the laser illumination
plays the excitation role. There are many studies focused on
using one beamforming technique for US and PA image forma-
tion to reduce the cost of the integrated US/PA system.21–23

Delay-and-sum (DAS), as the most basic and commonly used
beamformer in US and PAI due to its simple implementation,
is a blind beamformer and results in low-quality images.24

Development of a proper beamforming algorithm has been
widely investigated in US imaging in different studies.25–28

Adaptive beamforming such as minimum variance (MV) can
be a proper option to weight the signals and reduce the effect
of the off-axis signals in the reconstructed images.29 MV com-
bined with CF has been used for PAI.30 Short-lag spatial coher-
ence beamformer was used in PAI for contract enhancement.31

Recently, to address the relatively poor appearance of interven-
tional devices such as needles, guide wires, and catheters, in
conventional US images, delay and standard deviation beam-
forming algorithm was introduced.32 Matrone et al.33 introduced
a new beamforming algorithm namely delay-multiply-and-sum
(DMAS). This algorithm was initially used as a reconstruction
algorithm in confocal microwave imaging for breast cancer
detection.34 Although it leads to a higher resolution compared
to DAS, the resolution is not well enough in comparison with the
resolution gained by MV-based algorithms. MV beamformer
has been combined with DMAS algorithm to improve the res-
olution of DMAS.35,36 Double-stage DMAS was introduced for
PAI.37,38 In addition, it was shown that it outperforms DMAS in
the terms of contrast and sidelobes for US imaging, too.39
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Eigenspace-based minimum variance (EIBMV) and forward-
backward MV beamformers also have been applied to medical
US imaging to improve the image quality and robustness.40,41

EIBMV was combined with DMAS to further improve the
PA image quality.42,43

In this paper, a version of coherence factor (CF) algorithms is
introduced. We have demonstrated that the numerator in the
formula of the CF weighting procedure is the output of DAS
algorithm, and it is proposed to improve the image quality
by including DMAS algebra in CF, instead of the existing DAS.

The rest of the paper is organized as follows. Section 2
contains the theory of beamformers and the proposed method.
Numerical simulation of the imaging system and the experimen-
tal design, along with the results and the performance evalu-
ation, are presented in Secs. 3 and 4, respectively. Discussion
is presented in Sec. 5, and finally the conclusion is presented
in Sec. 6.

2 Materials and Methods
PA signals are generated and detected after the laser has illumi-
nated the imaging target. The obtained signals can be used to
reconstruct the PA images through a reconstruction algorithm
such as DAS, which can be written as follows:

EQ-TARGET;temp:intralink-;e001;63;498yDASðkÞ ¼
XM
i¼1

xiðk − ΔiÞ; (1)

where yDASðkÞ is the output of beamformer, k is the time index,
M is the number of array elements, and xiðkÞ and Δi are the
detected signals and the corresponding time delay for detector
i, respectively.44 To provide a more efficient beamformer and
improve the quality of the reconstructed image, CF can be used
combined with DAS, which leads to sidelobe levels reduction
and contrast enhancement.45 CF, as a weighting procedure, is
presented as

EQ-TARGET;temp:intralink-;e002;63;360CFðkÞ ¼
��PM

i¼1 xidðkÞ
��2

M
P

M
i¼1 jxidðkÞj2

; (2)

where xid is the delayed detected signal. The output of combined
DAS and CF is given as

EQ-TARGET;temp:intralink-;e003;63;291yDASþCFðkÞ ¼ CFðkÞ × yDASðkÞ: (3)

Implementing the DAS beamformer is simple, which is why is it
the most common beamforming algorithm in US and PAI.
However, this algorithm provides a low off-axis signal rejection
and noise suppression. Consequently, DAS results in recon-
structed images having high levels of sidelobe and a low reso-
lution. To address the limitations of DAS, DMAS was suggested
in Ref. 33. The same as DAS, DMAS calculates corresponding
samples for each element of the array based on the delays,
but samples go through a correlation process before adding
them up. The DMAS formula is as follows:

EQ-TARGET;temp:intralink-;e004;63;150yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

xiðk − ΔiÞxjðk − ΔjÞ: (4)

To overcome the dimensionally squared problem of Eq. (4),
following modifications are suggested in Ref. 33:

EQ-TARGET;temp:intralink-;e005;326;752

x̂ijðkÞ ¼ sign½xiðk−ΔiÞxjðk−ΔjÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxiðk−ΔiÞxjðk−ΔjÞj

q
;

for 1 ≤ i ≤ j ≤M: (5)

EQ-TARGET;temp:intralink-;e006;326;704yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

x̂ijðkÞ: (6)

DMAS algorithm is a correlation process, and a nonlinear beam-
forming algorithm in which the autocorrelation of the aperture
is used. A product in time domain is equivalent to the convo-
lution of the spectra of the signals in the frequency domain.
Consequently, new components centered at the zero frequency
and the harmonic frequency appear in the spectrum due to
the similar ranges of frequency for xiðk − ΔiÞ and xjðk − ΔjÞ.
A band-pass filter is applied on the beamformed output signal to
only pass the necessary frequency components, generated after
the nonlinear operations. Having a closer look at Eq. (2), the
numerator of CF algorithm is the output of DAS beamformer,
and the formula can be written as follows:

EQ-TARGET;temp:intralink-;e007;326;526CFðkÞ ¼ jyDASðkÞj2
M

P
M
i¼1 jxidðkÞj2

: (7)

Having CF combined with DAS, Eq. (3), leads to sidelobes
reduction and contrast enhancement compared to Eq. (1).
However, in this paper, it is proposed to use the output of
DMAS algorithm instead of the DAS algebra on the numerator
of CF formula. The proposed weighting is called modified CF
(MCF), and its algebra is as follows:

EQ-TARGET;temp:intralink-;e008;326;414MCFðkÞ ¼ jyDMASðkÞj2
M

P
M
i¼1 jxidðkÞj2

: (8)

MCF will be used the same as CF to weight the samples.
The combination of DAS and MCF can be written as follows:

EQ-TARGET;temp:intralink-;e009;326;346yDASþMCFðkÞ ¼ MCFðkÞ × yDASðkÞ: (9)

Since the DMAS outperforms DAS in the terms of resolution
and sidelobes, it is expected that the proposed weighting method
provides a higher image quality compared to Eq. (2). In what
follows, it is shown that the proposed method outperforms
the conventional CF weighting.

3 Numerical Results and Performance
Assessment

In this section, numerical results are presented to evaluate the
performance of the proposed algorithm in comparison with
DAS and combination of DAS and CF (DAS + CF).

3.1 Point Targets

K-wave MATLAB® toolbox was used to simulate the numerical
study.46 Eleven 0.1 mm spherical absorbers were positioned
along the vertical axis every 5 mm as initial pressure. The
first absorber was 25 mm away from the transducer surface.
The imaging region was 20 mm in lateral axis and 80 mm in
vertical axis. A linear array havingM ¼ 128 elements operating
at 7 MHz central frequency and 77% fractional bandwidth was
used to detect the PA signals generated from defined initial
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pressures. The sampling frequency is 50 MHz. Speed of sound
was assumed to be 1540 m∕s during simulations. Envelope
detection, performed by means of the Hilbert transform, has
been used for all presented images, and the obtained lines are
normalized and log-compressed to form the final images.

The reconstructed images are shown in Fig. 1, where
Gaussian noise was added to the detected signals having a sig-
nal-to-noise ratio (SNR) of 50 dB. As is demonstrated, DAS
leads to high sidelobes, and after the depth of 50 mm, the targets
are barely detectable as a point target. Using CF combined with
DAS results in lower sidelobes and a higher image quality.
Figure 1(c) shows that the proposed method suppresses the
artifacts and sidelobes more than the conventional CF.

To compare the reconstructed images in detail, the lateral
variations at two depths of imaging are shown in Fig. 2. As
it is demonstrated, the MCF method causes lower sidelobes.
Consider, for instance, the depth of 25 mm where the levels
of sidelobes for DAS, DAS + CF, and DAS + MCF are for

about −36, −99, and −124 dB, which indicates the superiority
of the proposed method compared to the conventional CF in
the term of sidelobe reduction.

To evaluate the proposed method at the presence of high level
of noise of the imaging system, Gaussian noise was added to
the detected signals having an SNR of 0 dB. The reconstructed
images are shown in Fig. 3, and as can be seen, the formed
image obtained by DAS is highly affected by noise. CF
improves the image quality by suppressing the effects of noise.
However, the sidelobes still degrade the image quality. The
MCF reduces the sidelobes and improves the target detectability,
resulting in a higher image quality in comparison with CF.
It should be noticed that the absence of the tails attached to
the targets (can be seen in Fig. 1) is due to the high level of
noise. To put it more simply, the power of noise is more
than the tails, and that is why they are not seen in Fig. 3.
The lateral variations for the images shown in Fig. 3, are
shown in Fig. 4, and as can be seen, the higher performance

Fig. 1 Reconstructed images for simulated detected data using (a) DAS, (b) DAS + CF, and (c) DAS +
MCF. A linear array and point targets were used for numerical design. All images are shown with
a dynamic range of 60 dB. Noise was added to the detected signals having an SNR of 50 dB.

Fig. 2 Lateral variations of the reconstructed images shown in Fig. 1 at the depths of (a) 25 mm and
(b) 40 mm.
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of MCF in the terms of sidelobes and noise suppression, com-
pared to CF, is clear.

3.2 Quantitative Evaluation

To quantitatively assess the performance of the proposed
weighting method, the full-with-half-maximum (FWHM) in
−6 dB and SNR are calculated and presented in Tables 1 and
2, respectively. SNR is calculated using the method explained
in Ref. 37. As shown in Table 1, the FWHM gained by MCF,
at the all depths, is lower than CF, showing the superiority of
MCF. Consider, for instance, the depth of 40 mm, where DAS,
DAS + CF, and DAS + MCF result in 2.2, 1.3, and 0.9 mm,
respectively. In other words, MCF improves the FWHM for
about 0.4 mm compared to CF. As shown in Table 2, SNR
gained by the proposed weighting method is higher compared
to the CF, which also indicates the superiority of MCF.
Consider, for example, the depth of 50 mm where the SNR
for DAS, DAS + CF, and DAS + MCF is for about 36.9,
65.0, and 110.4 dB, respectively.

Fig. 3 Reconstructed images for simulated detected data using (a) DAS, (b) DAS + CF, and (c) DAS +
MCF. A linear array and point targets were used for numerical design. All images are shown with
a dynamic range of 60 dB. Noise was added to the detected signals having an SNR of 0 dB.

Fig. 4 Lateral variations of the reconstructed images shown in Fig. 3 at the depths of (a) 25 mm and
(b) 45 mm.

Table 1 −6 dB FWHM (mm) values at the different depths.

Depth (mm)

Beamformer

DAS DAS + CF DAS + MCF

1.1 0.6 0.4

30 1.3 0.8 0.6

35 1.6 0.9 0.7

40 1.9 1.1 0.8

45 2.2 1.3 0.9

50 2.6 1.6 1.1

55 3.0 1.8 1.3

60 3.5 2.1 1.5

65 3.7 2.2 1.6

70 4.2 2.5 1.8

75 4.8 2.9 2.0
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3.3 MCF Applied to DMAS

It should be noted that the proposed method in this paper is a
weighting technique that can be applied to any beamformer to
achieve a higher image quality. Here, the aim is to evaluate
the MCF when is applied to other beamformers except DAS.
The DMAS beamformer was selected. The results are presented
in Fig. 5. As demonstrated, the proposed method leads to higher
sidelobes reduction and artifacts removal when it is applied on
the DMAS, compared to CF. In other words, even though the CF
degrades the sidelobes (in DAS and DMAS), MCF outperforms
the conventional CF with a higher artifacts suppression. For

further evaluation, consider the lateral variations at the depth of
45 mm, shown in Fig. 6, where the MCF reduces the sidelobes
for about 20 dB, compared to the conventional CF.

4 Experimental Results
To further evaluate the proposed weighting method and its effect
on enhancing PA images, phantom experiments were performed
in which a phantom consists of two light-absorbing wires with
diameter of 150 μm were placed 1 mm apart from each other in
a water tank. The schematic of the experimental setup is shown
in Fig. 7. In this experiment, we utilized a Nd:YAG pulsed laser,
with the pulse repetition rate of 30 Hz at wavelengths of 532 nm.
A programmable digital US scanner (Verasonics Vantage 128),
equipped with a linear-array transducer (L11-4v) operating at
frequency range between 4 and 9 MHz was utilized to acquire
the PA RF data. A high speed FPGA was used to synchronize
the light excitation and PA signal acquisition.

The reconstructed images are shown in Fig. 8. As it is dem-
onstrated, DAS results in high levels of noise in the images,
degrading the image quality, and image is affected by sidelobes.
Using CF improves the images quality, but the image is still

Table 2 SNR (dB) values at the different depths.

Depth (mm)

Beamformer

DAS DAS + CF DAS + MCF

25 47.2 76.3 119.6

30 44.7 73.0 116.9

35 43.0 72.9 117.8

40 40.7 69.5 116.5

45 38.9 68.0 113.3

50 36.9 65.0 110.4

55 35.3 63.4 109.0

60 34.2 61.8 107.3

65 33.5 60.1 105.3

70 32.2 58.6 103.2

75 31.4 56.2 101.6

Fig. 5 Reconstructed images for simulated detected data using (a) DAS, (b) DAS + CF, (c) DAS + MCF,
(d) DMAS, (e) DMAS + CF, and (e) DMAS + MCF. A linear array and point targets were used for numeri-
cal design. All images are shown with a dynamic range of 70 dB. Noise was added to the detected signals
having a SNR of 20 dB.

Fig. 6 Lateral variations of the reconstructed images shown in Fig. 5
at the depths of 45 mm.
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affected by noise and sidelobes. Finally, the proposed weighting
method enhances the image by providing higher noise suppres-
sion and lower levels of sidelobes compared to conventional CF.
To evaluate in more detail, the lateral variations at two depths for

targets shown in Fig. 8, are presented in Fig. 9. Considering
Fig. 9(a), the proposed weighting method results in lower side-
lobes and noise where DAS, DAS + CF, and DAS + MCF leads
to −40, −84, and −134 dB, respectively. Thus, the proposed
method outperforms conventional CF. FWHM in −6 dB has
been calculated for the experimental results and shown in
Table 3. It can be seen that the proposed weighting method
results in narrower mainlobe in comparison with CF. Consider,
for example, the target at the depth of 22 mm where DAS +
MCF results in 0.38- and 0.29-mm improvement compared to
DAS and DAS + CF, respectively. Moreover, SNR has been
calculated for the experimental data and the results are shown
in Table 4 where the MCF causes higher SNR compared to
conventional CF for both depths of imaging.

4.1 Ex Vivo Imaging

In this study, an ex vivo experimental tissue study have been
designed to evaluate the performance of the proposed algorithm.

Fig. 7 The schematic of the setup used for the experimental PAI.

Fig. 8 Reconstructed images for the experimental detected data using (a) DAS, (b) DAS + CF, and
(c) DAS +MCF. A linear array and wire target phantomwere used for the experimental design. All images
are shown with a dynamic range of 80 dB.

Fig. 9 Lateral variations of the reconstructed images shown in Fig. 8 at the depths of (a) 22 mm and
(b) 24 mm.
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A piece of a breast tissue (about 4 cm × 4 cm × 3 cm) is
extracted from a new sacrificed chicken. Two pencil leads
with a diameter of 0.5 mm are embedded inside the breast tissue,
having an axial distance of about 5 mm. Figure 10 shows the
photographs of the imaged tissue. The PA signals are collected
with a combined linear US/PA imaging probe.47

As can be seen in Fig. 11(a), the artifacts and the background
noise degrade the PA image quality obtained by DAS. As it is
expected based on the previous results, applying CF to the DAS
algorithm would reduce the artifacts and sidelobes. The expect-
ations are satisfied, as shown in Fig. 11(b), but the PA image can
be further improved using MCF. As demonstrated in Fig. 11(c),
the MCF leads to higher noise suppression and sidelobes
degrading in comparison with the conventional CF. For further
evaluation, the lateral variations of the reconstructed images
shown in Fig. 11, are presented in Fig. 12 where the superiority
of the proposed method in terms of lower sidelobes and higher
noise suppression is obvious. SNR is calculated for the ex vivo
images (presented in Table 5). The quantitative evaluation indi-
cates that MCF outperforms the conventional CF. In particular,
it improves the SNR for about 14 dB, at the depth of 31.3 mm,
compared to the CF.

5 Discussion
The main enhancement gained by the proposed method is higher
contrast and lower sidelobes. Considering the fact that DAS
beamformer results in a low quality image, having it on the
numerator of the formula of CF would degrade the performance
of the CF weighting procedure. On the other hand, in Ref. 33,
Matrone et al. proved that DMAS can be used instead of DAS
for image reconstruction, and it was shown that the main
improvement gained by DMAS was higher contrast. Thus,
it can be perceived that using DMAS instead of the existing
DAS on the numerator of CF algebra would result in contrast
enhancement due to its autocorrelation process, which is a non-
linear operation. As can be seen in Figs. 1, 3, 8, and 11, using the
correlation process of DMAS inside the formula of CF results in
higher noise suppression and artifact reduction, leading to the
higher image quality compared to DAS and DAS + CF.
In other word, the multiplication operation inside the DMAS
procedure reduces the presence of noise and off-axis signals
on the reconstructed images and improves the image quality.
The advantage of the proposed weighting method in the term
of sidelobes reduction can be seen in the Figs. 2, 4, 9, and
12. As can be seen in the lateral variations, the width of main-
lobe has decreased, which is a merit of MCF. Since DMAS
improves the resolution gained by DAS, shown in Ref. 37,
the MCF leads to higher resolution in comparison with CF.
To put it more simply, presence of DMAS inside the formula

Table 3 FWHM (mm) values, in −6 dB, at the two depths of imaging
using the experimental data.

Depth (mm)

Beamformer

DAS DAS + CF DAS + MCF

22 0.68 0.59 0.30

24 0.66 0.47 0.28

Table 4 SNR (dB) values for the experimental images shown in
Fig. 8.

Depth (mm)

Beamformer

DAS DAS + CF DAS + MCF

22 48.5 60.7 90.4

24 47.2 59.6 88.2

Fig. 10 (a) The phantom used for the experiment. (b) The ex vivo
imaging setup.

Fig. 11 Reconstructed ex vivo images using (a) DAS, (b) DAS + CF, and (c) DAS + MCF. A linear-array
and the phantom shown in Fig. 10 were used for the experimental design. All images are shown with
a dynamic range of 80 dB.
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of MCF is the reason of higher resolution achieved by MCF.
Despite all the results, it was necessary to evaluate the proposed
method quantitatively. Considering the numbers presented in the
tables of the last section, it can be seen that the proposed method
outperforms CF in the terms of FWHM and SNR. The proposed
method significantly outperforms CF when the targets are at the
high depths of imaging. As shown in Fig. 1, for the targets
located at the depths of 55 to 75 mm, sidelobes and artifatcs
are better reduced compared to the lower depths. This also
can be perceived regarding Table 2 where SNR improvement
in high depths is more than lower depths (80% and 56% for
25 and 75 mm, respectively). It should be noticed that, as men-
tioned in Sec. 1, the beamforming and concerned weighting
methods can be applied on both the US and PAI cases. CF
or MCF would be proper options for US imaging. However,
using multiple times of the CF or MCF (MCF2 and MCF2)
would remove the speckles in the US images. The speckle
removal is not desired in applications in which the speckles pro-
vide helpful information for diagnosis. Therefore, theMCF2 and
MCF3 would further increase the quality of the PA images, but it
is not suggested to use them for the conventional US imaging.
MCF The computational burden imposed by the proposed
method is the same as DMAS, and the order of processing in
OðM2Þ while the order of processing for CF is the same as
DAS, which is OðMÞ. Therefore, it should be mentioned that
the improvements are obtained at the expense of higher compu-
tational burden in comparison with CF. The proposed method
can be implemented on an FPGA device, e.g., on an Altera
FPGA of the Stratix IV family (Altera Corp., San Jose,
California). The time consumption has been reported in Ref. 33
for DMAS implementation, which indicates that the proposed
method can be used in clinical PAI systems. In applications
in which phased (or microconvex) arrays are used, MCF can
provide a further enhancement compared to CF. We have tested

the proposed algorithm for ex vivo PAI, and the results were
promising (shown in Figs. 11 and 12). In small-parts and vas-
cular US imaging, for instance in vivo imaging of the carotid
artery, where the resolution and specially sidelobes are of impor-
tance, MCF can be used, providing higher contrast and noise
suppression in comparison with CF.

6 Conclusion
In this paper, a weighting procedure has been introduced by
combining the conventional CF and the DMAS beamformer.
It was shown that the numerator of the formula of CF can be
treated as a DAS, and it was proposed to use DMAS instead
of the existing DAS inside the formula of CF. The MCF has
been evaluated numerically and experimentally, and all the
results showed the higher performance of MCF compared to
CF. For the experimental results obtained by the wire target
phantom, MCF reduced the sidelobes for about 50 dB in com-
parison with CF, indicating the higher contrast, and the quanti-
tative results showed that MCF improves the SNR and FWHM
for about 45% and 40%, respectively.
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