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ABSTRACT. Significance: Many researchers have attempted to estimate blood glucose levels
(BGLs) noninvasively using near-infrared (NIR) spectroscopy. However, the optical
absorption change induced by blood glucose is weak in the NIR region and often
masked by interference from other components such as water and hemoglobin.

Aim: Instead of using direct optical absorption by glucose, this study proposes
an index calculated from oxy- and deoxyhemoglobin signals that shows a good
correlation with BGLs while using conventional visible and NIR spectroscopy.

Approach: The metabolic index, which is based on tissue oxygen consumption,
was derived through analytical methods and further verified and reproduced in
a series of glucose challenge experiments. Blood glucose estimation units were
prototyped by utilizing commercially available smart devices.

Results: Our experimental results showed that the phase delay between the oxy-
and deoxyhemoglobin signals in near-infrared spectroscopy correlates with BGL
measured by a conventional continuous glucose monitor. The proposed method
was also confirmed to work well with visible spectroscopy systems based on smart-
phone cameras. The proposed method also demonstrated excellent repeatability in
results from a total of 19 oral challenge tests.

Conclusions: This study demonstrated the feasibility of non-invasive glucose
monitoring using existing photoplethysmography sensors for pulse oximeters and
smartwatches. Evaluating the proposed method in diabetic or unhealthy individuals
may serve to further increase its practicality.
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1 Introduction
There is currently no curative treatment for type 1 and type 2 diabetes,1,2 patients need to monitor
their blood glucose levels (BGLs) to prevent further progression of the disease. Although
minimally invasive continuous glucose monitor (CGM) is becoming more widely used among
diabetic patients,3 conventional self-monitoring blood glucose (SMBG) is still widely used
because of its reliability, lower cost, and accuracy.4 However, SMBG requires a painful finger
prick which sometimes results in low patient adherence.5 Therefore, reducing patient pain during
blood glucose monitoring is an important issue. This is one of the reasons why non-invasive
glucose monitoring is a research topic that has been studied for many years.6

Liakat et al.7 and Kottmann et al.8 used mid-infrared (MIR) light for glucose monitoring,
focusing on the strong and distinct optical absorption of glucose at 9.5 μm. Although this is
probably the most straightforward method, light sources, detectors, and other optical components
used for MIR spectroscopy can be expensive and are still not easy to integrate into a portable
device. Nielsen et al. and Pors et al.9,10 used Raman spectroscopy which has the advantage of low
sensitivity to water and temperature changes, high specificity, and low cost. However, this
method usually takes a certain amount of time for each measurement, and laser power and wave-
length stability can sometimes be issues.11,12 Not to mention the fact that many researchers have
used NIR spectroscopy which has the advantage of being inexpensive and easier to apply.13,14

However, the absorption peaks in the NIR region are less distinct and broader than those in the
MIR region, making it difficult to filter out interference from other chemical components such as
lipids and proteins.11 Cho et al.15 and Tang et al.16,17 developed the metabolic heat conformation
(MHC) method, which utilizes the heat produced by metabolic oxidation which has a strong
correlation with BGLs. Although this method also has the advantage of its feasibility and low
cost, this technique suffers from interference due to environmental parameters.18 In addition,
combinations of existing methods shown above with machine learning (ML) are also popular
these days.19,20 However, ML methods sometimes fail to predict glucose levels because collecting
large datasets with extensive and diverse blood glucose measurements can be challenging.

For the above reasons, there is still no practical non-invasive blood glucose monitoring
device available for daily use. To address this problem, the authors applied data mining of photo-
plethysmography (PPG) data using visible and near-infrared light and found that there is a high
correlation between the phase delay in deoxyhemoglobin compared to oxyhemoglobin and
BGLs. The authors therefore propose in this paper a new index for non-invasive blood glucose
measurement that utilizes practical and low-cost visible-NIR spectroscopy instead of expensive
MIR spectroscopy, and is also fundamentally less sensitive to interference from environmental
factors. The authors first explain the theory behind the metabolic index, which represents the
degree of oxygen consumption in each cardiac cycle and is thought to be closely related to
BGL from a cellular metabolism viewpoint. Their theoretical analysis is further validated by
a short clinical study. Finally, the repeatability of the proposed index is confirmed.

2 Theory and Formulation
In this section, a new glucose level index is derived from basic near-infrared spectroscopy (NIRS)
formulas.

2.1 Basic Formulas of NIRS
Figure 1 shows a schematic diagram of an NIRS measurement on a human body. Here, Iinðλ; tÞ
and Ioutðλ; tÞ are the incident and detected light intensities for the wavelength λ at time t, respec-
tively. According to the modified Beer–Lambert law (MBLL), by using two different probe
wavelengths and solving for the matrix calculation, the oxy- and deoxyhemoglobin NIRS signals
NHbO2

ðtÞ and NHbðtÞ can be expressed as follows:21–25

EQ-TARGET;temp:intralink-;e001;114;134NHbO2
ðtÞ ¼ Δ½cHbO2

ðtÞ · LðtÞ� ¼ cHbO2
ðtÞ · LðtÞ − cHbO2

ðt0Þ · Lðt0Þ; (1)

EQ-TARGET;temp:intralink-;e002;114;97NHbðtÞ ¼ Δ½cHbðtÞ · LðtÞ� ¼ cHbðtÞ · LðtÞ − cHbðt0Þ · Lðt0Þ; (2)

where cHbO2
ðtÞ and cHbðtÞ are the molar concentrations of oxyhemoglobin and deoxyhemo-

globin in the blood at time t, LðtÞ is the optical path length with respect to the time t, and
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the subscript 0 represents the initial condition, respectively. The process for formulating
Eqs. (1) and (2) is described in detail in Sec. S1 of the Supplementary Material.

2.2 Derivation of Metabolic Index
First, consider decomposing each component of Eqs. (1) and (2) into AC and low-frequency (LF)
components. Figure 2 shows a conceptual diagram of NIRS signal decomposition into AC and
LF signals. Here, it is assumed that heart rate variation is negligible, and the AC component is
completely periodic as long as the time window is short enough. In this way,NHbO2

ðtÞ andNHbðtÞ
can be rewritten as follows:

EQ-TARGET;temp:intralink-;e003;117;469NHbO2
ðtÞ ¼ NHbO2;LFðtÞ þ NHbO2;ACðtÞ; (3)

EQ-TARGET;temp:intralink-;e004;117;433NHbðtÞ ¼ NHb;LFðtÞ þ NHb;ACðtÞ: (4)

Here, the subscripts AC and LF indicate the AC and LF components of the corresponding
physical quantity, respectively.

Similarly, cHbO2
ðtÞ, cHbðtÞ, and LðtÞ can be rewritten as combinations of AC and LF com-

ponents as follows:

EQ-TARGET;temp:intralink-;e005;117;377cHbO2
ðtÞ ¼ cHbO2;LFðtÞ þ cHbO2;ACðtÞ; (5)

EQ-TARGET;temp:intralink-;e006;117;340cHbðtÞ ¼ cHb;LFðtÞ þ cHb;ACðtÞ; (6)

EQ-TARGET;temp:intralink-;e007;117;322LðtÞ ¼ LLFðtÞ þ LACðtÞ: (7)

By substituting Eqs. (5)–(7), Eqs. (1) and (2) are expressed as follows:

EQ-TARGET;temp:intralink-;e008;117;303NHbO2
ðtÞ ¼ ½cHbO2;LFðtÞ þ cHbO2;ACðtÞ� · ½LLFðtÞ þ LACðtÞ� − cHbO2

ðt0Þ · Lðt0Þ; (8)

EQ-TARGET;temp:intralink-;e009;117;267NHbðtÞ ¼ ½cHb;LFðtÞ þ cHb;ACðtÞ� · ½LLFðtÞ þ LACðtÞ� − cHbðt0Þ · Lðt0Þ: (9)

Detector Light source

Banana-shaped

light path

Surface tissue

Inside tissue

NIRS probe

Fig. 1 Schematic of NIRS measurement.

Fig. 2 Conceptual diagram of NIRS signal decomposition into AC and LF components.
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Furthermore, by expanding Eqs. (8) and (9) and by extracting the AC components

EQ-TARGET;temp:intralink-;e010;114;562NHbO2;ACðtÞ ¼ cHbO2;LFðtÞ · LACðtÞ þ cHbO2;ACðtÞ · ½LLFðtÞ þ LACðtÞ�; (10)

EQ-TARGET;temp:intralink-;e011;114;520NHb;ACðtÞ ¼ cHb;LFðtÞ · LACðtÞ þ cHb;ACðtÞ · ½LLFðtÞ þ LACðtÞ�; (11)

can be derived. Here it is assumed that NHbO2;ACðtÞ and NHb;ACðtÞ are completely periodic, and
the average over a cycle becomes zero.

Next, to simplify Eqs. (10) and (11), the following additional constraints are introduced:

EQ-TARGET;temp:intralink-;e012;114;473cHbO2;LFðtÞ þ cHb;LFðtÞ ¼ c0 ¼ const:; (12)

EQ-TARGET;temp:intralink-;e013;114;431cHbO2;ACðtÞ þ cHb;ACðtÞ ¼ 0; (13)

EQ-TARGET;temp:intralink-;e014;114;413LLFðtÞ ≫ jLACðtÞj; LðtÞ ¼ LLFðtÞ þ LACðtÞ ≈ LLFðtÞ; (14)

where c0 is a constant and corresponds to the total hemoglobin concentration.
Here, Eq. (12) means that the molar concentration of the total hemoglobin in the blood is

conserved within a limited measurement period, and Eq. (13) means that the increase in
cHbO2;ACðtÞ is equal to the decrease in cHb;ACðtÞ and vice versa, and Eq. (14) means that the
oscillation amplitude of the optical path length is much smaller than the LF component of the
optical path length.

In many prior studies, the optical path length LðtÞ has been considered constant, leading to
the interpretation of oxy- and deoxyhemoglobin NIRS signals as volume concentrations in the
light-probed region. However, this study assumes that the optical path length LðtÞ pulsates and
changes slowly in correlation with the blood flow and heartbeat and that the oxy- and deoxy-
hemoglobin concentration cHbO2

ðtÞ and cHbðtÞ are molar concentrations in the blood. To explain
the validity of these assumptions, Fig. 3 illustrates the schematic of the change in the optical path
length.

Since hemoglobin is the most dominant light absorber in the NIR region, light absorption by
the dermis can be ignored and the dermis can be treated as a scattering-dominant component.
Therefore, the typical absorption path length can be expressed as the total length of capillary
blood probed by the light. Based on this idea, the optical path length varies along with changes
in both blood flow and heartbeat due to the variability in the capillary diameter. However, the
assumption that the scattering change due to blood flow change and heartbeat is negligible forms
the basis of this premise. The dermis meets this premise by taking into account the capillary
density.26

By using Eqs. (12) and (13) in Eqs. (10) and (11), the following relationship can be derived:

EQ-TARGET;temp:intralink-;e015;114;135LACðtÞ ¼
1

c0
½NHbO2;ACðtÞ þ NHb;ACðtÞ�: (15)

Then, by substituting Eq. (15) into the first term on the right side of Eq. (11) and by
simplifying with respect to cHb;ACðtÞ, the following can be derived:

Detector Light source

In higher blood volume

Dermis

In lower blood volume

Capillary blood
Light path

Typical absorption

path length

Typical absorption

path length

(Absorption-dominant)

(Scattering-dominant)

Fig. 3 Schematic of the change in the optical path length in correlation with the blood volume.
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EQ-TARGET;temp:intralink-;e016;117;736

cHb;ACðtÞ ¼
1

LðtÞ ·
cHbO2;LFðtÞNHb;ACðtÞ − cHb;LFðtÞNHbO2;ACðtÞ

cHbO2;LFðtÞ þ cHb;LFðtÞ
; (16)

EQ-TARGET;temp:intralink-;e017;117;692

¼ 1

LðtÞ · fStO2ðtÞ · NHb;ACðtÞ − ½1 − StO2ðtÞ� · NHbO2;ACðtÞg; (17)

where StO2ðtÞ is the tissue hemoglobin oxygen saturation27 defined as follows:

EQ-TARGET;temp:intralink-;e018;117;653StO2ðtÞ ¼
cHbO2;LFðtÞ

cHbO2;LFðtÞ þ cHb;LFðtÞ
: (18)

Since cHb;ACðtÞ corresponds to the oxygen consumption during each heartbeat cycle gen-
erated by cell respiration, it is hypothesized that the metabolic levels in the human body can be
estimated from the amplitude of cHb;ACðtÞ.28

Here, within a limited time window, the AC-NIRS signal NHbO2;ACðtÞ and NHb;ACðtÞ can be
approximated by sinusoids with slowly varying amplitudes by neglecting gradual changes in
heart rate as follows:

EQ-TARGET;temp:intralink-;e019;117;532NHbO2;ACðtÞ ¼ AHbO2
ðtÞ sin ωt; (19)

EQ-TARGET;temp:intralink-;e020;117;488NHb;ACðtÞ ¼ AHbðtÞ sin ωt; (20)

where ω is the angular frequency of the heartbeat, and AHbO2
ðtÞ and AHbðtÞ are the slowly varying

amplitudes of the respective AC-NIRS signals whose time scales are much larger than the oscil-
lation cycle 2π∕ω and can be treated as nearly constant within a limited measurement period,
such as the NHbO2;AC curve in Fig. 2. Considering that the arterial blood is the dominant factor for
the pulsating AC components,29 the instantaneous arterial oxygen saturation SaO2ðtÞ can be
expressed as follows:

EQ-TARGET;temp:intralink-;e021;117;400SaO2ðtÞ ¼
AHbO2

ðtÞ
AHbO2

ðtÞ þ AHbðtÞ
: (21)

Here, by properly selecting a measurement location on the body where the arteries connect
to the cellular respiration site, and by selecting the distance between the detector and the light
source of the NIRS probe to allow for a shallow penetration depth of the light path, the following
equation can be applied:

EQ-TARGET;temp:intralink-;e022;117;305StO2ðtÞ ≈ SaO2ðtÞ: (22)

In this study, e.g., the capillary-rich fingertip is identified as one of the suitable sites, and a
relatively short detector-light source distance should also be utilized to prevent reaching bone
depth. Then, by substituting Eqs. (19)–(22), Eq. (17) becomes

EQ-TARGET;temp:intralink-;e023;117;236cHb;ACðtÞ ¼
1

LðtÞ ·
AHbO2

ðtÞ · NHb;ACðtÞ − AHbðtÞ · NHbO2;ACðtÞ
AHbO2

ðtÞ þ AHbðtÞ
¼ 0: (23)

Here, Eq. (23) means that pulsation in deoxyhemoglobin (or oxyhemoglobin) concentra-
tion does not exist and is counterintuitive. To resolve this contradiction, consider modifying
Eq. (20) as

EQ-TARGET;temp:intralink-;e024;117;153NHb;ACðtÞ ¼ AHbðtÞ sin½ωt − ΔθðtÞ�; (24)

where ΔθðtÞ is a slowly varying and sufficiently small phase delay.Equation (24) means that
NHb;ACðtÞ has a small phase delay with respect to NHbO2;ACðtÞ. The validity of this assumption
will be verified by experiments in later sections.
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Then, by substituting Eqs. (19) and (24), Eq. (23) becomes as follows:
EQ-TARGET;temp:intralink-;e025;114;724

cHb;ACðtÞ ¼
1

LðtÞ ·
AHbO2

ðtÞ · AHbðtÞ
AHbO2

ðtÞ þ AHbðtÞ
· fsin½ωt − ΔθðtÞ� − sinðωtÞg; (25)

EQ-TARGET;temp:intralink-;e026;114;674

¼ −
2 sin½ΔθðtÞ∕2�

LðtÞ ·
AHbO2

ðtÞ · AHbðtÞ
AHbO2

ðtÞ þ AHbðtÞ
· cos

�
ωt −

ΔθðtÞ
2

�
; (26)

EQ-TARGET;temp:intralink-;e027;114;641

≈ −
ΔθðtÞ
LðtÞ ·

AHbO2
ðtÞ · AHbðtÞ

AHbO2
ðtÞ þ AHbðtÞ

· cos

�
ωt −

ΔθðtÞ
2

�
; (27)

EQ-TARGET;temp:intralink-;e028;114;608

¼ −
AHbO2

ðtÞ þ AHbðtÞ
LðtÞ · SaO2ðtÞ · ½1 − SaO2ðtÞ� · ΔθðtÞ · cos

�
ωt −

ΔθðtÞ
2

�
: (28)

Then, assuming that AHbO2
ðtÞ, AHbðtÞ, LðtÞ, and ΔθðtÞ change on a much slower time scale

than 2π∕ω, the oscillation amplitude of Eq. (28). CHb;ACðtÞ is obtained as follows:

EQ-TARGET;temp:intralink-;e029;114;562CHb;ACðtÞ ¼
AHbO2

ðtÞ þ AHbðtÞ
LðtÞ · SaO2ðtÞ · ½1 − SaO2ðtÞ� · jΔθðtÞj: (29)

In addition, from Eqs. (15), (19), and (24), the following relation is derived:

EQ-TARGET;temp:intralink-;e030;114;512AHbO2
ðtÞ þ AHbðtÞ ≈ c0LAC;amplitudeðtÞ; (30)

where LAC;amplitudeðtÞ is the slowly varying oscillation amplitude of LACðtÞ.
Finally, by substituting Eq. (30) into Eq. (29)

EQ-TARGET;temp:intralink-;e031;114;463CHb;ACðtÞ ≈ c0 ·
LAC;amplitudeðtÞ

LðtÞ · MIðtÞ; (31)

where MIðtÞ is a dimensionless metabolic index defined as follows:

EQ-TARGET;temp:intralink-;e032;114;413MIðtÞ ¼ SaO2ðtÞ · ½1 − SaO2ðtÞ� · jΔθðtÞj: (32)

Looking at Eq. (31), the pulsation amplitude of deoxyhemoglobin CHb;ACðtÞ increases
as the total hemoglobin concentration c0, the relative AC optical path length amplitude
LAC;amplitudeðtÞ∕LðtÞ, and the absolute phase delay jΔθðtÞj increase. Here, LAC;amplitudeðtÞ∕LðtÞ
is supposed to be a value similar to the perfusion index (PI), which is widely used in the field of
pulse oximetry to evaluate signal quality.30 On the other hand, CHb;ACðtÞ decreases with increas-
ing arterial oxygen saturation SaO2ðtÞ. In particular, CHb;ACðtÞ decreases to zero as SaO2ðtÞ
reaches 100%. This change indicates that aerobic respiration does not occur in areas with
100% oxygen saturation, such as in arteries. This change also highlights the importance of
carefully selecting the measurement location on the body.

Since the c0 for each specific subject does not change significantly unless there is drastic
dehydration or anemia, and since LAC;amplitudeðtÞ∕LðtÞ should also be nearly constant without
exercise and temperature change of the measurement portion, MIðtÞ is the dominant factor in
oxygen consumption which should strongly correlate with the body metabolism in a resting state.

Furthermore, Eq. (32) reveals that every term on the right-hand side is derived solely from
the AC component of the oxy- and deoxyhemoglobin NIRS signals NHbO2;ACðtÞ and NHb;ACðtÞ,
without incorporating the LF component. This fact implies that the drift in the light source inten-
sity does not significantly impact MIðtÞ since the light source drift has a negligible effect on the
AC component of the calculated NIRS signal in the MBLL.

In the following sections, an attempt to investigate the correlation between the metabolic
index MI and blood glucose is explained through a series of experiments.

3 Materials and Methods
In this section, the proposed MI-based BGL estimation method is investigated using two types of
prototype devices.
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3.1 Evaluation Using a Smartwatch-Based Prototype
A conceptual validation of the proposed MI method through a smartwatch-based prototype is
presented in this section.

In the initial evaluation, the Samsung Galaxy Watch 4 44 mm (SM-R870) was used as the
experimental unit. Figure 4(a) shows the rear view of the SM-R870. Red and IR LEDs are located
in the center, and their center wavelengths are ∼650 and 930 nm, respectively. Eight photode-
tectors are arranged radially around the LEDs. The sampling frequency of the red and IR LED
signals is 100 Hz. Here, the experimental device has no hardware modification from its com-
mercially available state. Figure 4(b) shows a schematic of the measurement. Originally, the
LEDs and photodetectors in the smartwatch were designed to be used while wearing it on the
wrist. However, due to its capillary density, the human wrist is not the best position for capturing
a strong pulse wave signal. Therefore, instead of wearing it on the wrist, the smartwatch was
wrapped on a finger pad.

Functions to retrieve raw photodetector data from Galaxy Watch devices require the
Samsung Privileged Health SDK, which is not publicly available. Therefore, the Samsung
Partner App Program was used to gain access to the smartwatch functions needed for this
experiment.

3.1.1 Experimental protocol

Figure 5(a) shows the schematic of the clinical test setup. A protocol was established while ref-
erencing factors that can affect reading values in the case of a pulse oximeter.31 Healthy and non-
diabetic subjects were asked to sit still during the experiment with the smartwatch resting on their
finger pad to reduce fluctuations in peripheral blood flow caused by minor changes in posture
and local blood pressure. Subjects were also asked to rest their elbow on the smartwatch-wearing
side on an armrest. Bubble wrap was placed on the armrest to relieve pressure and prevent

LEDs (Red and IR)

Radially arranged
photodetectors

Photodetectors

LEDs

Fingertip

Touch screen

(a) (b)

Fig. 4 (a) Rear view of the smartwatch experimental unit. (b) Schematic diagram of the measure-
ment using a smartwatch worn on a fingertip.

(a)

Armrest
with

bubble wrap

Test subject

Smartwatch

CGM
sensor

(b)

More than
48 hrs.

CGM sensor
installation

Start
fasting

More than
2 hrs.

Start
recording

~30 min

Oral
challenge

~60 min

End
recording

~90 min of recording

CGM offset check

*As needed basis

CGM offset check

*As needed basis

Fig. 5 (a) Schematic diagram of the clinical trial setup. (b) Clinical trial procedure.
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hypoperfusion. In addition, before starting the measurement, subjects held a hand warmer for
a few minutes to ensure adequate peripheral blood flow.

Figure 5(b) shows the typical course of the clinical test. A CGM device (Abbot, FreeStyle
Libre®) was used as a reference for the BGLs. Since it is reported that CGM sensors do not
exhibit their best performance during the first few days after installation,32 CGM sensors were
installed at least 2 days before the experiments for aging purposes. In addition, to correct for the
systematic offset and delay specific to each CGM sensor, SMBG strips (Abbot, FreeStyle
Precision®) were used as needed before and after data recording by the smartwatch. To prevent
possible distortion of the PPG signal due to body movements resulting from SMBG usage,
no SMBG strips were used during the recording period. Data recording then started after at least
2 h of fasting, oral challenges were given about 30 min after the start of recording, and data
recording continued about 60 min after the oral challenges. As a result, ∼90 min of PPG data
were collected in each data recording.

Sugar-containing carbonated beverages (The Coca-Cola Company, Coca-Cola® Original
350 mL) and glucose-containing jelly beverages (Morinaga, in Jelly® Energy) were used for
oral challenges. Typically, a special, highly concentrated glucose solution is used for this type
of oral challenge test. However, since this is a concept test, more human-friendly oral challenges
have been adapted this time. In addition, sugar-free carbonated beverages (The Coca-Cola
Company, Coca-Cola® Zero Sugar 350 mL) and non-carbonated bottled water were used for
sugar-free oral challenges in the control experiments. Care was taken not to make all oral chal-
lenges excessively cold since this would reduce peripheral blood flow due to lowering of the
body temperature. Finally, the main nutritional values of the oral challenges are listed in Table 1.

All clinical trials described in this paper were conducted in accordance with the Clinical
Trials Act of the Ministry of Health, Labor and Welfare of Japan, published on the basis of the
Declaration of Helsinki, and were approved by the Ethical Committee of Hamamatsu Photonics
K. K. Informed consent was obtained from all subjects before measurements were performed.
All clinical tests were performed under the supervision of the co-author with a medical license.

3.1.2 Data processing

Figure 6 shows the process flowchart for the metabolic index MI measurement used in this study
and visual explanations of several operational steps. First, raw PPG data from red and IR LEDs
were retrieved and accumulated to a certain data length.

Next, the raw PPG data were converted to the NIRS signals NHbO2
ðtÞ and NHbðtÞ according

to the steps shown in Sec. 2.1. Here, the transmitted light intensity is assumed to be proportional
to the PPG signal, and the extinction coefficients of oxyhemoglobin and deoxyhemoglobin
compiled by Scott Prahl33 were used for the calculation.

A second-order Butterworth band-pass filter (BPF) was then applied to each NIRS signal to
remove unnecessary high-frequency components and LF components due to respiratory cycles.
Here, the passband, the maximum loss in the passband, and the minimum attenuation in the
stopband were 0.8 to 10 Hz, 3 dB, and 10 dB, respectively. After applying the BPF, the excess
end portions in each waveform were trimmed so that the first and last points of the data cor-
responded to the beginning and end of the pulse wave.

Table 1 Key nutritional facts of oral challenges per serving.

Item Coca-Cola® Original In Jelly® Energy Coca-Cola® Zero Sugar Bottled water

Serving size 350 mL 180 g 350 mL 500 mL

Calories (kCal) 140 180 0 0

Fat (g) 0 0 0 0

Carbohydrate (g) 39 45 0 0

Protein (g) 0 0 0 0
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A fast Fourier transform (FFT) was then applied to the trimmed NIRS signals. Each trimmed
signal was resampled to make the data length the smallest power of two greater than or equal to
the original length, and the Hamming window was selected for a window function.

Then, SaO2ðtÞ and ΔθðtÞ were calculated from the previously mentioned FFT spectra. First,
by comparing the magnitude of each main peak whose frequency corresponds to the heart rate,
SaO2ðtÞ can be calculated according to Eq. (21). Second, ΔθðtÞ can be calculated by comparing
the FFT phase at the main peak.

Finally, the metabolic index MIðtÞ was calculated according to Eq. (32), and the calculated
MIðtÞ was successively appended to a data buffer.

After the recording was completed, a series of recorded MI data were further processed as
follows. Figure 7 shows a visual explanation of the post-processing of the calculated MI values.
First, the MI values were divided into 1-min chunks. Then, the mean within each chunk was
calculated after removing obvious outliers. Finally, the Savitzky-Golay filter was applied to the
one-minute averages to smooth out fluctuations due to body motion, measurement errors, etc.
Here, the polynomial order and window length for the Savitzky-Golay filter were 1 and 29,
respectively. Although Fig. 7 contains outliers due to the above reasons, under ideal conditions,
three to five data sets each consisting of about four heartbeat signals, are sufficient to derive a
stable and instantaneous average MI value. In this ideal case, the total measurement time required
is ∼7.2 to 20 s assuming that the normal heart rate of adults is 60 to 100 bpm.

Fig. 6 Process flowchart of the metabolic index MI measurement, and visual explanations of
several calculation steps.

Fig. 7 Visual explanation of the post-processing of the calculated MI values.
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3.1.3 Results from the smartwatch-based prototype

Figures 8(a)–8(d) show the evaluation results of the smartwatch-based prototype according to
different types of oral challenges for the same male subject who has no underlying health con-
ditions. Here, the vertical dashed line in each plot indicates the time when the oral challenge was
given to the subject, and the 10% vertical error bar range was applied to the reference CGM
values considering the typical accuracy of the sensor.34

In Fig. 8(a), the metabolic index MI agreed well with the reference glucose concentration
transition induced by the sugary drink ingestion. On the other hand, in Figs. 8(c) and 8(d), both
MI and reference values were maintained nearly flat during each oral challenge test. Obviously,
the sugar-free drink does not affect the subject’s BGL that much. However, the finding that MI
values did not change as much during the sugar-free oral challenge tests suggests that MI is not
simply a reflection of the body’s hydration status. At the same time, judging from the results that
both carbonated and non-carbonated sugar-free drinks showed similar flat MI trends, the result in
Fig. 8(a) is unlikely to be due to the carbonation status of the oral challenge. Regarding Fig. 8(b),
an offset of about 15 min that can be seen between MI and CGM is likely due to the lag between
blood glucose and interstitial fluid (ISF) glucose. In general, 15 min of CGM sensor delay is a bit
large compared to the typical delay reported by the manufacturer. However, a previous study35

shows that CGM delay can reach 15 min. Then, by compensating for 15 min of offset in Fig. 8(b),
the plot can be modified as in Fig. 9(a). In this case, the MI also follows the up and down trend of
the CGM well, in the same way as seen in Fig. 8(a). The proposed MI method response time can
be estimated as 5 to 15 min from Figs. 8(a)–8(d) considering that the CGM device time delay is
5 to 15 min and the MI exhibited a similar trend.

By compiling the plot data from Figs. 8(a), 8(c), 8(d), and 9(a), a scatter plot Fig. 9(b) can be
obtained. Here, each numerical data of MI corresponding to each CGM data point has been
calculated by interpolation. In Fig. 9(b), the correlation coefficient r calculated by the linear
least squares (LLS) fitting reached 0.78, which indicates that the proposed metabolic index
MI has a strong correlation with BGL.

In addition, the arterial oxygen saturation SaO2ðtÞ remained between 90� 2% during a
series of experiments, which means that SaO2ðtÞ · ½1 − SaO2ðtÞ� remained between 0.07 and
0.11 in Eq. (32), and the maximum to minimum ratio of SaO2ðtÞ · ½1 − SaO2ðtÞ� was at most
∼1.4. Here, the decrease in SaO2ðtÞ from its normal range is attributed to the measurement
section where SaO2ðtÞ approaches StO2ðtÞ.36

(a) (b)

(c) (d)

Fig. 8 (a)–(d) Evaluation results of the smartwatch-based prototype for the different oral challenge
types.

Nakazawa et al.: Non-invasive blood glucose estimation method based on. . .

Journal of Biomedical Optics 037001-10 March 2024 • Vol. 29(3)



Therefore, the increase in the metabolic index MI was largely due to the change inΔθðtÞ: the
phase delay between oxy- and deoxyhemoglobin. For reference, the ΔθðtÞ transition in the
experiment of Fig. 8(a) is shown in Fig. 9(c). In this study, the results consistently showed that
ΔθðtÞ was positive during each oral challenge test, indicating that the oxyhemoglobin NIRS
signal NHbO2

ðtÞ consistently precedes the deoxyhemoglobin NIRS signal NHbðtÞ. The MI trend
is therefore almost identical to the non-absolute ΔθðtÞ trend. For this reason, only the MI trends
are plotted in this paper to evaluate the proposed method, rather than separately plotting ΔθðtÞ
and SaO2ðtÞ.

Thus, the validity of the assumptions in Eq. (24) is verified.

3.2 Evaluation Using a Smartphone Camera-Based Prototype
The conceptual validation of the proposed MI method has been confirmed in Sec. 3.1. This
section examines the reproducibility of the proposed method using a smartphone-based
prototype.

Although the number of smartwatches is currently increasing worldwide, the penetration
rate of smartwatches still has not reached that of smartphones. The utilization of smartphones
as blood glucose monitoring devices has the potential to drastically expand the accessibility of
the proposed MI method, given the global penetration of smartphones. Moreover, the active area
and sensitivity of photodiodes in smartwatches are the minimum necessary due to spatial con-
straints, the main processors of smartwatches are less powerful, and the flexibility in designing
smartwatch applications is limited compared to those of smartphones. In addition, several pre-
vious studies on smartphone camera-based non-invasive blood glucose monitoring have recently
been reported.37,38

For the above reasons, the smartphone camera-based prototype is newly introduced for
the repeatability test instead of the smartwatch-based prototype.

Figure 10(a) shows an overview of a smartphone-based prototype developed for this
research. The prototype consists of a smartphone and a light source unit mounted over the main
camera module of the smartphone. Figure 10(b) shows the internal structure of the light source
unit. Here, Samsung Galaxy S21 Ultra 5G (SC-52B) was selected as the smartphone and
its wide-angle camera has a pixel count of 108 megapixels.

In addition, a high-brightness green LED OptoSupply OSG59L5B61Y was selected as the
light source. The reason why green LED was chosen instead of white LED is described in

(a)

(c)

(b)

Fig. 9 (a) Delay-compensated plot of Fig. 8(b). (b) Scatter plot of MI values versus reference CGM
values generated from the data from Figs. 8(a), 8(c), and 8(d) and Fig. 9(a). (c) Transition of ΔθðtÞ
in Fig. 8(a).
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Figs. 11(a)–11(c) and 11(d1)–11(d3). Figure 11(a) shows the typical spectrum of the green LED
and its transmission spectrum after the subject’s index finger. Note that the y-axis is a logarithmic
scale, and the spectra have been filled in with a color corresponding to each wavelength for visual
support. Because LEDs have a broad spectrum compared to laser diodes (LDs), the green LED
has a slight amount of reddish components in the tails of its spectrum.

Next, Fig. 11(c) shows the transmitted spectrum of the green LED on a linear scale. Due to
the strong absorption by oxy- and deoxyhemoglobin around 550 and 400 nm, the initial
Gaussian-like spectrum of the green LED is transformed into a two-hump shape. Then,
Fig. 11(b) shows the typical quantum efficiency of an RGB color CMOS camera. Since the
quantum efficiency data of the Samsung Galaxy S21 Ultra 5G smartphone camera was not avail-
able, data from a compact scientific CMOS color digital camera from Thorlabs39 was used as a
typical value instead. Finally, by multiplying the quantum efficiency by the transmitted light, the
light intensity spectrum perceived by the blue, green, and red CMOS sensors can be obtained as
shown in Figs. 11(d1)–11(d3), respectively. Looking at Figs. 11(d1) and 11(d3), it can be seen
that each spectrum is composed of almost a single prominent peak. Therefore, by combining the
light intensity data from blue and red CMOS sensors, a kind of visible spectroscopy for the
human fingertip can be configured.

CMOS color
image sensor

Lenses

Fingertip

High brightness LED

Elastic material

Voltage supply

Smartphone

camera

Light source

(a) (b)

unit

Light source

unit

Smartphone

Fig. 10 (a) Overview of the smartphone camera-based prototype. (b) Internal structure diagram of
the light source unit.

(a) (b)

(c)
(d1) (d2) (d3)

Fig. 11 (a) Typical spectrum of a green LED and its transmitted spectrum after passing through a
fingertip in log Y scale. (b) Typical efficiency curves of an RGB CMOS camera. (c) The normalized
transmitted spectrum of the green LED after passing through a fingertip (d1)–(d3) Light intensity of
the transmitted light perceived by each RGB sensor of the CMOS camera.
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The experimental protocol for the smartphone prototype largely followed that described in
Sec. 3.1.1. Figure 12 illustrates the test setup for the smartphone prototype. The index finger of a
healthy, non-diabetic subject with no underlying health conditions was placed between the light
source unit and the smartphone camera, and a bubble wrap sheet was placed against the hypoth-
enar to relieve pressure and prevent hypoperfusion. Since the smartphone prototype utilizes a
transmissive optical configuration, the distance between the light source and detector was opti-
mized by adjusting the fingertip insertion depth. The autofocus, auto exposure, and auto white
balance functions of the smartphone camera were disabled. In addition, the camera aperture and
frame rate were kept constant throughout the clinical trial. The camera sensitivity was kept to
approximately the same value.

With regard to oral challenges, Coca-Cola® Original or in Jelly® Energy was administered to
the subject and no sugar-free challenge was used, and oral challenges were administered between
15 and 30 min after the start of each test. Furthermore, stricter expiration date controls were also
applied to the CGM sensors. In addition to the first two days for aging, the CGM sensors were not
used for clinical testing during the last two days of their specified expiration date to improve
performance.32

The data analysis process was the same as explained in Sec. 3.1.2 and Figs. 6 and 7 except
for the method for acquiring raw PPG data. Instead of red and IR PPG data, the average pixel
values of blue and red CMOS data were used. Note that camera images captured by the video
stream function of Android OS are formatted in YUV420, so each YUV420 image must be
converted to RGB format. Furthermore, since the extinction coefficient dataset of oxy- and deox-
yhemoglobin used in Sec. 3.1.2 did not work properly in the case of pseudo-visible spectroscopy
by the smartphone camera prototype, the extinction coefficient matrix was manually optimized
to obtain a smartphone prototype result comparable to that of the smartwatch prototype. Finally,
for the BPF and Savitzky–Golay filters, the same parameters were used as in Sec. 3.1.2.

3.2.1 Results from the smartphone camera-based prototype

The repeatability test of the smartphone-based prototype was repeated a total of 19 times on a
single male subject with no underlying health conditions. Figure 13 shows four typical evaluation
results of the smartphone-based prototype from the 19 tests. Here, the test results are plotted in
the same way as in Fig. 8, and the CGM delays were adjusted by using the sensor-specific con-
stant value of each sensor, which was determined through comparison with SMBG readings
during the preparation period. Figures 13(a) and 13(b) are examples of good correlation with
the reference CGM, while Figs. 13(c) and 13(d) are examples of moderate correlation. In each
of Figs. 13(a)–13(d), it can be seen that the metabolic index MI responded to the oral challenges
and followed the CGM trends. Here, it should be noted that the trend of MI in each of
Figs. 13(a)–13(c) appears to increase even under fasting conditions, which can be attributed
to the smoothing effect of the Savitzky–Golay filter.

Figure 14(a) shows a scatter plot of the metabolic index MI versus the reference CGM made
from the repeatability test results. Here, each MI numerical data corresponding to each CGM data
point was calculated by interpolation in the same way as in Fig. 9(b), and the correlation coef-
ficient obtained by LLS fitting was 0.66. Although this correlation coefficient value r is not as
high as that obtained in Fig. 9(b), it is still high enough to infer a strong positive association.

Light source unit

Armrest Bubble wrap

Smartphone

Fig. 12 Test setup for the smartphone camera prototype.

Nakazawa et al.: Non-invasive blood glucose estimation method based on. . .

Journal of Biomedical Optics 037001-13 March 2024 • Vol. 29(3)



Figure 14(b) also shows a Perkes error grid for type 1 diabetes40 generated from the repeat-
ability test results and the conversion coefficients obtained by the LLS fitting. Here, the color
scale in the plot indicates the spatial density of nearby points. Although blood glucose values
obtained by venous blood glucose testing or capillary blood glucose testing are generally used as
the reference values for error grid analysis, CGM values were used as the reference values in this
research. Because of this substitution, note that Fig. 14(b) has combined errors from the MI
method and the CGM. Nevertheless, most of the data points in Fig. 14(b) are distributed between
zones A and B. Specifically, ∼69% and 31% of the data are located in zones A and B, respec-
tively, and there were no data points in other zones. This result compares favorably with some
other previous non-invasive optical blood glucose monitoring research.41,42

3.3 Attempt to Improve the Accuracy of the Proposed MI Method
In this section, an attempt is made to improve the accuracy of the proposed MI method by
combining the LAC;amplitudeðtÞ correction.

In this study, the metabolic index MI shown in Eq. (32) has been used so far for a non-
invasive BGL index. However, as shown in Eq. (31), the oscillation amplitude of deoxyhemo-
globin CHb;ACðtÞ is also affected by c0, LðtÞ, and LAC;amplitudeðtÞ. Although the total hemoglobin

(a) (b)

(c) (d)

Fig. 13 (a) and (b) Typical evaluation results of the smartphone-based prototype with a good
correlation to the reference. (c) and (d) Typical results with a moderate correlation to the
reference.

(a) (b)

Fig. 14 (a) Scatter plot of metabolic index MI values versus reference CGM values generated from
repeatability test results. (b) Perkes error grid for type 1 diabetes generated from the repeatability
test results.
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concentration c0 should be less susceptible to variation without drastic changes in body hydration
level or acute anemia, the oscillation amplitude of the optical path length LAC;amplitudeðtÞ and the
optical path length LðtÞ may change depending on perfusion status, pressure, and other factors.
In other words, BGL estimation based on a metabolic index MI may still be capable of better
accuracy by taking LðtÞ and LAC;amplitude correction into account. However, in principle, it is
impossible to measure the effective optical path length LðtÞ based on the MBLL. Therefore,
the following assumptions and approximations are introduced.

Since it can be assumed that the AC amplitude of the optical path length LAC;amplitudeðtÞ
should increase as its counterpart LLFðtÞ increases and that the divergence speed of
LAC;amplitudeðtÞ should not be greater than that of LLFðtÞ, the relationship between LAC;amplitudeðtÞ
and LðtÞ can be approximated as follows:

EQ-TARGET;temp:intralink-;e033;117;601LAC;amplitudeðtÞ ∝ ½LLFðtÞ�n ð0 < n ≤ 1Þ; (33)

where n is an appropriate positive power exponent to associate LAC;amplitudeðtÞwith LLFðtÞ which
is equal to or <1. By substituting Eq. (30) into Eq. (33), and by applying approximation of
Eq. (14), the following relationship can be further derived.

EQ-TARGET;temp:intralink-;e034;117;539

LAC;amplitudeðtÞ
LðtÞ ≈

LAC;amplitudeðtÞ
LLFðtÞ

∝
LAC;amplitudeðtÞ�
LAC;amplitudeðtÞ

�1
n

; (34)

EQ-TARGET;temp:intralink-;e035;117;487 ¼ �
LAC;amplitudeðtÞ

�
1−1

n ≈
�
AHbO2

ðtÞ þ AHbðtÞ
c0

�
1−1

n

: (35)

Here, to make the rightmost term of Eq. (34) dimensionless, a dimensionless correction
coefficient α is introduced as follows:

EQ-TARGET;temp:intralink-;e036;117;441αðtÞ ¼
�
AHbO2

ðtÞ þ AHbðtÞ
AHbO2;0 þ AHb;0

�
1−1

n ð0 < n ≤ 1Þ; (36)

where AHbO2;0 and AHb;0 are arbitrary-defined constant values that satisfy

EQ-TARGET;temp:intralink-;e037;117;389AHbO2;0 þ AHb;0 ¼ c0LAC;0; (37)

where LAC;0 is a constant standard optical length value for normalization. Assuming that c0 can
also be regarded as a constant value for each specific subject throughout a series of experiments,
the correction coefficient αðtÞ should also be approximately proportional to LAC;amplitudeðtÞ∕LðtÞ.

Finally, multiplying αðtÞ by MIðtÞ gives the following amplitude-corrected metabolic
index MI 0ðtÞ

EQ-TARGET;temp:intralink-;e038;117;304MI 0ðtÞ ¼ αðtÞ · MIðtÞ: (38)

Figures 15(a)–15(d) show the evaluation results of the α-corrected MI 0ðtÞ obtained by the
smartphone prototype, which correspond to and are plotted in the same manner as Figs. 13(a)–
13(d), respectively. Note that n ¼ 0.5 of the power exponent was temporarily adapted in Eq. (36),
which means that the AC amplitude of the optical path length is proportional to the square root of
LLFðtÞ, and typical values of AHbO2

ðtÞ and AHbðtÞ in the resting state were chosen for AHbO2;0 and
AHb;0. By comparing each plot in Fig. 15 with that of Fig. 13, it can be seen that the rise and fall in
the metabolic index become clear with α correction. Among these, Figs. 13(c) and 13(d), which
showed a moderate correlation with the CGM values, showed a better correlation in Figs. 15(c)
and 15(d) by applying the correction.

In addition, a scatter plot of the α-corrected metabolic index MI 0 versus CGM values and a
Perkes error grid for type 1 diabetes with α correction, generated based on the same experimental
data set of Fig. 14, are shown in Figs. 16(a) and 16(b), respectively. Here, the same correction
parameters were used as in Fig. 15. As can be seen in Fig. 16(a), the correlation coefficient r
computed by the LLS fitting improved slightly to 0.73 with the α correction. In addition, in
Fig. 16(b), ∼79% and 21% of the data points are distributed in zones A and B, respectively,
and the zone A ratio has increased by 9% compared to Fig. 14(b).
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According to these results of α correction, although n ¼ 0.5 of the power exponent is a
tentative value and there is no biomedical basis to support this number yet, it can be seen that
α correction can improve the MI-based non-invasive BGL estimation to some extent.

As a reference, Fig. 17 shows a transition of the correlation coefficient r computed by LLS
fitting after applying α correction for the same data set of the smartphone-based prototype

(a) (b)

(c) (d)

Fig. 15 (a)–(d) Correction-applied evaluation results of the smartphone-based prototype corre-
sponding to Figs. 13(a)–13(d), respectively.

(a) (b)

Fig. 16 (a) Scatter plot of α-corrected metabolic index MI’ values versus reference CGM values
generated from the repeatability test results. (b) Perkes error grid for type 1 diabetes generated
from the α-corrected repeatability test results.

Fig. 17 Transition of the correlation coefficient r computed by the LLS fitting according to different
power exponents n.
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according to different power exponents n. Here, the n ¼ 1 spot corresponds to the case without
α correction. As can be seen from Fig. 17, r showed a gradual trend around n ¼ 0.4 to 0.7,
which implies that the AC amplitude of the optical path length should be roughly proportional
to LLFðtÞ to the power of 1

2
to 2

3
.

Finally, as a summary, Table 2 shows a comparison of the key performance indicators of
BGL estimation with and without α correction. Here, the term MARD stands for mean absolute
relative difference, which is the average of the error between the estimated value and the refer-
ence value divided by the reference value, and RMSE stands for root-mean-square error, which is
the square root of the average of the squared errors between the estimated values and the refer-
ence values. MARD and RMSE are typical metrics used to evaluate the performance of glucose
monitoring systems.9,32 Note that the absence of data other than in zones A and B is due more to
an insufficient number of data points than to the good performance of the proposed MI method,
and that MARD and RMSE here have combined errors from the MI method and the reference
CGM.

According to the manufacturer, all FreeStyle Libre® CGM sensors in the United States have
a MARD of <10%34 and a third-party evaluation has shown a roughly similar result.43 Although
the proposed MI method, even with α correction, has an even larger MARD compared to the
<10% MARD of the commercially available CGM, implementing hardware improvements and
algorithm optimization may further reduce the MARD of the proposed method to below 10%.

For reference, Table S1 in Sec. S2 of the Supplementary Material shows the performance
comparison between the proposed MI method and other non-invasive blood glucose monitoring
methods.

4 Discussion
The proposed metabolic index MI was confirmed to show a good correlation with the reference
CGM values, and an even better correlation by α correction. This result appears sufficient for
supporting the assumption that there is a BGL-dependent small phase delay between oxy- and
deoxyhemoglobin NIRS signals as a concept test. Looking at Eqs. (13) and (28) reveals that
confirming the existence of the phase delay Δθ also means confirming that the relationship
between optical path length pulsation LACðtÞ and oxyhemoglobin concentration pulsations
cHbO2;ACðtÞ is approximately a sine and cosine relationship. For reference, Fig. 18(a) shows
a simplified plot diagram of the phase relationship between cHbO2;ACðtÞ, cHb;ACðtÞ, and LACðtÞ.
Here, cHbO2;ACðtÞ and cHb;ACðtÞ are normalized to c0, and LACðtÞ is normalized to LLF, and the
relative amplitude of each plot was defined arbitrarily. Figure 18(b) shows an example of the AC
component of NIRS signals calculated from the data in Fig. 18(a). Here, each curve is normalized
to the total amplitude of both curves, and the markers in each curve indicate the local maxima,
and the phase delay Δθ is shown in the plot. Figure 18(b) reveals that the phase delay Δθ can be
generated numerically by combining cHbO2;ACðtÞ, cHb;ACðtÞ, and LACðtÞ. Here, it should be noted
that the magnitude of Δθ has been enhanced in Fig. 18(b) to enhance clarity. As shown in
Fig. 9(c), an increase of 40 mg∕dL in BGL results in a change of no >0.1 radians at Δθ mag-
nitude, which is about 1.5% of a cardiac cycle. Here, the small degree of delay is assumed to
have made it difficult to identify the presence in previous studies.

Table 2 Comparison of key performance indicators of BGL estimation with and without
α-correction.

Without α-correction,
data from Fig. 14(b)

With α-correction (n ¼ 0.5),
data from Fig. 16(b)

Zone A percentage 69.2% (81/117 samples) 78.6% (92/117 samples)

Zone B percentage 30.8% (36/117 samples) 21.4% (25/117 samples)

MARD 17.5% 13.3%

RMSE 24.1 mg/dL 19.7 mg/dL
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However, this study does not physiologically investigate why the amplitude of the deoxy-
hemoglobin pulsation increases with an increasing BGL which is the fundamental mechanism for
estimating BGL by the MI method. This phenomenon of increasing deoxyhemoglobin pulsation
may possibly stem from the glycolysis system, which links glucose to the metabolism. Since 2,3-
bisphosphoglycerate (2,3-BPG) renders the effect of regulating the oxygen affinity of hemoglo-
bin in the glycolysis system, 2,3-BPG may prove the key to revealing the mechanism behind the
MI method. At the same time, oxidative phosphorylation could also potentially increase the
deoxyhemoglobin amplitude by directly consuming oxygen from the blood. In future studies,
direct observation of pure concentration pulsations in oxy- and deoxyhemoglobin, which elimi-
nate the effect of optical path pulsation, and a comparison with BGLs and optical path pulsation
should help to understand the basics of the MI method. Additionally, it is crucial to examine the
influence of nutrients beyond carbohydrates on the MI. Table 1 indicates that the oral challenges
utilized in this study lacked fat or protein. If oxidative phosphorylation is the driving force under-
lying MI, then amino acids and lipids could potentially exert an impact. Consequently, it is
imperative to investigate protein and fat-rich oral challenge tests for a fundamental understanding
of the MI method.

The MI method is also based on the assumption that the oscillation amplitude of the deox-
yhemoglobin concentration CHb;ACðtÞ is proportional to the BGL. In other words, more oxygen is
consumed with each cardiac beat as the blood glucose rises. In this sense, the MI method can be
considered an optical version of the MHC method, using the correlation between the BGLs and
the heat flux generated by metabolic oxidation. In addition, since the optical MI method should
be less sensitive to environmental conditions and perspiration than the thermal-based MHC
method, the MI method may probe more practical for wearable use.

The assumption behind the MI method may sound reasonable for healthy and non-diabetic
individuals. However, for people with type 1 or type 2 diabetes, whose metabolic functions and
glucose tolerance are abnormal, the relationship between the proposed MI and BGLs may change
or even collapse in worst cases. On the other hand, given the fact that the evaluation result from
the MHC method also shows a good correlation in high glucose concentrations of diabetic
patients in the prior research,15 the MI method is still potentially applicable in high BGLs.
Therefore, clinical testing in diabetic patients will serve as a key test of the proposed MI method.
In addition, even among healthy people, there will be individual variations in MI-to-BGL
calibration factors depending on gender, age, physical constitution, race, etc. In future research,
the interdependence of these differentiators will need to be investigated.

In addition, even for a specific person, the daily variation of MI-to-BGL calibration factors
must also be examined for the possibility of being affected by that person’s basal body temper-
ature, ambient temperature, or other daily conditions. However, as a reference, in the case of
the repeatability test mentioned in Sec. 3.2.1, although a series of tests extending over 1 month
were performed, no significant deviation in the correlation weight between MI and BGL was
confirmed at the beginning and end of the testing for a single test subject.

Next, looking at Figs. 9(b), 14(a), and 16(a), the lower BGL detection limit in the MI method
is mainly considered as ∼70 mg∕dL given that CHb;amplitudeðtÞ andMIðtÞ are always greater than

(a) (b)

Fig. 18 (a) Simplified plot diagram of the phase relationship between cHbO2 ;ACðtÞ, cHb;ACðtÞ, and
LACðtÞ. (b) Example of the AC component in NIRS signals calculated from the data in Fig. 18(a).
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or equal to 0. This estimated detection limit in the MI method is not a serious problem given the
fact that a healthy human body tries to maintain BGLs above 70 mg/dL. However, for hypo-
glycemic patients, this limit can be fatal. Therefore, during actual operation of the MI-based
glucose monitor in the future, rather than just displaying the estimated BGL, a low BGL alarm
should be provided in case the reading falls below the threshold. The sensitivity or namely
the minimum incremental detection limit should also be carefully investigated to ensure precise
control of patient BGLs.

In addition, some kind of automatic data rejection for low-quality optical signals should be
considered in future studies. In particular, from Eq. (36) it can be seen that αðtÞ and MI 0ðtÞ
increase as AHbO2

ðtÞ þ AHbðtÞ decreases, since 1 − 1
n is always less than or equal to zero while

0 < n ≤ 1. This implies the potential risk of detecting false hyperglycemia when the pulsation
signal is poor. There is also a similar report that pulse oximetry may show inaccurate SpO2

values due to hypoperfusion.44 In fact, the authors found erroneous MI values at low room
temperature or cold fingers during the preliminary experiment. The data rejection threshold
for optical signals should therefore be properly set in order to avoid false estimations of
BGL. Besides, as shown in Fig. 7, the raw MI data may contain noise as a result of signal
distortion caused by body motion. To mitigate this issue, it is necessary to properly apply the
body acceleration threshold, similar to the built-in heart rate and oxygen saturation monitoring
features found on some smartwatches.

Furthermore, the inclusion of other physiological parameters in the MI method would be a
viable option for robust BGL estimation in practical use. For example, in this study the total
hemoglobin concentration c0 was treated as a constant value. Obviously, c0 strongly correlates
with the hemoglobin content. Since non-invasive optical measurements of total hemoglobin con-
tent have been reported by other researchers,45 combining the estimated hemoglobin content with
the proposed MI method may further improve estimation accuracy. The core body temperature
and ambient temperature are also possible candidates for optional parameters. Conversely, com-
bining the proposed metabolic index MI with previous research based on multivariate statistics or
ML techniques may possibly improve their estimation accuracy.

Moreover, although all the oral challenge tests were performed in a sitting position in this
paper, it is also necessary to investigate the potential impact of posture on the proposed MI
method to ensure continuous daily use of this technique.

5 Conclusion
In this study, a method for non-invasive blood glucose estimation based on the phase delay
between oxy- and deoxyhemoglobin was analytically derived. This phase delay-based metabolic
index has not been reported by other researchers and is considered a scientifically important
discovery. Then, the correlation between the proposed metabolic index MI and the BGLs mea-
sured by CGM has been confirmed by the smartwatch-based prototype and the repeatability
for a single subject has been confirmed by the smartphone-based prototype, and about 69% of
the data points are located in zone A according to the Perkes error grid analysis. Moreover, the
possibility of improving the estimation accuracy by applying corrections based on the oscillation
amplitude of the optical path length has been suggested.

In future studies, for the practical application of the proposed method, the personal and daily
variation in the calibration factors of the proposed method, evaluation in unhealthy or diabetic
subjects, and the correlation below 70 mg/dL of BGLs need to be investigated.

Since the proposed MI method can in principle be implemented in existing devices with a
pulse oximetry function, and is inexpensive, battery-saving and simple compared with other non-
invasive blood glucose monitoring methods using MIR spectroscopy or Raman spectroscopy, the
MI method can be a powerful tool for portable BGL monitoring devices in the future. Moreover,
the discovery that ordinary smartphones have the potential to serve as glucose meters could prove
an enormous benefit to those individuals who are concerned about their glucose levels.
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