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ABSTRACT. Significance: Dynamic photoacoustic computed tomography (PACT) is a valuable
imaging technique for monitoring physiological processes. However, current dynamic
PACT imaging techniques are often limited to two-dimensional spatial imaging.
Although volumetric PACT imagers are commercially available, these systems
typically employ a rotating measurement gantry in which the tomographic data are
sequentially acquired as opposed to being acquired simultaneously at all views.
Because the dynamic object varies during the data-acquisition process, the sequen-
tial data-acquisition process poses substantial challenges to image reconstruction
associated with data incompleteness. The proposed image reconstruction method is
highly significant in that it will address these challenges and enable volumetric
dynamic PACT imaging with existing preclinical imagers.

Aim: The aim of this study is to develop a spatiotemporal image reconstruction
(STIR) method for dynamic PACT that can be applied to commercially available
volumetric PACT imagers that employ a sequential scanning strategy. The proposed
reconstruction method aims to overcome the challenges caused by the limited num-
ber of tomographic measurements acquired per frame.

Approach: A low-rank matrix estimation-based STIR (LRME-STIR) method is
proposed to enable dynamic volumetric PACT. The LRME-STIR method leverages
the spatiotemporal redundancies in the dynamic object to accurately reconstruct
a four-dimensional (4D) spatiotemporal image.

Results: The conducted numerical studies substantiate the LRME-STIR method’s
efficacy in reconstructing 4D dynamic images from tomographic measurements
acquired with a rotating measurement gantry. The experimental study demonstrates
the method’s ability to faithfully recover the flow of a contrast agent with a frame rate
of 10 frames per second, even when only a single tomographic measurement per
frame is available.

Conclusions: The proposed LRME-STIR method offers a promising solution to the
challenges faced by enabling 4D dynamic imaging using commercially available
volumetric PACT imagers. By enabling accurate STIRs, this method has the poten-
tial to significantly advance preclinical research and facilitate the monitoring of criti-
cal physiological biomarkers.
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1 Introduction
Photoacoustic computed tomography (PACT), also referred to as optoacoustic tomography, is an
emerging and promising imaging modality with broad applications in the field of biomedical
imaging.1–3 By combining the high spatial resolution of ultrasound imaging with the high soft
tissue contrast of optical imaging, PACT offers unique advantages for imaging biological struc-
tures while avoiding the use of ionizing radiation. In PACT, a fast laser pulse in the near infrared
range illuminates the object. The absorption of optical energy by various molecules within the
object (chromophore) induces a localized increase of acoustic pressure through the photoacoustic
effect. The acoustic wavefield propagating through the object and coupling medium (water) is
subsequently detected by ultrasonic transducers. The measured wavefield data can then be
utilized to reconstruct an image that depicts the initial induced pressure distribution within the
object.

In preclinical and clinical research, the ability to monitor dynamic physiological processes is
of utmost importance for comprehending the progression of diseases and developing new
treatments.4–6 For example, tumor vascular perfusion is a dynamic process that is critical in
the study of cancers. High vascular perfusion is indicative of angiogenesis, a well-established
hallmark of cancerous growth.7,8 Due to its noninvasive nature and the combination of optical
contrast and spatial resolution at depths beyond the optical diffusion limit, PACT represents
a promising imaging modality for monitoring critical dynamic physiological processes in pre-
clinical and clinical research.9–13

Despite its considerable promise, current dynamic PACT technologies suffer from funda-
mental limitations. They often target two-dimensional (2D) spatial imaging due to shorter data
acquisition times and computationally less demanding image reconstruction compared with 3D
imaging.11,14–18 Most existing 3D PACT imagers developed to date utilize a rotating measurement
geometry in which the tomographic data are sequentially acquired2,19–21 as opposed to being
acquired simultaneously at all views. This design is advantageous because it reduces system costs
by employing a limited number of acoustic transducers and associated electronics. However,
data-acquisition times for a complete tomographic scan can be tens of seconds. Due to the relatively
slow rotational speed, the temporal resolution is significantly limited. Although enhancing
temporal resolution using sparsely sampled tomographic data is possible, the associated dynamic
image reconstruction problem becomes ill-posed and highly challenging.

Previous studies on dynamic PACT10,11,14–18,22 have primarily focused on scenarios in which
the sufficiently sampled tomographic data can be rapidly acquired. In such cases, a straightfor-
ward approach is to employ a frame-by-frame image reconstruction (FBFIR) method.10,11,14–18

These techniques utilize conventional static image reconstruction methods to estimate a sequence
of images from sufficiently sampled tomographic data. The temporal resolution is limited by the
duration of the complete data acquisition process. Rapid data acquisition is feasible either with
2D PACT imaging or by leveraging a dense, albeit expensive, static transducer array in 3D im-
aging. However, for volumetric imagers with sequential scanning strategy, FBFIR methods are
not applicable, primarily due to the extended time required to accumulate the complete set of
tomographic measurements. This limitation arises because conventional static image reconstruc-
tion techniques require densely sampled tomographic measurements for accurate object esti-
mates; if sparsely sampled measurement data are used, the reconstructions suffer from severe
artifacts.23–25

On the other hand, spatiotemporal image reconstruction (STIR) methods estimate a
sequence of images simultaneously instead of frame-by-frame, and they have demonstrated their
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efficacy in accurately reconstructing dynamic objects from sparsely sampled data in various
medical imaging modalities, including computed tomography,26 positron emission tomography,27

single photon emission computed tomography,28 and magnetic resonance imaging.29 Although a
few STIR techniques have been proposed for PACT, some of them still presume the availability
of sufficiently sampled tomographic data and strive for enhanced accuracy and/or reduced com-
putational complexity compared with FBFIR techniques.30 The STIR methods,31–33 considering
sparsely sampled tomographic data, rely on the principles of compressed sensing and require
specific data sampling schemes that are different than the sequential sampling schemes employed
by currently available volumetric imagers.

This study introduces a novel STIR method based on low-rank matrix estimation (LRME-
STIR), which is applicable to currently available sequential 3D PACT imaging systems without
requiring hardware modifications. By employing the LRME-STIR technique, it becomes pos-
sible to overcome the challenges caused by the sparsely sampled tomographic data. The proposed
approach holds the potential to advance the field by enabling accurate and efficient STIR, thereby
facilitating the monitoring of dynamic physiological changes using PACT.

The remainder of the paper is organized as follows. Section 2 presents an imaging model for
sequential volumetric imagers and introduces the inverse problem formulation. The proposed
LRME-STIR method is described in Sec. 3. The conducted numerical and experimental studies,
as well as their results, are provided in Secs. 4 and 5, respectively. Finally, the paper concludes
with a discussion in Sec. 6.

2 Imaging Model for Sequential Volumetric Imagers and Inverse
Problem Formulation

In the context of PACT, the sequential data acquisition strategy commonly involves utilizing one
or more rotating or translating ultrasonic transducer arrays within single or multiple acoustic
probes.2,19,20 This approach facilitates data collection by rotating the probes along a fixed axis,
resulting in the acquisition of a few tomographic measurements at each step, as depicted in Fig. 1.
These measurements are accumulated sequentially to form a complete tomographic measure-
ment set.

During each step of sequential data acquisition, the object can be considered to be static
(quasi-static assumption), which is justified by the negligible data acquisition time during each
step (on the order of 10−4 s), significantly shorter than the time between consecutive measure-
ments (on the order of 10−1 s). An object frame is defined as the short period of time when
the object is considered static. The sequence of object frames constitutes the dynamic object.
Essentially, each data acquisition step, hereafter referred to as an imaging frame, corresponds
to an object frame. Although object and imaging frames may seem interchangeable, the distinc-
tion lies in the fact that the set of imaging frames is essentially a subset of the set of object
frames because the dynamic object might not be imaged throughout all object frames. Under the
quasi-static assumption, the time-dependent object function at the k- th imaging frame, specifi-
cally the dynamic induced initial pressure distribution, is represented as fkðrÞ ¼ fðr; kΔtÞ for

Fig. 1 Schematic illustrating the sequential scanning strategy employing a rotating acoustic probe
around the object.
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k ¼ 1; : : : ; K. Here, K represents the number of imaging frames, and Δt is the time interval
between consecutive imaging frames, which is equal to the laser repetition rate. Finally, the rota-
tion speed of the gantry determines the angular spacing between imaging frames.

Under the quasi-static assumption, the data acquisition process at each imaging frame is
described by a continuous-to-discrete (C-D) imaging model as30,34

EQ-TARGET;temp:intralink-;e001;114;676½gk�ðq−1ÞPþp ¼ 1

Ωqk

Z
Ωqk

dr 0qk
1

4π

Z
V
dr

fkðrÞ
c20

d
dτ

δ
�
τ −

jr 0qk−rj
c0

�
jr 0qk − rj

������
τ¼pΔT

;
p ¼ 1;2; : : : ; P
q ¼ 1;2; : : : ; Q

; (1)

where τ denotes the fast-time (i.e., the arrival time of acoustic signals to the transducer) and ΔT
corresponds to the fast-time sampling interval. The object function at the k’th imaging frame,
fkðrÞ, is assumed to be bounded and contained within volume V. The scalar c0 denotes the speed
of sound, which is assumed to be constant throughout volume V. The quantities r and r 0qk specify
the spatial coordinates within V and the location of the q’th transducer at the k’th imaging frame,
respectively. The vector gk ∈ RPQ represents lexicographically ordered pressure traces measured
by the transducers at the k’th imaging frame. Here, Q stands for the number of transducers,
and P represents the number of electrical signals recorded by each transducer. The notation
½gk�ðq−1ÞPþp refers to the ðq − 1ÞPþ p-th entry of the measurement vector gk. Here, the integer-
valued indices q and p denote the transducer index and temporal sample, respectively, and
Ωqk denotes the detection area of the q’th transducer at the k’th imaging frame. When the trans-
ducer size is small and/or the object is located near the center of a relatively large measurement
geometry, an idealized point-like transducer model can be assumed, and the surface integral over
Ωqk can be neglected.30

To facilitate the implementation of an iterative image reconstruction algorithm, a discrete-to-
discrete (D-D) imaging model is defined as follows. The spatially continuous object functions fk
corresponding to the k’th imaging frame are approximated using a finite linear combination of
spatial expansion functions fψnðrÞgNn¼1 and are given as

EQ-TARGET;temp:intralink-;e002;114;402fðNÞ
k ðrÞ ¼

XN
n¼1

αknψnðrÞ; k ¼ 1; : : : ; K; (2)

where N denotes the number of spatial expansion functions. In this study, the expansion func-
tions are piecewise trilinear Lagrangian functions defined on a uniform Cartesian grid. Their
expression is given as34

EQ-TARGET;temp:intralink-;e003;114;326ψnðrÞ ¼
(�

1 − jx−xnj
Δs

��
1 − jy−ynj

Δs

��
1 − jz−znj

Δs

�
; if jx − xnj; jy − ynj; jz − znj ≤ Δs

0; otherwise;
(3)

where r ¼ ðx; y; zÞ denotes the spatial coordinate and rn ¼ ðxn; yn; znÞ specifies the location of
the n’th node of the uniform Cartesian grid. The parameter Δs indicates the distance between
adjacent grid points.

The coefficients fαkngNK
n¼1;k¼1 are organized into a matrix F ∈ RN×K with entries ½F�nk ≡ αkn.

The k’th column of F is denoted by f k ∈ RN and represents the discrete approximation of
the object function at the k’th imaging frame, that is,

EQ-TARGET;temp:intralink-;e004;114;208

F ¼
XK
k¼1

f k ⊗ ek ¼

2
664
α11 : : : αK1

..

. . .
. ..

.

α1N : : : αKN

3
775; (4)

where ek ∈ RK represents the k’th column of the identity matrix in RK and⊗ denotes the vector
outer product. Correspondingly, a frame-dependent D-D imaging model accounting for meas-
urement noise is expressed as

EQ-TARGET;temp:intralink-;e005;114;110̱gk ¼ Hk f k þ ηk; k ¼ 1;2; : : : ; K; (5)

where ̱gk represents the (noisy) tomographic measurements at the k’th imaging frame and
ηk accounts for the measurement noise and the modeling and discretization errors. The operator
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Hk ∈ RQP×N stems from discretization of the C-D PACT imaging operator associated with the
k’th imaging frame. In particular, the vector gk ∈ RQP representing the action of Hk on f k is
defined as in Eq. (1) but with the continuous in space object function fkðrÞ replaced by its finite

dimensional approximation fðNÞ
k ðrÞ defined in Eq. (2).

Given the data matrix G
?
¼ P

K
k¼1 gk ⊗ ek ∈ RPQ×K and the set of imaging operators Hk

(k ¼ 1; : : : ; K) corresponding to each imaging frame, the goal of dynamic PACT image recon-

struction is to find a matrix F̂ ¼ P
K
k¼1 f̂ k ⊗ ek ∈ RN×K , with its column f̂ k representing an

object estimate at the k’th imaging frame; for simplicity, hereafter f̂ k is referred to as the k’th
frame of the spatiotemporal object estimate. Given the sparse tomographic measurements
acquired for each imaging frame, the task of dynamic image reconstruction constitutes a signifi-

cantly ill-posed inverse problem. A unique estimator, F̂, is obtained by solving the following
penalized least squares optimization problem:

EQ-TARGET;temp:intralink-;e006;117;575F̂ ¼ arg min
F∈RN×K

JðFÞ ≔ LðFÞ þ RðFÞ ¼
XK
k¼1

LkðFÞ þ RðFÞ; (6)

where RðFÞ is the regularization term, which is convex but possibly non-smooth. The total data
fidelity term LðFÞ ¼ P

K
k¼1 LkðFÞ is the sum of data fidelity terms LkðFÞ associated with the k’th

imaging frame. These quantities are defined as

EQ-TARGET;temp:intralink-;e007;117;496LðFÞ ¼ 1
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2

F

and LkðFÞ ¼
1

2
kHk f k − gkk22; (7)

respectively, where k · kF denotes the Frobeniuos norm.
In addition to the inherent ill-posed nature of the considered dynamic image reconstruction

problem, significant implementation challenges exist. First, unlike the relatively straightforward
task of static image reconstruction in which a single image is estimated, STIR involves dealing
with a considerably higher computational burden as all frames are reconstructed simultaneously,
particularly when each frame is 3D in space. Second, as the number of frames increases, there is a
growing need for memory space during computation, which necessitates effective computational
strategies with minimal memory usage.

3 Low-rank Matrix Estimation-based Spatiotemporal Image
Reconstruction

In numerous biomedical applications, the spatiotemporal object function of interest has been dem-
onstrated to be effectively approximated by a small set of weights σr and functions urðrÞ and vrðtÞ,
depending only on the space or time variables, known as the semiseparable approximation.29,35–40

Consequently, the object function is expressed as fðr; tÞ ≈P
R
r¼1 σrurðrÞvrðtÞ.29,35–40 Leveraging

the semiseparable approximation, the spatiotemporal reconstruction problem can be reduced
to the problem of estimating R weights and R spatial and temporal functions. In a discretized
formulation, this is algebraically equivalent to enforcing a low-rank structure on the matrix F.

A penalty scheme can then be imposed on the nuclear norm of the spatiotemporal recon-
struction matrix to promote low-rankness. Specifically, the regularization term stemming from
the nuclear norm of F is defined as

EQ-TARGET;temp:intralink-;e008;117;190RnnðFÞ ¼ kFk� ¼
XminðN;KÞ

r¼1

σr; (8)

where σr (r ¼ 1; : : : ;minðN;KÞ) represent the singular values of F. This approach not only
effectively regularizes the ill-posed inverse problem41 but also reduces memory demands without
sacrificing accuracy. Rather than explicitly storing F in memory, its truncated singular value
decomposition (SVD) URΣRVT

R is stored, resulting in a decreased memory requirement.
Here, R < minðN;KÞ denotes the truncation index, ΣR is the diagonal matrix comprising the
largest R singular values, and UR and VR are matrices with orthonormal columns collecting
the left and right singular vectors, respectively, corresponding to the R largest singular values.
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This approach not only facilitates an efficient approximation of F but also enforces the space-
time semiseparability. Specifically, the columns of UR and VR are the algebraic counterpart of
functions urðrÞ and vrðtÞ, respectively.

To further regularize the inverse problem, under the assumption that the object undergoes
a smooth and slow temporal change, another regularization scheme penalizing the difference
between two consecutive frames can be employed. This is accomplished by penalizing the
squared Frobenius norm of the temporal difference matrix, which is expressed through the
temporal (forward) difference operator, denoted as D ∈ RK×ðK−1Þ, being applied to F, given as

EQ-TARGET;temp:intralink-;e009;114;639RtðFÞ ¼ 1

2
kFDk2F; (9)

where D is defined as
EQ-TARGET;temp:intralink-;e010;114;594

D ¼ ½ d1 · · · dk · · · dK−1 � ¼

2
6666666664

−1 0 0 0 : : :

1 −1 0 0 : : :

0 1 −1 0 : : :

..

. ..
. ..

. ..
. ..

.

0 : : : 0 0 −1
0 : : : 0 0 1

3
7777777775
; (10)

where dk corresponds to the k’th column of the temporal (forward) difference operator,D. Within
this column, the k’th and ðkþ 1Þ’th elements possess values of −1 and 1, respectively, and
all other elements are set to 0.

In this way, the sought after estimate of the dynamic reconstruction problem with consid-
eration of a maximum rank constraint and temporal and nuclear norm penalties is formulated as

EQ-TARGET;temp:intralink-;e011;114;426F̂ ¼ arg min
F∈RN×K

Rmax

JðFÞ ≔ LðFÞ þ γRtðFÞ þ λRnnðFÞ; (11)

where RN×K
Rmax

denotes the set of all N-by-K matrices of rank Rmax at most and the cost function
JðFÞ is comprised of the data fidelity term LðFÞ in Eq. (7), the temporal regularization term
RtðFÞ in Eq. (9), and the nuclear norm regularization term RnnðFÞ in Eq. (8). Here, the param-
eters γ ≥ 0 and λ ≥ 0 control the strength of the temporal and nuclear norm regularization terms,
respectively. Similar to the data fidelity computation in Eq. (7), the temporal regularization
term RtðFÞ ¼ P

K
k¼1 R

t
kðFÞ is written as the sum of contributions Rt

k from each imaging frame.
Each term is defined as

EQ-TARGET;temp:intralink-;e012;114;302Rt
kðFÞ ≔

� kFdkk22 ¼ kf kþ1 − f kk22 if k < K
kFdKk22 ¼ 0 if k ¼ K;

(12)

Where, for uniformity of notation, dK ∈ RK is the zero vector. To highlight the contribution from
each frame, the minimization problem in Eq. (11) is then rewritten as

EQ-TARGET;temp:intralink-;e013;114;241

F̂ ¼ arg min
F∈RN×K

Rmax

XK
k¼1

LkðFÞ þ γ
XK
k¼1

Rt
kðFÞ þ λRnnðFÞ

¼ arg min
F∈RN×K

Rmax

XK
k¼1

kHk f k − gkk22 þ
γ

2

XK
k¼1

kFdkk22 þ λkFk�: (13)

In the formulated minimization problem, the data fidelity and temporal penalty terms are
convex and smooth, wheras the nuclear norm penalty term is convex but non-smooth. Accordingly,
the minimization problem can be solved using a proximal gradient descent (PGD) method.42,43

The convergence speed of the PGD method can be improved with momentum schemes.44,45

To further improve the convergence speed, especially in the early iterations, an ordered subsets
(OS) approach46 can be incorporated with momentum schemes,47,48 despite the lack of theoretical
guarantees of convergence. In addition to acceleration, applying the OS approach to find an
approximate solution to Eq. (13) offers several other significant benefits. Notably, it substantially
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reduces memory requirements by a factor proportional to the number M of subsets used. The
gradient with respect to all imaging frames requiresOðNKÞmemory usage, whereas the gradient
corresponding to each subset only requires OðNK∕MÞ storage. Furthermore, it preserves the
low-rank structure of the reconstructed object function estimate at each step of the proximal
gradient iteration.

For the optimization problem given by Eq. (11), the OS-based cost function is expressed as47,48

EQ-TARGET;temp:intralink-;e014;117;664JKj
ðFÞ ¼ M

X
k∈Kj

LkðFÞ þMγ
X
k∈Kn

Rt
kðFÞ þ λRnnðFÞ; (14)

where Kj represents the set of frame indices in the j’th ordered subset. The OS approach relies on
the “subset balance” approximation,47,48 implying that JKj

ðFÞ ≈ JðFÞ. The update procedure in
PGDwith OS consists of two main steps. Initially, a gradient descent step is performed; it moves in
the negative gradient of the smooth components of the OS-based cost function, which yields

EQ-TARGET;temp:intralink-;e015;117;576

Fjþ1
2
¼ Fj − η∇

�
M
X
k∈Kj

LkðFjÞ þMγ
X
k∈Kj

Rt
kðFjÞ

�

¼ Fj − ηM
X
k∈Kj

ððHT
k ðHk f k − gkÞÞ ⊗ ek þ γFjðdk ⊗ dkÞÞ: (15)

Here, η is the step size, and Fj denotes the spatiotemporal object estimate at the beginning of
the j’th update. The first component of the gradient, associated with the data fidelity term for the
k’th frame, results in an outer product that produces a rank-1 matrix. Similarly, the second com-
ponent of the gradient, related to the temporal regularization term for the k’th frame, also yields
a rank-1 matrix. Thus, the maximum rank of the gradient of the OS-based cost function JKj

is
bounded by 2jKjj, where jKjj denotes the number of imaging frames in the ordered subset.

Following the gradient descent step, the proximal step is executed by applying the proximal
operator to account for the nonsmooth component of the objective function. The proximal step
corresponds to the solution of the following minimization problem:

EQ-TARGET;temp:intralink-;e016;117;393Fjþ1 ¼ proxηλk·k�
�
Fjþ1

2

�
≔ argmin

F∈RN×K
Rmax

1

2

���F − Fjþ1
2

���2
2
þ ηλkFk�; (16)

the solution of which can be efficiently implemented via a truncated SVD factorization of
Fjþ1

2
and the application of the soft-thresholding operator, Sð:Þ, to its singular values fσig.49

The solution of the Eq. (16) is expressed as follows:

EQ-TARGET;temp:intralink-;e017;117;314Fjþ1 ¼ Ujþ1
2
Sηλ

	
Σjþ1∕2



VT

jþ1
2

¼ Ujþ1
2
Σ̃jþ1

2
VT

jþ1
2

; (17)

where Ujþ1
2
, Σjþ1

2
, and Vjþ1

2
stem from the truncated SVD of Fjþ1

2
with maximum rank Rmax and

Σ̃jþ1
2
≔ SηλðΣjþ1∕2Þ. The soft-thresholding operator, Sð:Þ, is defined (component-wise) as

EQ-TARGET;temp:intralink-;e018;117;256SηλðσiÞ ¼ σ̃i ¼
�
σi − ηλ if σi > ηλ
0; if σi ≤ ηλ:

(18)

The soft-thresholding is computationally efficient and enforces a low-rank structure that
effectively attenuates the singular values.

Algorithm 1 summarizes the proposed accelerated PGD algorithm, integrating both momen-
tum and ordered subset techniques to efficiently find an approximate solution to the minimization
problem in Eq. (11). The algorithm takes the following parameters as input: the maximum
allowed rank Rmax; the threshold ε for the stopping criterion; the regularization parameter γ for
temporal regularization; the regularization parameter λ for nuclear-norm regularization; the step
size η; and the number M of subsets. At the beginning of each iteration, the sequence of frame
indices undergoes random shuffling. Within the subsequent inner loop, these shuffled indices are
partitioned into M subsets. The gradient pertaining to both the data fidelity and temporal regu-
larization components is computed for these subset frame indices, and the gradient descent step is
executed. Then, the proximal mapping associated with nuclear norm regularization is evaluated
efficiently using randomized SVD50 and soft thresholding. Subsequent to this step, the fast
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iterative shrinkage-thresholding algorithm44 (FISTA) acceleration scheme is deployed to
enhance the convergence rate. The algorithm terminates when the squared Frobenius norm of
the difference between two successive iterations kFðiÞ − Fði−1Þk2F, normalized by its maximum
maxl≤ikFðlÞ − Fðl−1Þk2F over the previous iterations, falls below the threshold ε defined by the
user. This metric is equivalent to monitoring the norm of the gradient in smooth optimization.43

Algorithm 1 LRME-STIR.

Input: Rmax, ϵ, γ, λ, η, M

Output: F

Initialization: F ð0Þ
1 ¼ 0, t ð0Þ1 ¼ 1, b ¼ ½K∕M �, i ¼ 0

while kF ðiÞ − F ði−1Þk2F∕maxl≤ikF ðlÞ − F ðl−1Þk2F ≤ ϵ do

⊳ Convergence check

K ¼ shuffleð1;2; : : : ; K Þ
⊳ Randomly shuffle frames

for j ¼ 1 to M do

Kj ¼ K½ðj − 1Þb þ 1∶minðjb; K Þ�
⊳ Select the current subset of frames

Compute gradient descent for the current subset of frames:

F ðiÞ
jþ1

2
¼ F̄ ðiÞ

j − η∇
�
M
P

k∈Kj
Lk ðF̄ ðiÞ

j Þ þMγ
P

k∈Kj
Rt

k ðF̄ ðiÞ
j Þ

�
⊳ rank

�
F ðiÞ

jþ1
2

�
≤ 2Rmax þ 2b

Perform proximal operator:49

U ðiÞ
jþ1

2
;ΣðiÞ

jþ1
2
;V ðiÞ

jþ1
2
¼ SVD

�
F ðiÞ

jþ1
2
; Rmax

�
⊳ Compute the truncated SVD with

maximum rank Rmax

Σ̃ðiÞ
jþ1

2
¼ Sηγ

�
ΣðiÞ
jþ1

2

�
⊳ Soft thresholding for nuclear norm

regularization

F ðiÞ
jþ1 ¼ U ðiÞ

jþ1
2
Σ̃ðiÞ
jþ1

2

�
V ðiÞ

jþ1
2

�
T

⊳ rankðF ðiÞ
jþ1Þ ≤ Rmax

Implement FISTA acceleration:44

t ðiÞjþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðt ðiÞj Þ2

q
2

⊳ Update momentum term

F̄ ðiÞ
jþ1 ¼ F ðiÞ

jþ1 þ
t ðiÞj −1

t ðiÞj
ðF ðiÞ

jþ1 − F ðiÞ
j Þ

⊳ FISTA update for the current iteration;
rankðF̄ ðiÞ

jþ1Þ ≤ 2Rmax

end for

F ðiþ1Þ ¼ F ðiÞ
Nþ1

F̄ ðiþ1Þ
1 ¼ F̄ ðiÞ

Nþ1

t ðiþ1Þ
1 ¼ t ðiÞNþ1

i ¼ i þ 1

⊳ Increment outer loop iteration

end while
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4 Study Description

4.1 3D PACT Imaging System Specifications for Experimental and Numerical
Studies

The TriTom preclinical imaging system19,51 developed by PhotoSound was employed for the
experimental studies and emulated for the numerical in-silico studies. It integrates photoacoustic
(PA) and fluorescence (FL) imaging modalities, harnessing their individual strengths. The system
comprises a central rotary scanning stage, an optical excitation setup for PA and FL imaging, a
curvilinear 96-element PA transducer array, and a fluorescence-enabled scientific complementary
metal-oxide-semiconductor (sCMOS) camera. The configuration of the TriTom setup is depicted
in Fig. 2(a), and the imaging chamber is shown in Fig. 2(b).

During imaging, the object is immersed in water and continuously rotated while being
optically stimulated by a short laser pulse with a 10 Hz repetition rate. The maximum rotation
speed is 10 degrees per second; therefore, completing a full 360-deg scan requires 36 s. Four
optical fiber bundles are located on the outer circumference of the cylindrical imaging chamber,
perpendicular to the scanning plane of the PA array. The laser emits pulses in the 670 to 1064 nm
wavelength range at a frequency of 10 Hz, with each pulse lasting 5 ns. Acoustic waves generated
by the laser excitation are detected by the PA transducer array, which comprises piezoelectric
transducer elements, each measuring 1.3 × 1.3 mm2. The center frequency of the transducer
elements is 6 MHz� 10% (at −6 dB) with bandwidth ≥55%. The array is vertically oriented
and cylindrically focused, with the central element positioned 65 mm from the center of the
imaging chamber. For fluorescence imaging, an sCMOS camera with a 2048 × 2040 pixel

resolution and a 40 × 40 mm2 field-of-view is placed outside the imaging chamber.
In the acoustic modeling of the TriTom imaging system, the transducer array was assumed to

consist of idealized point-like transducers positioned at the central locations of the transducer
elements. The acoustic simulation was implemented with a GPU-accelerated D-D imaging
model34 assuming an acoustically homogeneous medium. Although the TriTom system has a
single transducer arc, other existing 3D PACT designs (e.g., Refs. 20 and 52) feature multiple
transducer arcs; thus the numerical studies also explored scenarios in which multiple tomo-
graphic measurements were acquired per imaging frame. Specifically, measurement configura-
tions in which two transducer arcs separated by 90 deg and four transducer arcs separated by
45 deg were considered, as illustrated in Fig. 3. The associated compression ratios for sparse
sampling in these scenarios are 1/360, 1/180, and 1/90 for the measurement configuration
with 1, 2, and 4 transducer arcs, respectively. The sampling rate for both the experimental
and numerical studies was set to 31.25 MHz, with 2048 temporal samples collected per imaging
frame.

Fig. 2 Illustration of the TriTom imaging system (a) and a picture of the imaging chamber (b).
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4.2 Inverse Crime Validation Study
To verify that Algorithm 1 was correctly implemented, an inverse crime validation study was
conducted in silico in which a simple rank-4 dynamic phantom was employed. The phantom
consisted of 40 × 40 × 3 spatial voxels and 360 object frames, with a voxel size of
0.4 × 0.4 × 0.4 mm3. The induced pressure in the phantom was assumed constant along the
z-axis and piecewise constant within the xy-plane at each object frame. The phantom was struc-
tured into four distinct regions, each characterized by varying temporal activities as shown in
Fig. 4. Figure 4(a) illustrates the central z-slice of the phantom at the 120th object frame, and
Fig. 4(b) displays the time activity curves (TACs) corresponding to the numbered regions. For
each imaging frame (360 in total), four tomographic measurements separated by 45 deg were
considered, as depicted in Fig. 3(b). Simulated acoustic pressure data were generated using a grid
voxel size of 0.4 × 0.4 × 0.4 mm3, assuming the phantom was centered within the imaging
system.34 The speed of sound was assumed constant at 1495 m/s, and no noise was added
to the simulated measurement data.

During image reconstruction, the same computational grid that was used for generating the
measurement data was employed. In the algorithm, the maximum allowed rank, Rmax, was set to
4, and no temporal or nuclear norm penalties were applied (λ ¼ γ ¼ 0). The step-size, η, was
tuned empirically to ensure convergence. To explore the impact of the number of OS used in the
randomized evaluation of the data fidelity term, three different numbers of OS were investi-
gated: M ∈ f1;2; 6g.

4.3 Numerical Phantom Study
A dynamic numerical phantom was utilized to evaluate the performance of the proposed method
through in silico experiments. The phantom consisted of 360 object frames and contained four
convex ellipsoidal blobs within a larger ellipsoidal blob, along with a vasculature mimicking
structure, as shown in Fig. 5(d). The size of the numerical phantom was 40 × 40 × 30 mm3,
with a voxel size of 0.4 × 0.4 × 0.4 mm3. The time activity at each voxel was designed to mimic

Fig. 4 Central z-slice of the simple rank-4 phantom at the 120th object frame (a), TACs at the
numbered regions in the z-slice (b). Region 1 denotes a static background.

Fig. 3 Top view of the virtual imaging systems collecting 1, 2, or 4 tomographic measurements per
imaging frame.
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a contrast agent’s flow along the paths from ellipsoidal blobs 1 to 2 and 3 to 4. Figure 5(c)
illustrates the time activity at the center of each ellipsoidal blob, and the blobs are numbered
in Fig. 5(d). The singular values of the dynamic numerical phantom are shown in Fig. 5(a),
where a rapid singular value decay is observed. The rapid singular decay indicates that the
phantom can be accurately approximated with a low-rank representation, as demonstrated by
the mean squared error (MSE) versus rank plot depicted in Fig. 5(b).

To generate the synthetic measurement data, the grid voxel size was set to
0.2 × 0.2 × 0.2 mm3, and 360 imaging frames (corresponding to a complete rotation of the sys-
tem) were simulated. The speed of sound was assumed to be constant at 1495 m∕s. Zero-mean
Gaussian noise with a standard deviation equivalent to a specified percentage of the maximum
value of the simulated data (1%, 3%, or 5%) was added to the pressure signals.

The primary objective of this numerical study was to investigate the effect of the following
physical factors on the proposed method.

• Number of tomographic measurements per imaging frame: in this study, the noise level was
fixed at 1%, and three scenarios were examined with 1, 2, and 4 tomographic measure-
ments per imaging frame, as illustrated in Fig. 3.

• Measurement noise level: in this study, the number of tomographic measurements per im-
aging frame was set to 2, and three different noise levels were considered: 1%, 3%, and 5%.

4.4 Numerical Study
For image reconstruction, the maximum allowed rank in the algorithm was set to Rmax ¼ 40 as it
allows for an accurate approximation of the dynamic numerical phantom with an MSE of around
10−8, as shown in Fig. 5(d). To avoid the discretization inverse crime, a coarser grid with voxel
size 0.4 × 0.4 × 0.4 mm3 was used for the reconstruction. The speed of sound value was the same
as that used for simulating the data. The threshold ε for the stopping criterion of Algorithm 1 was
set to 2.5 × 10−1. The step-size, η, was tuned empirically to ensure convergence. The number of
subsets, M, was set to 18. To select appropriate regularization parameters, the balancing
principle53 was employed to reduce the number of tunable regularization parameters from two
to one. The balancing principle rescales each regularization term by an estimate of their value at
the object function Ftrue. An iterative procedure was proposed in Ref. 53 to estimate such values;
however, for simplicity, this work assumes direct knowledge of the actual nuclear norm and

Fig. 5 (a) Singular value plot of the dynamic numerical phantom, (b) MSE of low-rank approxi-
mations, (c) TACs at the center of each ellipsoidal blob, and (d) maximum intensity projection
(MIP) images of the 180th object frame of the dynamic phantom (bottom). The ellipsoidal blobs
are numbered in the MIP along the z-axis image. The red dot in panels (a) and (b) denotes the
index Rmax ¼ 40 used as a maximum rank constraint in the reconstruction studies.
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the Frobenius norm of the temporal difference of Ftrue. Importantly, this assumption is specific to
the numerical study, which examines the method’s performance under controlled conditions.
In practical applications in which direct knowledge of the true values is unavailable, as in the
experimental study (see Sec. 4.5), empirical parameter sweeps can be used to tune regularization
parameters for dynamic image reconstruction. Specifically, in this study, the solution to the
dynamic image reconstruction problem is defined as

EQ-TARGET;temp:intralink-;e019;114;664F̂ ¼ arg min
F

1

2

XK
k¼1

kHk f k − gkk2 þ κ

� P
K−1
k¼1 kf kþ1 − f kk2P

K−1
k¼1 kf truekþ1 − f truek k2 þ

kFk�
kFtruek�

�
: (19)

For each case, four different values of the parameter κ were explored:
κ ∈ f10−4kGk2F; 5 × 10−4kGk2F; 2.5 × 10−3kGk2F; 1.25 × 10−2kGk2Fg. The κ parameter yielding
the best average normalized squared error (nSE) over frames was selected.54 The nSE for each
frame was computed as

EQ-TARGET;temp:intralink-;e020;114;572nSE ¼ kf truek − f̂ kk22∕max
k

kf truek k22: (20)

Specifically, the regularization parameter value that yielded the optimal results was
κ ¼ 5 × 10−4kGk2F when four tomographic measurements per frame were available and
κ ¼ 2.5 × 10−3kGk2F for all other cases.

4.5 Experimental Study
An open-ended dynamic flow phantom was constructed by bending a silicone tube into a
U-shaped structure, as depicted in Fig. 6. Figure 6(a) provides an illustration of the phantom
within the imaging chamber, and Fig. 6(b) shows an actual photograph of the physical phantom.
The inner diameter of the silicone tube was 0.0635 cm, and the outer diameter was 0.1194 cm.
The dynamic phantom, positioned at the center of the imaging system, was illuminated by a laser
pulse with a wavelength of 770 nm and an energy of 100 mJ (before entering the fiber optic light
delivery unit). PACT data were acquired with the TriTom imaging system during the injection of
a photoacoustic-fluorescent contrast agent (PAtIR55) through one end of the tube. Over a span of
36 s, the dynamic phantom underwent scanning, which resulted in 360 imaging frames in total,
with 10 imaging frames per second and a single tomographic measurement per imaging frame.
Two-dimensional fluorescence images were concurrently gathered, which serve as reference for
the time evolution of the contrast agent concentration within the tube.

Based on the region illuminated by laser, the reconstruction volume was set to a region of
30 × 30 × 30 mm3 located at the center of the imaging system. The voxel size was set to
0.4 × 0.4 × 0.4 mm3, resulting in 75 × 75 × 75 spatial voxels. The maximum allowed rank,
Rmax, was set to 40, and the number of subsets, M, was set to 18. For the stopping criterion of
Algorithm 1, the threshold ϵ was set to 5 × 10−1. The step-size, η, was tuned empirically to

Fig. 6 Illustration (a) and a picture (b) of the experimental dynamic phantom.
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ensure convergence. To calibrate the speed of sound, multiple static estimates of the dynamic
object were reconstructed using the universal back-projection algorithm56 assuming speed of
sound values in the range of 1480 to 1520 m∕s, with 5 m∕s increments. The speed of sound
value of 1495 m∕s resulted in the best visual appearance and was selected to perform the
dynamic image reconstruction. To choose the regularization parameters, nine dynamic image
reconstructions were performed for all possible combinations of γ ∈ f5.5 × 100; 5.5 × 101;
5.5 × 102g and λ ∈ f10−1; 100; 101g. Ultimately, the spatiotemporal object estimate that most
closely captured the observed dynamic changes in the reference fluorescence images, as deter-
mined through visual examination, was selected. The corresponding regularization parameters
were γ ¼ 5.5 × 101 and λ ¼ 100.

5 Results

5.1 Inverse Crime Validation Study Results
In this inverse crime study, the step sizes η for M ¼ 1;2; 6 were empirically tuned to ensure
convergence, resulting in values of f10−4; 10−4; 3.3 × 10−5g, respectively. The algorithm was
allowed to run for 2500 iterations in each case to ensure convergence of the solution up to
numerical precision. For the purpose of this validation study, Algorithm 1 was modified to
re-evaluate the total data fidelity term LðFiÞ, which accumulates the contributions from all time
frames, at each iteration.

The results of the validation study are depicted in Fig. 7. Figure 7(a) exhibits the data fidelity
LðFiÞ versus the iteration count, and Fig. 7(b) presents the average nSE versus the iteration
count. For all values ofM, a significant decrease of approximately 11 and 13 orders of magnitude
can be observed in the data fidelity term and average nSE, respectively. This indicates that the
proposed method using momentum-acceleration in combination with OS (case M ∈ f2;6g),
although lacking a theoretical guarantee of convergence, can achieve (up to machine precision)
to the same object estimate produced by the momentum-accelerated PGD without the subsam-
pling method (M ¼ 1). It is also evident that a larger number of subsets improves the conver-
gence speed, particularly in the early iterations. This also translate into a possibly faster time to
solution as the cost of each iteration is dominated by the evaluation of the imaging operator,
whereas the time spent in performing the truncated SVD factorization using the randomized
method is negligible. In the numerical studies presented here, the computational time required
per iteration was approximately 15 min on a workstation (AMD EPYC 7702P 64-Core processor,
32 GB RAM, one Nvidia Geforce RTX 2080 graphic processing unit), independent of the num-
ber M of subsets used.

In summary, this validation study demonstrates the correct implementation, efficiency, and
robust convergence, despite a lack of theoretical guarantees, of the proposed method.

Fig. 7 Data fidelity versus the iterations (a), and the average nSE versus iterations (b). The plots
confirm the correct implementation of the algorithm and illustrate how increasing the number of
subsets can accelerate the reduction of the data fidelity term. Additionally, the plots illustrate the
similar order-of-magnitude reduction in both data fidelity and average nSE values for every number
of subsets M ∈ f1;2; 6g.
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5.2 Numerical Phantom Study Results

5.2.1 Sensitivity to the number of tomographic measurements per imaging
frame

Figure 8 displays a selection of MIP images depicting the numerical phantom and the spatio-
temporal estimates from simulated data with varying numbers of tomographic measurements per
imaging frame. A video featuring the spatiotemporal evolution of the numerical phantom and its
corresponding estimates is available as Video 1. Upon careful inspection, it is apparent that
increasing the number of tomographic measurements per imaging frame leads to more accurate
estimates of the dynamic object. For instance, object estimates reconstructed from data with two
and four measurements per imaging frame correctly capture the increase in intensity of blob-4
after frame-301. However, this intensity change is less prominent in the dynamic estimate recon-
structed from data with only one tomographic measurement per imaging frame, which also
exhibits artifacts around blob-4. In addition, the estimate reconstructed using four measurements
per imaging frame better captures the intensity difference between the two ends of blob-1 in
frame-1. These observations are more evident in Fig. 9, which shows the TACs at each ellipsoidal
blob’s center in both the numerical phantom and the spatiotemporal estimates from data with
different numbers of tomographic measurements per imaging frame. Notably, the TACs for the
reconstruction from four tomographic measurements per imaging frame closely align with those
of the numerical phantom. The nSE versus the imaging frame plot for the reconstructions with
varying numbers of tomographic measurements per imaging frame is depicted in Fig. 11(a).
Both the TACs and nSE versus frame plots confirm the observation that a higher number of
tomographic measurements per imaging frame leads to more accurate spatiotemporal
reconstructions.

5.2.2 Sensitivity to measurement noise

Figure 10 displays the TACs at each ellipsoidal blob’s center in both the numerical phantom
and its spatiotemporal estimates from data with varying noise levels, when the number of

Fig. 8 Selected MIP images (along the z-axis) depicting the numerical phantom and correspond-
ing spatiotemporal estimates from simulated data with varying numbers of tomographic measure-
ments per imaging frame. A close examination reveals improved reconstruction accuracy with an
increased number of tomographic measurements. Notably, the reconstructions using two and four
tomographic measurements per imaging framemore accurately capture the intensity change in blob-
4 (located at the bottom right) compared with the one using a single tomographic measurement per
imaging frame. This observation is further supported by the TACs shown in Fig. 9. A video featuring
the spatiotemporal evolution of the numerical phantom and its reconstructed estimates is available
as Video 1 (Video 1, MP4, 10 MB [URL: https://doi.org/10.1117/1.JBO.29.S1.S11516.s1]).
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tomographic measurements per frame is kept at two. Notably, the estimated TACs remain similar
across all noise levels, highlighting the algorithm’s robustness in capturing dynamic changes
even in the presence of increased noise. Figure 11(b) shows the nSE versus imaging frame plot
for estimates reconstructed from data with varying noise levels. As anticipated, the nSE exhibits
an upward trend with increasing noise levels.

The numerical phantom study results underscore the effectiveness of the proposed method in
accurately estimating dynamic changes, when limited tomographic measurements per frame are
available. The study reveals that the ill-posed nature of the dynamic reconstruction problem

Fig. 10 TACs at each ellipsoidal blob’s center, comparing the true phantom with reconstructions
from data with different noise levels; the number of tomographic measurements per frame was
fixed at 2. It is seen that the recovered TACs are close to each other, which shows the robustness
of the algorithm against the noise level.

Fig. 11 (a) nSE versus the imaging frame number for reconstructions with varying numbers of
tomographic measurements per imaging frame; the noise level was fixed at 1%. A direct corre-
lation between an increase in measurements and reduction in nSE is observable, thus highlighting
the improved reconstruction accuracy. (b) nSE versus the imaging frame number for reconstruc-
tions from data with varying noise levels; the number of tomographic measurements per frame was
fixed at 2. As anticipated, the nSE exhibits an upward trend with increasing noise levels.

Fig. 9 TACs at each ellipsoidal blob’s center, comparing the numerical phantom with its estimate
reconstructed from different numbers of tomographic measurements per imaging frame. The noise
level was kept at 1%. The curves demonstrate that increasing the number of measurements
enhances the fidelity of temporal activities in the reconstructions.
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diminishes significantly as the number of tomographic measurements per imaging frame
increases. Notably, the method’s robustness in faithfully capturing the temporal dynamics of the
object remains evident even in the presence of increased noise levels. These findings collectively
underscore the algorithm’s reliability and potential significance in addressing challenges asso-
ciated with dynamic imaging scenarios.

5.3 Experimental Study Results
Figure 12 displays dynamic PACT images reconstructed from experimental data (bottom row),
along with the corresponding reference fluorescence images (top row). The fluorescence images
were processed to suppress the background, and the contrast agent is highlighted in yellow. This
enhancement was accomplished through manual segmentation of the tube and contrast agent
from the raw fluorescence images. The spatiotemporal PACT object estimates were visualized
using ParaView.57 To ensure a qualitatively close alignment of the field-of-view between the
ParaView visualization of the spatiotemporal PACT object estimate and the 2D fluorescence
images, the view angle in ParaView was adjusted manually at each frame; however, a slight
misalignment remains. A video featuring the raw images, visually enhanced images through

Fig. 12 Sample instances of the dynamic recovery from PACT data (at the bottom of each row)
and reference fluorescence images (at the top of each row). The spatiotemporal evolution of the
contrast agent inferred from the spatiotemporal estimates reconstructed from PACT data is in
strong agreement with the reference images collected by the fluorescence-enabled sCMOS cam-
era. A video featuring the raw images, visually enhanced images through the segmentation of the
tube and contrast agent, and ParaView visualizations of the spatiotemporal PACT object estimate
is provided in Video 2 (Video 2, MP4, 36.3 MB [URL: https://doi.org/10.1117/1.JBO.29.S1.S11516
.s2]).
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the segmentation of the tube and contrast agent, and ParaView visualizations of the spatiotem-
poral PACT object estimate is provided in Video 2.

In particular, when examining frames 30 to 120, one can readily observe the accurate recov-
ery of dynamic contrast flow within the tube. A similar trend is evident in frames 210 to 300, with
the lower right section of frame-240 showing the presence of the contrast agent, albeit with
reduced contrast. This reduced contrast is also noticeable in specific frames, such as 330 and
360, possibly due to light obstruction by other tube segments. Nevertheless, the overall effective
recovery of dynamic flow remains apparent, as convincingly demonstrated in Video 2. This high-
lights the effectiveness and practicality of the proposed method for experimental data beyond
simulated measurements, even when only one tomographic measurement per imaging frame is
available.

Furthermore, it is worth noting that the spatiotemporal reconstruction offers a frame rate that
is equal to the laser pulse rate [10 frames per second (FPS) for the instrument used in the phantom
studies]. By contrast, an FBFIR technique would provide a frame rate of 1/36 FPS, which is equal
to the reciprocal of the time required for a complete tomographic measurement. This underscores
the reconstruction method’s potential for monitoring dynamic physiological processes that
demand an enhanced frame rate. This can enhance the value of 3D PACT systems that involve
rotating measurement gantries for preclinical research, enabling STIR from limited tomographic
measurements per imaging frame.

6 Conclusion and Discussion
Volumetric PACT imagers commonly adopt a sequential data acquisition strategy utilizing rotat-
ing measurement gantries because of their cost-effectiveness and simplified hardware.2,19–21

However, the relatively slow data acquisition times associated with this approach pose significant
challenges for dynamic imaging. Consequently, previous studies on dynamic PACT have pre-
dominantly focused on 2D dynamic imaging scenarios, leveraging the rapid data acquisition and
computationally less demanding image reconstruction calculations of 2D systems. Recognizing
that many commercially available volumetric imagers employ sequential data acquisition strat-
egies with rotating gantries, it becomes imperative to advance dynamic image reconstruction
techniques tailored to these widely adopted configurations. Addressing this need will enhance
the versatility and practical utility of volumetric PACT imagers, allowing for more effective im-
aging of dynamic processes.

This study presented an accurate and computationally efficient LRME-STIR method for
dynamic PACT attuned for commercially available volumetric imagers that employ a rotating
measurement gantry in which the tomographic data are sequentially acquired. The implementa-
tion of the method was verified by an inverse-crime numerical validation study. The effect of
varying number of tomographic measurements per imaging frame and the noise level on the
method’s accuracy was investigated in an in-silico numerical study. The numerical studies
demonstrated that the proposed method is robust against increasing noise levels. They also dem-
onstrated that, as expected, increasing the number of tomographic measurements per frame
improves the reconstruction accuracy. Therefore, it is desirable and beneficial for dynamic im-
aging to design acquisition systems that, like the University of Twente breast imager,52 utilize
multiple acoustic probes. The experimental study demonstrated the LRME-STIR method’s abil-
ity to reconstruct the flow of a contrast agent at a frame rate of 10 FPS, even when only a single
tomographic measurement per imaging frame was available. Numerical and experimental studies
confirm the accuracy of the proposed technique. Thus, this work will potentially have an imme-
diate and sustained positive impact by creating a new capacity to perform dynamic 3D PACT.

The LRME-STIR method proposed in this study employed an accelerated PGD method
combined with an OS approach, distinguishing it from previously proposed LRME-STIR
methods.29,35,36,40 It is important to note that previous studies have demonstrated that the combi-
nation of the OS approach with momentum schemes can lead to convergence instability,
particularly as the number of subsets increases.47,48,58,59 This instability arises due to error accu-
mulation in the momentum term, as the “subset balance” approximation does not perfectly
hold.47 The “subset balance” approximation implies that the cost function, JðFÞ, defined in
Eq. (11) can be approximated with the OS-based cost function, JKj

ðFÞ, defined in Eq. (14),
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i.e., JKj
ðFÞ ≈ JðFÞ. When a small number of subsets is employed, the “subset balance” approxi-

mation is more accurate; thus, the method exhibits more stable convergence characteristics;
however, the acceleration from the ordered subset approach is limited in such cases.47

To enhance stability, various strategies have been introduced in the literature. For instance,
the relaxation of the momentum term has been proposed to mitigate convergence issues.47

Another approach involves a monotonic adaptation of the FISTA acceleration, which utilizes
objective function values to adaptively determine the subsequent update.48 Additionally, an adap-
tive restarting method that resets the momentum terms based on a stability metric was introduced,
further promoting convergence reliability.59 Although combining OS and momentum schemes
does not provide theoretical guarantees of convergence, in the numerical and experimental stud-
ies, the proposed approach demonstrated stable convergence behavior, given the proper selection
of the step size and number of subsets. Future refinements of the proposed method may explore
the different strategies from the literature to obtain a provably convergent method.48,58,59

Subsequent investigations may focus on evaluating the method’s efficacy in imaging com-
plex dynamic physiological processes and quantifying relevant parameters, such as wash-in and
wash-out rates for tumor vascular perfusion.37,60 These evaluations might encompass both in-vivo
and in-silico experiments, further advancing the understanding and application of the proposed
method.
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