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ABSTRACT. Bathymetry, the measurement of sea depth, has conventionally been conducted
using echo-sounders on vessels. However, various factors limit conventional ship-
borne surveys in coastal regions, including data continuity, geographic obstacles,
diplomatic concerns, and marine infrastructures. Remote sensing technology can
address these limitations, particularly with the advancement of satellite imaging
technology. Indeed, many studies are underway to develop machine learning-based
water depth estimation technologies. However, previous studies have focused on
clear waters with low turbidity or uniform seabed sediment. Therefore, in this study,
we developed a satellite-derived bathymetry (SDB) model using the random forest
machine learning algorithm, which was applied to three coastal areas around
the Korean Peninsula with distinct characteristics: clear waters (Samcheok), high
turbidity (Cheonsuman), and varied seabed sediments (Hallim). We then compared
the accuracy of the bathymetric mapping data derived in these three areas. The
estimated depth values exhibited the highest accuracy in Samcheok, followed by
Hallim and Cheonsuman. Based on Worldview-3 images and on-site surveys, we
confirmed the presence of basalt on the seabed. However, the remote reflectance
was attenuated due to the effect of the black rock, leading to an overestimation of the
depth. In the future, additional satellite images will be applied as training data for the
machine learning model to advance the SDB technology using turbidity and seabed
sediment distribution data for each area. Ultimately, the SDB results will be applied
as depth monitoring data to facilitate safe ship passage in coastal areas, including
ports that require periodic and consistent coastal bathymetry. In addition, they can
be applied as input data for numerical ocean models, contributing to various fields.
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1 Introduction
The depth of coastal waters is a crucial factor influencing marine environmental management,
marine hydrodynamic structures, marine infrastructures, and ship navigation safety. Traditionally,
bathymetric surveys have been conducted using shipborne echo-sounders, which calculate
ocean depths based on the time it takes for sound waves to reflect off the seabed and return.
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However, this method is limited in its ability to investigate the depth across large maritime
expanses in a short period due to budget constraints and weather conditions.1–3 Accordingly,
the demand for indirect bathymetric survey techniques continues to increase when direct surveys
are not possible due to geographical or diplomatic reasons, high ship traffic, or shallow areas that
are inaccessible by ships.4–6 To overcome the limitations of contact-based bathymetry methods,
extensive research on satellite-derived bathymetry (SDB) is underway globally. This technique
provides low-cost, high-efficiency bathymetric surveys in shallow waters, meeting the require-
ments for short cycles and timeliness.1–3,5–9

Water depth is estimated by SDB technology based on correlations between the remotely
sensed reflectance values of satellite imagery observed with optical multispectral sensors and the
water depth during image acquisition. While SDB can be generally applied to depths up to 20 m,
it may only be applicable to depths of up to 10 m, depending on the characteristics of the marine
region.5,10,11 Indeed, the reflectance of light penetrating the water decreases exponentially with
increasing water depth, and the attenuation of remote reflectance varies by wavelength.3,7

The Lyzenga linear band model is a widely used simple SDB model that defines a linear
relationship, assuming that the seabed reflectance is linearly related to the depth variation.
Meanwhile, the Stumpf logarithmic band ratio model estimates water depth using the reflectance
ratio of the seabed to the water based on various experimental parameters.3,8,9,12–14 However,
these models adopt empirical methodologies; consequently, the input values for depth estimation
are variable between marine regions, impeding the construction of a universally applicable
model.3 Accordingly, recent research has actively focused on developing depth estimation
models using various machine learning algorithms and independent satellite imagery to ensure
universality.1–3,5,11,15 Random forest (RF) is a machine learning algorithm that falls under the
category of decision tree learning. It is commonly employed for tasks involving classification
and regression analysis.16 In particular, its capacity to readily adjust variables and parameters,
combined with its capacity to efficiently handle large amounts of data, makes RF a commonly
used modality in SDB research for the construction of regression models.17 Indeed, RF models
exhibit lower errors than other SDB machine learning techniques, making it advantageous for the
generation of accurate models.15,18–26

Most SDB research has been conducted in marine waters, where the concentration of sus-
pended solids is low, and the concentration of phytoplankton is less than an annual average of
1.0 mg/m3, the underwater transparency is extremely high, or in atolls and coastal waters with
low turbidity.2,3,5,9–11,27–29 The coastal waters of the Korean Peninsula’s West, South, and East
Seas differ considerably in marine environmental characteristics, including depth distribution,
water turbidity, and sediment composition. The Yellow Sea (West Sea) seabed comprises sand
and mud and is characterized by continuous sediment influx from rivers, seabed topography with
low-gradient slopes, extensive tidal flats due to a large tidal range, shallower depths, strong tidal
influence, and high underwater turbidity due to consistent tidal currents. In contrast, the East Sea
has a simple coastline and a narrow continental shelf, leading to rapid depth increases from the
coast and relatively clear water with low turbidity. Meanwhile, the South Sea presents character-
istics intermediate between the East and Yellow Seas, with a more complex coastline dotted with
many small- to medium-sized islands, and a seabed composed primarily of sand and mud.30

In addition, the coastal waters around Jeju Island have a mix of sandy and fine-grained shell
sediments alongside basalt reefs.31,32 Domestic and international studies have applied various
AI techniques to a single study area with clear waters and determined the most appropriate
AI approach,15,33 or have applied an AI technique to multiple study areas with marine character-
istics less affected by turbidity.5 However, no study has quantitatively evaluated satellite-based
bathymetry results estimated using an SDB model developed with the same methodology for
multiple study areas with distinct marine environmental characteristics, such as the West,
South, and East Seas of the Korean Peninsula.

In this study, we aimed to develop a model for estimating water depths in three selected
coastal areas with distinct marine environmental characteristics, specifically in terms of tide,
seabed sediment, and turbidity. To this end, we utilized Sentinel-2 satellite imagery with a
10-m resolution and multibeam bathymetric data provided by the Korea Hydrographic and
Oceanographic Agency (KHOA). This model employed the RF machine learning algorithm for
training and evaluation datasets. The application of SDB was restricted to areas with depths up to
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20 m, and a comparative test was performed using the bathymetric data acquired from KHOA.
Furthermore, the potential sources of estimation errors were analyzed by considering the marine
environmental characteristics unique to each area, and the feasibility of implementing SDB tech-
nology was evaluated.

2 Materials and Methods

2.1 Study Area
In this study, the East Sea, Yellow Sea, and South Sea, and the waters around Jeju Island were
included in the analyses. To accurately represent the diverse marine environmental characteristics
of the three seas surrounding the Korean Peninsula and generate optimal machine learning
data along with credible depth estimation results, we selected Samcheok (East Sea), Hallim
(South Sea), and Cheonsuman Bay (West Sea) as our training areas (Fig. 1 and Table 1).
Specifically, Hallim was selected as an area representative of the South Sea based on the general
characteristics of the South Sea coastal waters and the coexistence of sandy and basaltic seabed
materials.

Fig. 1 Geographic location of training areas. Sentinel-2A/B RGB images of (a) Cheonsuman,
(b) Hallim, and (c) Samcheok. The blue boxes indicate three additional test areas, different from
the training areas. Deokjeok in Yellow Sea, Seongsan in South Sea, and Sokcho in East Sea.

Table 1 Geographic coordinates of training areas.

Area Cheonsuman (Yellow Sea) Hallim (South Sea) Samcheok (East Sea)

Latitude (WGS-84) 36.40° N–36.61° N 33.38° N–33.44° N 37.39° N–37.48° N

Longitude (WGS-84) 126.37° E–126.50° E 126.20° E–126.27° E 129.16° E–129.23° E
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2.2 Materials

2.2.1 Satellite imagery

Level-2 multispectral instrument images, which underwent atmospheric correction to obtain
surface reflectance (SR) products from the Sentinel-2A/B datasets provided by the European
Space Agency, were used in this study. The images are freely available at the Copernicus Open
Access Hub.34 This satellite captures images of the same area at 5-days intervals. For the machine
learning model that estimated depths using the Sentinel-2 satellite imagery, we employed five
bands: blue (B2), green (B3), red (B4), vegetation red edge (B5), and near-infrared (NIR, B8).
The fifth band had a spatial resolution of 20 m and was, thus, resampled using a linear method to
correspond with the 10-m spatial resolution of the other bands [Table 2].

For the training dataset, we utilized six to seven multi-temporal images per training area.
This approach was adopted to mitigate the influence of different real water depth for each satellite
image under large tidal variation area, which could be a limitation when using a single image5.
Subsequently, we selected images of the training areas captured in 2020, the same year as the
nautical chart’s production, focusing on images with minimal cloud coverage (≤ 10%) and lesser
influences of turbidity and waves (Table 3).

Table 2 Characteristics of the Sentinel-2 band data used in this study.

Band B2 B3 B4 B5 B8

Name Blue Green Red Vegetation red edge NIR

Wavelength
(center) (nm)

458 to 523
(490)

543 to 578
(560)

650 to 680
(665)

698 to 713
(705)

758 to 899
(842)

Resolution (m) 10 10 10 20 10

Table 3 Sentinel-2 imagery used as training data for each area.

Area Tile number Date Time (KST)

Cheonsuman (Yellow Sea) 7-Image T52SBF January 18, 2020 11:20

January 23, 2020 11:19

March 8, 2020 11:16

April 4, 2020 11:15

April 4, 2020 11:16

October 24, 2020 11:17

November 8, 2020 11:18

Hallim (South Sea) 6-Image T52SBC March 8, 2020 11:16

April 7, 2020 11:16

April 27, 2020 11:16

May 12, 2020 11:15

October 14, 2020 11:16

October 29, 2020 11:18

Samcheok (East Sea) 6-Image T52SEG January 5, 2020 11:10

January 15, 2020 11:10

October 26, 2020 11:07

November 10, 2020 11:09

November 25, 2020 11:10

December 20, 2020 11:11
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2.2.2 Bathymetric data

The depth data provided by KHOA were water depth values used for the latest nautical chart
(echo-sounding in 2020), extracted and edited based on echo-sounder data, with the referenced
depths based on the datum level (DL) (Fig. 2). Considering that a vector format was used for
bathymetric data, they were resampled to align with the 10-m resolution of the satellite imagery
grid. Drawing on prior research regarding the limitations of light penetration depth, our study
focused solely on areas with depths < 20 m.3,5,14 We employed tidal values from the correspond-
ing timestamps for model training and result test to adjust for the datum.

2.2.3 Tidal data

To obtain tidal data, we employed the NAO99.Jb tidal model provided by the National
Astronomical Observatory of Japan.35 The NAO99.Jb tidal model with a spatial resolution of
1/12 deg (about 1 km) was designed for use in the Northwest Pacific region.36

To ascertain the precision of the NAO99.Jb model, its outputs were systematically compared
to observation data. The detailed analysis was performed on three positions in Yellow Sea
(Incheon, Pyeongtaek, and Anheung) with high tidal range [Fig. 3(a)]. The tidal amplitudes
obtained from the tide stations at these locations were compared to the predicted results provided
from the model. The error at all stations was calculated to be < 5 cm (Table 4). These findings
suggest that the NAO99.Jb model can be effectively utilized as tidal calibration data.

Fig. 2 Real-depth in situ echo-sounding bathymetry data from the KHOA of (a) Cheonsuman,
(b) Hallim, and (c) Samcheok.

Fig. 3 (a) A map showing the locations of Incheon (37.4519° N, 126.5922° E), Pyeong-taek
(37.1366° N, 126.5408° E), and Anheung (37.6747° N, 126.1294° E). (b) A time-series graph com-
paring values between the observation (black) and NAO99.Jb (red) from July 1, 2020, to July 3,
2020. The x axis is time and y axis is sea surface height.
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2.3 Satellite-Derived Bathymetry Mechanism

2.3.1 Beer–Lambert law

The total upwelling radiance (Lt) observed from the satellite was defined as the sum of
atmospheric path radiance (Lp), specular radiance (Ls), subsurface volumetric radiance (Lv),
and bottom radiance (Lb), as expressed by Eq. (1) (Fig. 4):

EQ-TARGET;temp:intralink-;e001;114;320Lt ¼ Lp þ Ls þ Lv þ Lb: (1)

In Eq. (1), Lp can be removed through atmospheric correction and Ls and Lv can be
removed through sun-glint and deep-water corrections, respectively, leaving only Lb, defined by
the Beer–Lambert law as per Eq. (2):

EQ-TARGET;temp:intralink-;e002;114;257Lb ¼
Z

λþΔλ

λ
½ρðλÞLλe−ðsec θþsec∅ÞαðλÞZ�dλ; (2)

where λ is the wavelength, ρðλÞ is the bottom reflectance, αðλÞ is the water’s attenuation
coefficient, θ is the viewing angle (from the nadir), Φ is the solar-illumination angle (from the
vertical), and Z is the water depth. Equation (2) indicates that reflectance decreases exponentially
as the water depth increases; this decrease is more pronounced for longer wavelengths.

2.4 Preprocessing of Satellite Images

2.4.1 Sun-glint correction

Sun-glint is observed in satellite images when sunlight reflects directly into the sensor due to a
tilted surface. This can arise from various factors, including the sea surface, sun’s position, sen-
sor’s viewing angle, and wind. To enhance the accuracy of water reflectance results, sun-glint
correction was applied.37 This correction typically involves establishing a linear relationship
between the NIR band and other bands, followed by adjustments for outlier pixels.38,39

Table 4 The amplitude of observed values from the three regions was
compared with the amplitude of values from the NAO99.Jb model.

Amplitude (cm) Incheon Pyeongtaek Anheung

Observation (①) 464.0 465.4 354.7

NAO99.Jb (②) 463.3 465.0 358.4

Difference (①-②) 0.7 0.5 −3.7

Fig. 4 SDB mechanism for various sediment types.
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This procedure was conducted using the Sentinel Application Platform offered by the European
Space Agency (Fig. 5).

2.4.2 Land masking

In the NIR band, water intensely absorbs light, resulting in pixel reflectance values that approach
0. The normalized difference water index (NDWI) exploits this characteristic to differentiate
between water and land by employing the NIR and green bands.40 This relationship is repre-
sented by Eq. (3), with NDWI values ranging from −1 to 1. Regions with an NDWI value > 0

were categorized as sea, while those with < 0 were identified as land [Fig. 5(c)]:

EQ-TARGET;temp:intralink-;e003;117;368NDWI ¼ Green − NIR

Green þ NIR
: (3)

2.4.3 Tidal correction

The depth indicated on the nautical chart is based on the DL standard, while the SDB result
reflects the real water depth from the sea surface, influenced by the tide at the time of satellite
imaging. Both the Yellow Sea and South Sea of Korea are strongly influenced by tides. Notably,
in the Yellow Sea, the tidal range can span up to 10 m.41,42 Consequently, to generate an SDB
result aligned with the DL standard, a datum correction accounting for the tidal level during the
imaging time is necessary:

EQ-TARGET;temp:intralink-;e004;117;232DsðmÞ ¼ MSLþ tlMSL ¼ DLþ ðHm þHs þHo þHkÞ þ tlMSL; (4)

where DsðmÞ is the depth at the time of satellite imaging, tlMSL is the tidal level from the mean
sea level (MSL), and Hm, Hs,Ho, andHk denote the semi-range of the tidal constituentsM2, S2,
O1, and K1, respectively.

The tidal height data during satellite imaging were sourced from the tidal model, using the
grid value nearest to the training area. Tidal heights are positive and negative for high and low
tides, respectively, relative to the mean sea level. These values were input into Eq. (4) to deter-
mine the corrected depth from the nautical chart during imaging. The corrected depth was then
utilized as the reference data for SDB model training. Similarly, this approach can change the
depth value derived from the SDB model to DL. Predicting bathymetry through satellite imaging
is the process of measuring the depth at the time the satellite images were taken. Therefore,
for quantitative assessment, the depth value adjusted to the nautical chart datum must be used.

Fig. 5 (a) Sentinel-2 red-green-blue (RGB) image of Cheonsuman in the Yellow Sea, (b) RGB
image before sun-glint correction, and (c) RGB image after land masking and sun-glint correction.
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2.5 Depth Estimation Using a Machine Learning Model

2.5.1 Depth estimation model based on random forest

We constructed a model to estimate water depth using Sentinel-2A/B satellite images, electronic
nautical chart data, and the tidal model (Fig. 6). The input data for the machine learning model
were extracted from the Sentinel-2A/B images of the training areas, followed by sun-glint cor-
rection and land masking. Subsequently, we employed a mean filter to mitigate noise in satellite
images by replacing the value of target pixels with the mean of their 3 × 3 pixels surroundings.
Our model used depth data from the electronic nautical chart, corrected based on tidal height
values extracted while capturing satellite images. We then matched the preprocessed satellite
imagery of five bands with the reference depth data corrected through tidal model data. A dataset
was created using matched data corresponding to the number of multi-temporal images. We
grouped the band values and depth values for every pixel where band values of each image
were present. Finally, the dataset was composed by creating a random sample from the data.
This dataset was used as training material for the machine learning model. For depth estimation,
we used the RF method, which involves training multiple decision trees. This algorithm
facilitates easy variable modification and demands high dataset accuracy for training.5 We con-
structed the RF-based SDB model using the ensemble package in Python’s scikit-learn tool
[Fig. 6(a)]. The trained model was then applied to independently observed satellite images to
estimate water depths in the training and test area. Depths estimated from the satellite imagery
were adjusted to the DL standard for comparison with the nautical chart data [Fig. 6(b)].

2.5.2 Depth estimation model training

The SDB model was developed using satellite images and categorized into three groups based on
their respective training areas. For each area, datasets were created by combining data from five
bands of the satellite images with nautical chart data, specifically targeting pixels representing
depths between −5 and 25 m. Given the depth distribution across the training areas and to avoid
training bias at certain depths, a consistent number of data points (15,000) was randomly sampled
at 5-m intervals to create the training dataset. Of each dataset, 80% of the data points were utilized
for model training, and the remaining 20% were randomly selected for validation [Fig. 6(a)].

Fig. 6 Flowchart of the SDB model. (a) Training and (b) predicting processes. The red box is
the SDB model created during the training process and used for predicting.
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The accuracy of the satellite (estimated) data in relation to the in situ (actual) data was
measured through a Pearson’s correlation coefficient (r) and the root mean square error (RMSE).
The calculations for r and RMSE are represented by Eqs. (5) and (6), respectively:

EQ-TARGET;temp:intralink-;e005;117;700r ¼
P

N
i¼1ðDi − D̄iÞðDi − D̄sÞ

ðN − 1ÞSiSs
(5)

EQ-TARGET;temp:intralink-;e006;117;644RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðDi −DsÞ2
vuut ; (6)

where Di is the actual depth, Ds is the estimated depth, D̄i and D̄s are the averages ofDi andDs,
Si and Ss are the standard deviation of Di and Ds.

2.5.3 Depth estimation model evaluation

To evaluate the performance of the depth estimation model tailored for each training area, we
derived depth predictions from satellite images taken on dates distinct from those used in training
(Table 5). The satellite images used for test were preprocessed identically to the training data and
then applied to the corresponding SDB model for the training area. Since these predictions re-
present depths at the precise moment of satellite imaging, they underwent a tidal correction to
align with the DL standard. Subsequently, only predictions within the 0 to 20 m range were
compared with the real depth.

3 Results

3.1 Depth Estimation Based on Satellite Imagery
The model accuracy was validated using 20% of the learning dataset, corresponding to 3000
randomly selected data points per depth segment (totaling 12,000). As measured by RMSE, the
errors were 5.0526, 4.6616, and 2.0749 m for Cheonsuman, Hallim, and Samcheok, respectively.
Samcheok demonstrated a higher r of 0.9152 than the other locations (Table 6). A previous
study on waters with clarity similar to Samcheok, specifically in areas where the annual average
chlorophyll-a concentration is less 1.0 mg∕m3, reported similar RMSE values between 1.77 and
1.97 m.5

3.2 Quantitative Evaluation
To compare the performance of the SDB model across the three training areas, a quantitative
evaluation was conducted on the model using statistical analyses. For objective testing, data
points were randomly extracted at 5-m depth intervals from satellite images that were not used
during the depth estimation model training process. These evaluation results were then compared

Table 5 Sentinel-2 data is used evaluation data for model verification.

Area Tile number Date Time (KST)

Cheonsuman T52SBF April 17, 2022 11:16

Hallim T52SBC October 19, 2020 11:16

Samcheok T52SEG March 25, 2020 11:06

Table 6 Validation results of three SDB models trained with Sentinel-2.

Area Cheonsuman Hallim Samcheok

RMSE (m) 5.0526 4.6616 2.0749

r 0.5289 0.6915 0.9152
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with depths from electronic nautical charts (Table 7). Significant variances were observed among
the training areas: Samcheok exhibited the highest estimation accuracy (r ¼ 0.9, RMSE ¼
2.5861), followed by Hallim (r ¼ 0.52, RMSE ¼ 5.4863) and Cheonsuman (r ¼ −0.05,
RMSE = 6.4603). The shallow water estimations for Samcheok were precise estimations, with
accuracy diminishing linearly as depth increased. Interestingly, the RMSE for depths between
15 and 20 m was lower than that for depths between 5 and 15 m.

3.3 Qualitative Evaluation
Independent satellite images were used for the evaluation dataset, similar to the quantitative
evaluation. To investigate the cause, we conducted a density scatter plot analysis, which allows
for the visualization of data distribution and patterns. A density scatter plot was generated to
visually compare the real and estimated depths across the three training areas, with the x and
y axes representing the real and estimated depths, respectively [Fig. 7]. In the density scatter plot,
the higher the proportion of red indicates a higher density of points, which can be interpreted
as being influenced by certain factors. A plot closer to the 1:1 line indicated that the model
better represented the real values. For Cheonsuman, the estimated depth values predominantly
clustered within the 5- to 12-m range irrespective of the variations in actual depth [Fig. 7(a)].
Meanwhile, higher accuracy was achieved at depths of 10 to 20 m in Hallim. Nevertheless,
regions with high-density scatter points appeared in the 0- to 7.5-m depth range [Fig. 7(b)].

Table 7 Sentinel-2 data used as evaluation data.

Area

Cheonsuman Hallim SamcheokDepth (m)

Total RMSE (m) 6.4603 5.4863 2.5861

r –0.0496 0.5213 0.8989

0 to 5 RMSE (m) 6.4013 7.8001 1.9885

r 0.3383 0.2944 0.3060

5 to 10 RMSE (m) 3.5024 5.9100 2.6476

r –0.0330 0.3021 0.5653

10 to 15 RMSE (m) 4.6383 3.0729 3.1803

r –0.0854 0.0334 0.4897

15 to 20 RMSE (m) 9.5875 3.6570 2.3820

r –0.0747 0.0468 0.1673

Fig. 7 Density scatter plot analysis between the real and estimated depths. (a) Cheonsuman,
(b) Hallim, and (c) Samcheok.
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Conversely, the data for Samcheok exhibited high prediction accuracy in shallow waters.
However, this accuracy decreased with increasing depth [Fig. 7(c)].

Maps were generated for the three training areas showing the estimated depths [Figs. 8(a),
8(d), and 8(g)], 2020 nautical chart depths [Figs. 8(b), 8(e), and 8(h)], and differences between
the two [Figs. 8(c), 8(f), and 8(i)]. These maps were utilized to identify regions with significant
discrepancies. The smallest error between the real and estimated depths was observed for
Samcheok (RMSE = 2.5861 m). A general tendency of overestimation was observed across the
entire area, with localized underestimations along the coastal regions [Fig. 8(i)]. In Hallim,
results centered around Biyangdo indicated an RMSE of 5.4863 m. Notably, the coastal areas
close to Biyangdo exhibited overestimation in the northwest direction and underestimation in
the offshore direction [Fig. 8(f)]. The southeastern waters exhibited relatively low error, with

Fig. 8 Water depth and differences for (a)–(c) Cheonsuman, (d)–(f) Hallim, and (g)–(i) Samcheok,
respectively. (a), (d), (g) Real depth maps and (b), (e), (h) SDB model result maps of the training
areas. (c), (f), and (i) Differences in water depth between that obtained from the SDB model results
and excluding the real depth. Red and blue in (c), (f), and (i) indicate overestimated and under-
estimated SDB model results, respectively.
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certain areas indicating overestimation. Cheonsuman had the highest RMSE value at 6.4603 m.
The northern region of this training area saw alternating patterns of over- and underestimations,
while the southern region predominantly showed an overestimation trend [Fig. 8(c)]. The causes
behind the errors observed in both Hallim and Cheonsuman are discussed in Sec. 4.

4 Discussion

4.1 Evaluation of SDB Results and Accuracy Affected by Turbidity
In water bodies, such as the Yellow Sea, that are significantly affected by tides and predominantly
distributed with fine-grained sediment, the seabed sediments are readily resuspended due to
strong and recurring tidal currents, thus, increasing the seawater turbidity.38 This scattering often
leads to shallower depth estimates than the actual depths. Cheonsuman, embodying the marine
environmental characteristics typical of the Yellow Sea, exhibited a depth estimation accuracy
lower than that in the East Sea.

The density scatter plot and correlation coefficient also failed to align with the actual depth
value distributions. In areas with high turbidity, shallow depths are overestimated, and deep
depths are underestimated, leading to errors.33 This was observed in Cheonsu Bay. In regions
deeper than 10 m, an inversion phenomenon was observed, where the estimated depth decreased
as the actual depth increased. In areas with heightened turbidity, underwater suspended matter
typically scatters light, resulting in a higher reflectance than in clearer waters.

To address these issues, we conducted an additional analysis using the normalized difference
turbidity index (NDTI) to assess the impact of turbidity on the depth estimation model. The
NDTI method measures the concentrations of soil sediments, microalgae, and other suspended
materials that contribute to water turbidity, utilizing the green (B3) and red band (B4), as defined
in Eq. (7).43 NDTI values range from −1 to 1, with those nearing −1 indicating less turbidity and
clear waters:

EQ-TARGET;temp:intralink-;e007;114;426NDTI ¼ Red − Green

Redþ Green
: (7)

We calculated the NDTI using the reflectance of pixels from the depth estimation test across
the three areas (Fig. 9). Cheonsuman displayed a mid-level NDTI value without correlating to the
depth estimation results [Fig. 9(a)]. In contrast, for Hallim and Samcheok, regions with relatively
low turbidity indices, higher accuracy was achieved for the in-depth estimation [Figs. 9(b) and
9(c)]. However, varied NDTI values were observed in the shallow waters of Hallim at 0 to 7.5 m
depth [Fig. 9(b)].

Upon the addition of NDTI values to the training data, the correlation and accuracy of
the results improved compared to those yielded by the original SDB model, with Cheonsuman
showing the most significant change. The correlation shifted from an originally non-existent
correlation (r ¼ −0.05) to a low correlation (r ¼ 0.3272), and the RMSE decreased by 1.1 m.
However, in the 0 to 5 m depth range of Cheonsuman, the RMSE increased. Meanwhile,
in the deeper waters (15 to 20 m) of Hallim and Samcheok, the RMSE increased by 0.20 and

Fig. 9 Scatter plot analysis based on NDTI levels for (a) Cheonsuman, (b) Hallim, and
(c) Samcheok.
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0.56 m, respectively, whereas in the shallow waters (0 to 5 m), the RMSE improved slightly,
decreasing by 0.20 and 0.08 m, respectively. These results indicate that if turbidity is not taken
into consideration when developing satellite image-based depth estimation models, it can lead to
significant errors due to the influence of turbidity. Therefore, it suggests that only by considering
turbidity can the accuracy for turbid waters be improved (Fig. 10).

4.2 Impact of Seabed Sediment on the SDB Model
Coastal areas with tides typically experience resuspension of fine sedimentary particles due to
recurring tidal currents, which affects underwater turbidity. Despite the partial removal of the
turbidity effect in Hallim at 0 to 10 m depth, which caused an approximate 0.2 m reduction
in the RMSE, a relatively high error was still observed in the range of 5.7102 to 7.5959 m. To
discern the cause of this discrepancy, depth profiles were plotted for the overestimated depth
range and areas with relatively low deviation, and a depth trend analysis was conducted (Fig. 11).

Figures 11(a) and 11(b) show that the depths estimated by the machine learning model
were ∼10 m deeper than the actual depths, although the patterns of depth changes aligned well.
As verified through Sec. 2.2.3, the error was within 5 cm, and considering the tidal range in this
region is < 4.5 m, such a 10 m discrepancy cannot be attributed solely to tidal influences.

To determine the cause of this overestimation, we created a scatter plot of reflectivity by
depth [Fig. 12(a)]. According to the Beer–Lambert law, we distinguished area where reflectivity
showed an exponential decrease with depth (blue), and those where reflectivity increased with
depth (red). This characteristic was observed in all bands, although there were differences in
slope. Although reflectivity decreases exponentially in most sea areas in clear waters,1 results
for Hallim showed a different characteristic, implying the involvement of other factors.

The locations were confirmed by marking them according to their characteristics
[Fig. 12(b)], and visual readings were obtained using WorldView-3 satellite R (MS2,
630 nm)-G (MS3, 545 nm)-B (MS4, 480 nm) images (with a spatial resolution of 1.2 m)
(Fig. 13). As observed in Figs. 13(a)①, 13(a)②, and 13(b)③ areas where the model overestimated
the depth displayed a noticeably darker seabed than their surroundings. In conducting on-site
investigations of these regions, we identified a basaltic seabed interspersed with patches of
white sand (Fig. 14).

Fig. 10 Results of the SDB model with additional NDTI data. Note: The number under the r and
RMSE values indicates the change from the existing SDB model. Blue and red indicate positively
and negatively altered main results, respectively.
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In shallow waters, the seabed color could influence SR. Remote reflectance was affected by
the color of the seabed materials. That is, areas with dark seabed materials had low reflectance
and are overestimated than their actual depth. For Hallim Harbor, the overestimation in shallow
areas can likely be attributed to the basaltic nature of the seabed. Indeed, we found that
reflectance characteristics varied based on seabed materials. Thus, if we incorporate additional
seabed spatial data into the training dataset in the future, we anticipate enhancements in model
performance. The sediment distribution map, created from airborne hyperspectral imaging,
is scheduled to be provided by KHOA.

Fig. 12 (a) Scatter plot of the Hallim area results with the actual depth as the x -axis and band-2 as
the y -axis. Black dots express all points in the area, among which blue dots indicate that the
difference between the actual and predicted depths is ≤ 3 m; red dots indicate that the differ-
ence between the actual and predicted depths is > 3 m. (b) Depths within 10 m classified based
on (a).

Fig. 11 (a)–(c) Water depth on the ①–③ transect lines in (d), respectively. Black and red in
(a)–(c) indicate real and SDB model depths, respectively. The location of 0 m in (a)–(c) implies
a point close to the coastline in (d).
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Fig. 13 WorldView-3 RGB image of Hallim 2018-11-15 11:43(KST). (a) Areas where depth was
overestimated, and (b) areas where depth was well estimated. The red box in (b) shows the
in-situ area in Fig. 14(a).

Fig. 14 Sites where on-site investigations were conducted at (a) Hallim (yellow circles indicate
points where pictures were taken), (b) 33.39376° N, 126.23653° E, (c) 33.39381° N,
126.23635° E, and (d) 33.3941° N, 126.23776° E.
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4.3 Application of the SDB Model in Test Area
To assess whether the results of this study could represent different marine environments,
we applied the three SDB models to regions with marine characteristics similar to those of the
training areas. For this purpose, we selected Deokjeok, Seongsan, and Sokcho, all within 100 km
and where the latest nautical chart data exist (Table 8). To determine the appropriateness of
applying the SDB model in regions with similar coastal characteristics, we compared predictions
for Seongsan using two different SDB models (Fig. 15).

The results from the SDB model of Hallim showed r ¼ 0.69 and RMSE = 4.7903 m, which
were more accurate than the results from the SDB model of Samcheok, r ¼ 0.40 and RMSE =
5.4924 m (Fig. 15). Despite the higher validation of the SDB model of Samcheok, the more
accurate evaluations using the SDB model of Hallim indicate the effectiveness of applying
SDB models trained on area with similar characteristics (Table 6).

Table 8 Information on regions with characteristics similar to the study area.

Area Deokjeok (Yellow Sea) Seongsan (South Sea) Sokcho (East Sea)

Latitude (WGS-84) 37.20° N–37.31° N 33.45° N–33.50° N 38.15° N–38.22° N

Longitude (WGS-84) 126.10° E–126.15° E 126.88° E–126.95° E 128.57° E–128.65° E

Similar regions (SDB model) Cheonsuman Hallim Samcheok

Distance (from the study area) 85.10 km 63.63km 100.38km

Tile number T52SBG T52SBC T52SDH

Date October 9, 2020 October 29, 2020 December 5,

Time (KST) 11:16 11:18 11:10

Fig. 15 Results of Evaluation Seongsan using a different SDB model. (a) Real depth maps and
(b), (d) SDB model result maps. (c), (e) Density scatter plot analysis between the real and
estimated depths. (b), (c) Results of using the SDB model of Hallim. (d), (e) Results of using
the SDB model of Samcheok.
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When predictions were made using the SDBmodel with similar oceanic environmental char-
acteristics for three area, the results were also similar to those in Sec. 3 (Fig. 16). As measured by
RMSE, the prediction accuracies were 5.8292, 4.7903, and 3.0220 m for Deokjeok, Seongsan,
and Sokcho, respectively. Sokcho demonstrated a higher correlation coefficient (r) of 0.8848
than the other locations (Table 9).

Fig. 16 Evaluation results of test area. (a)–(c) Deokjeok, (d)–(f) Seongsan, and (g)–(i) Sokcho. (a),
(d), (g) Real depth maps and (b), (e), (h) SDB model result maps. (c), (f), (i) Density scatter plot
analysis between the real and estimated depths.

Table 9 Evaluation results of a test area using the SDB model.

Area Deokjeok Seongsan Sokcho

RMSE (m) 5.8292 4.7903 3.0220

r 0.3934 0. 6908 0.8848
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Analysis of the depth map and density scatter plot results also revealed similarities to those
in Sec. 3. Significantly, the data distribution patterns in the density scatter plots were alike. In
Seongsan, the results were similar to those in Hallim, with accurate predictions in shallow depths
(0 to 5 m) and some overestimations [Fig. 16(f)]. Sokcho’s results showed an inverse propor-
tional pattern, akin to those in Samcheok [Fig. 16(i)]. The results for Deokjeok were similar to
those in Cheonsu, overestimating in shallow depths and underestimating in deeper waters
[Fig. 16(c)]. Therefore, it is inferred that the predictions for regions not included in the SDB
model’s training process yielded similar results, indicating that these outcomes may be character-
istic of specific coastal environments.

Most studies on SDB models are limited by their application to only shallow water depths of
0 to 20 m; depth estimates are affected by external factors that affect the reflectivity of the sea
surface and the depth, such as sunlight, waves, and tides. Therefore, it is important to determine
how accurately external factors can be compensated for through the mean filter, sunglint cor-
rection, etc.

Furthermore, since the quality of the ground truth data determines the model’s accuracy,
it is necessary to calibrate the estimated depth using accurate composition information for
each sea area. The bathymetry data used as the ground truth data must comprise up-to-date data
surveyed at approximately the same time as the satellite image acquisition.

5 Conclusions
Conventional shipborne bathymetry conducted using an echo sounder entails many limitations,
especially when simultaneous surveys of wide areas (such as ports) are required or when
survey areas are difficult to access due to geographic or diplomatic issues. Despite limitations
to the estimable depth of water, remote sensing technology can overcome the drawbacks
of shipborne bathymetric methods. In this study, we developed SDB models for three seas
surrounding the Korean Peninsula: The East Sea (Samcheok), Yellow Sea (Cheonsuman),
and South Sea (Hallim). Sentinel-2 satellite images captured from January to December 2020
were used for machine learning model training: seven, six, and six images were captured for
Cheonsuman, Hallim, and Samcheok, respectively. Based on these images, an RF-based SDB
model was constructed. Samcheok showed the best results (RMSE = 2.5861 m; r ¼ 0.8989),
while the RMSE values for Cheonsuman and Hallim were 6.4603 and 5.4863 m, respectively.

The primary causes of errors were determined to be turbidity and seabed sediment, and
the depths were re-estimated using the SDB model combining NDTI. In all study areas, the
RMSE decreased by an average of 0.4873 m, with Cheonsuman showing the most prominent
improvement (RMSE decreased by 1.1000 m and r increased by 0.3768). Considering the
high turbidity of the Yellow Sea, where Cheonsuman is located, this study demonstrated that
spatial information on turbidity can improve depth estimation accuracy. However, given the
relatively low accuracy (RMSE = 5.3552 m), further research is needed to determine the fea-
sibility of viable depth estimation. In Hallim, for the 0 to 5 m depth range, despite the low seabed
turbidity, which typically allows for visual surveys, the error was notably high (RMSE =
7.5959 m).

Further, high-resolution WorldView-3 satellite images with a spatial resolution of 1.2 m
were used, along with on-site survey photos, to investigate the study areas. The remote reflec-
tance was attenuated due to the dark-colored basaltic seabed. Such characteristics can contribute
to the overestimation of depth, and future research should aim to incorporate various seabed
materials into the training data. Unlike previous studies that presented SDB model results for
waters with high transparency, this study developed individual SDBmodels that can be applied to
waters with various characteristics and suggested a method for improved results. The SDB results
are expected to be used as depth monitoring data for safe ship passage in coastal areas, including
ports that require periodic and consistent coastal bathymetry, or as input data for numerical ocean
models, contributing to various fields.
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Code and Data Availability
Most satellite data originated from the ESA public Copernicus constellations and are free of
charge. However, access to the bathymetry data requires permission and can be obtained upon
request from the KHOA.
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