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ABSTRACT. Reservoirs are fundamental infrastructures for the management of water resources.
Constructions around them can negatively impact their water quality. Such construc-
tions can be detected by segmenting man-made objects around reservoirs in the
remote sensing (RS) images. Deep learning (DL) has attracted considerable atten-
tion in recent years as a method for segmenting the RS imagery into different land
covers/uses and has achieved remarkable success. We develop an approach
based on DL and image processing techniques for man-made object segmentation
around the reservoirs. In order to segment man-made objects around the reservoirs
in an end-to-end procedure, segmenting reservoirs and identifying the region of
interest (RoI) around them are essential. In the proposed two-phase workflow, the
reservoir is initially segmented using a DL model, and a postprocessing stage is
proposed to remove errors, such as floating vegetation in the generated reservoir
map. In the second phase, the RoI around the reservoir (RoIaR) is extracted using
the proposed image processing techniques. Finally, the man-made objects in the
RoIaR are segmented using a DL model. To illustrate the proposed approach, our
task of interest is segmenting man-made objects around some of the most important
reservoirs in Brazil. Therefore, we trained the proposed workflow using collected
Google Earth images of eight reservoirs in Brazil over two different years. The
U-Net-based and SegNet-based architectures are trained to segment the reservoirs.
To segment man-made objects in the RoIaR, we trained and evaluated four archi-
tectures: U-Net, feature pyramid network, LinkNet, and pyramid scene parsing net-
work. Although the collected data are highly diverse (for example, they belong to
different states, seasons, resolutions, etc.), we achieved good performances in both
phases. The F 1-score of phase-1 and phase-2 highest performance models in seg-
menting test sets are 96.53% and 90.32%, respectively. Furthermore, applying the
proposed postprocessing to the output of reservoir segmentation improves the pre-
cision in all studied reservoirs except two cases. We validated the prepared workflow
with a reservoir dataset outside the training reservoirs. The F 1-scores of the phase-1
segmentation stage, postprocessing stage, and phase-2 segmentation stage are
92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability
of the prepared workflow.
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1 Introduction
Reservoirs reduce the effects of interseasonal and interannual stream flow fluctuations and hence
facilitate water supply, hydroelectric power generation, and flood control, to name a few.1 There
are significant interactions between the environment and reservoirs as essential water resource
management tools. For example, the reservoir affects the quality of the water downstream of its
dam, and human activities affect the quality of the water in the reservoir as well as the chemical
and biological processes in it.2

The pixel-based, object-based (OB), and, recently, deep learning (DL) methods are three
fundamental approaches that are implemented for mapping remote sensing (RS) images into
different land covers and land uses. Pixel-based methods (e.g., support vector machine) rely
on the spectral signatures of individual pixels, and each pixel is independently classified.3

With the increase in the spatial resolution of satellite images resulting from improvements in
RS systems, a single pixel does not adequately capture the characteristics of target objects,
leading to a reduction in the classification accuracy using pixel-based methods.4 Over the last
decades, the RS community has undertaken considerable efforts to promote the use of OB tech-
nology for land cover/use mapping.5,6 In contrast with pixel-based methods, OB classification
methods are less sensitive to the spectral variance within the objects. They can use both object
features and spatial relations between the objects. However, the popularity of OB methods is
affected by two factors: (1) the majority of them rely on pricey commercial software and (2) the
result is highly influenced by parameter selection.

DL has made significant strides in recent years, enabling high-level feature extraction to be
carried out automatically while displaying promising results in various domains, including image
semantic segmentation. Recently, convolutional neural networks (CNNs) have been among the
most advanced algorithms in segmenting RS images into different land covers/uses, and their
superior performances compared to traditional methods have been proved.7,8 The decoder–
encoder networks and spatial pyramid pooling-based networks are two state-of-the-art and
widely used categories of CNNs. The decoder–encoder-based networks consist of an encoder
path and a decoder path. The encoder path consists of convolutional layers to extract the feature
maps. Next, these features are transformed/upsampled to dense label maps in the decoder path.
Building upon this architecture, networks such as U-Net, SegNet, and feature pyramid network
(FPN) have demonstrated strong performances and are frequently utilized in segmenting RS
imagery.9,10 The spatial pyramid pooling-based networks contain a pyramid pooling module
to collect multilevel global information from the input image. Pyramid scene parsing network
(PSPNet) proposed by Ref. 11 is a broadly adopted architecture in this category.12

Semantic segmentation of water bodies using the DL approach is studied in several works.
For example, a DL encoder–decoder framework is proposed by Li et al.13 to extract water bodies
from 4-band RS images with resolutions >1 m. Chen et al.14 combined an enhanced super-pixel
method with DL to extract urban water bodies from multispectral bands with low spatial res-
olutions (>4 m). The RapidEye 5 m resolution images are used by Ref. 15 to segment gorges
reservoir areas to water bodies and other land covers by DL methods. Van Soesbergen et al.16

proposed a pipeline where a DL model in the first-stage segments the water bodies in moderate
spatial resolution RS images. Next, bounding boxes of individual water bodies are classified into
two classes, dam reservoir and natural water, by a classifier.

DL is also popular among studies on semantic segmentation of man-made objects in RS
images. For example, a DL-based approach is proposed by Ref. 17 to segment ROSIS hyper-
spectral images as man-made and non-man-made. The man-made class in this work consists
of asphalt, metal sheets, bricks, bitumen, and tiles. Before feeding to the network, the data are
preprocessed by randomized principal component analysis for input dimension reduction.
Residential land, industrial land, traffic land, woodland, and unused land are five defined classes
by Ref. 18 for collected RGB images with 0.5 m resolution. To segment images, they proposed a
workflow in which the images are fed to two networks in parallel. Next, their output feature maps
are fused to produce the final map. The built infrastructure in two sites on the North Slope of
Alaska are mapped by Ref. 19 using DL approach and 4-band commercial satellite images with
resolutions from 0.5 up to 0.87. The utilized model in this work is the U-Net with ResNet50 as
the backbone. An encoder–decoder-based network by dilated convolutions is proposed by
Ref. 20 for segmenting building rooftops in RGB RS images.
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In this study, we propose a postprocessing process after segmenting reservoirs to detect
errors and construct an accurate reservoir map. Furthermore, man-made objects in both urban
and countryside areas are studied. We also suggest a method to detect RoIaR using image
processing techniques. In the proposed two-phase workflow, we initially detect the reservoirs,
followed by identifying the RoI, and ultimately segmenting man-made objects within the RoI. In
this way, we avoid annotating and predicting areas outside the RoI. These are the main relevant
contributions of this paper.

Although elevation data can improve the detection process, they are not currently viewed as
a cost-effective solution to map RS images.21 Moreover, spatial resolution is more critical than
spectral resolution in urban land cover mapping.9 Therefore, we collected the data using the
Google Earth (GE) platform, which is a widely used database.22,23 In this platform, we have
access to free high-resolution RS images from target reservoirs at various times. GE covers more
than 25% of the Earth’s land surface and three-quarters of the global population by images with
submeter resolution.24,25 Therefore, it can be used for studying many other reservoirs.

The organization of our paper is as follows. Sec. 2 describes the studied reservoirs, collected
data characteristics, applied data preprocessing pipeline, the proposed workflow for segmenting
man-made objects around the reservoirs, and corresponding utilized methods. Next, the perfor-
mance of each workflow stage, besides results visualization and workflow evaluation, is explored
in Sec. 3. The results and findings of the study are discussed in Sec. 4. Finally, this paper is
concluded in Sec. 5.

2 Materials and Methods
Our task of interest is man-made object segmentation around reservoirs. The proposed approach
(see Fig. 1) is based on three main steps: (1) reservoir segmentation; (2) RoIaR extraction; and
(3) man-made object segmentation in the RoIaR. The data are initially collected and preprocessed
to be prepared in a suitable manner. The input images are processed in phase-1 for reservoir
segmentation. The resulting reservoir map is then forwarded to phase-2, where the RoIaR is
detected. This RoIaR serves as a mask for the final segmentation of man-made objects.
Details of the proposed workflow and the steps implemented for its preparation are provided
in the following sections.

2.1 Data Collection
Our experiments are performed on RGB RS images collected from eight reservoirs in Brazil
using the Google Earth Pro© software. GE images represent an integration of multiple satellite
data sources, mainly DigitalGlobe’s QuickBird commercial satellite and EarthSat.26 Aiming at
improving the appearance of the images, the spectral information of images with more than three
bands is reduced to RGB.27 Furthermore, the appearance of GE images is improved using color
balancing, warping, and mosaic processing.3 The GE platform presents important advantages,
such as the fact of being an open database of RS images, of including historical images and of
the flexibility in selecting images of different resolutions.

The eight studied reservoirs are Anta, Billings (the largest reservoir in São Paulo, Brazil),
Dona Francisca, Guarapiranga, Jaguara, Luiz Barreto, Nova Avanhandav (Nova), and Salto
Osório. Their geographic coordinates are listed in Table 1, and their locations are visualized in
Fig. 2. For each reservoir, images over two different years are collected (Table 2). A total of
206 images, each with 2683 × 4800 pixels are obtained, encompassing varying view altitudes
and thus resulting in different resolutions (from ∼1 up to 2 m).

2.2 Data Preparation and Annotation
Data preparation involves two aspects: preprocessing for mosaic image formation and data anno-
tation. The data preparation scheme is illustrated in Fig. 3 using Guarapiranga reservoir samples.
The data preparation aims to prepare data for training the phase-1 and phase-2 segmentation
models in Fig. 1.

As shown in Fig. 3, the input images are initially mosaicked to eliminate overlapping areas
in collected GE images. Subsequently, the images are annotated into two classes: reservoir and
non-reservoir. Constructing the mosaic images is also essential for implementing the next steps.
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Fig. 1 Overview of the proposed workflow.

Table 1 Locations of the studied reservoirs.

Reservoir State Coordinates

Anta Minas Gerais and Rio de Janeiro 22°02′33.20′′ S, 43°01′16.85″ W

Billings São Paulo 23°48′50.62″ S, 46°32′19.39″ W

Dona Francisca Rio Grande do Sul 29°26′34.18″ S, 53°16′09.09″ W

Guarapiranga São Paulo 23°43′16.93″ S, 46°44′22.23″ W

Jaguara Minas Gerais and São Paulo 20°05′01.85″ S, 47°24′10.44″ W

Luiz Barreto São Paulo 20°14′18.50″ S, 47°11′01.95″ W

Nova São Paulo 21°10′34.54″ S, 50°07′34.03″ W

Salto Osório Paraná 25°33′28.60″ S, 52°57′07.61″ W
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Next, in order to simplify the contour around the reservoirs, a polygonal approximation is
initially carried out.28–30 This allows controlling the coarseness by the polygonal approximation
parameter. Then a rectangular box connecting each pair of consecutive polygon corners is
defined. These boxes are enlarged to cover a minimum distance from the border of the reservoir,
which is set empirically. The RoIaR is defined as the union of these boxes (see Fig. 3) and used to
mask the mosaic image.

Fig. 2 Visualization of the studied reservoirs locations.

Table 2 Acquisition years of each reservoir dataset. Some of the older
year images of Luiz and Nova belong to 2004 and 2010, respectively.

Reservoir

Acquisition Years

Older Earlier

Anta 2014 2020

Billings 2009 2019

Dona Francisca 2011 2017

Guarapiranga 2009 2019

Jaguara 2010 2020

Luiz Barreto 2010 2020

Nova 2011 2021

Salto Osório 2005 2019
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The masked RoIaR image is annotated into man-made and non-man-made objects:

• man-made objects: road (asphalted and not-asphalted), rooftop, bridge, pool, urban, and
countryside constructions, impervious surface.

• non-man-made objects: vegetation, water body, bare land, etc.

2.3 Phase-1: Reservoir Map Generation
Reservoir segmentation: This step explores a deep neural network that segments input RGB
patches into reservoir and non-reservoir. In this process, we trained and compared two encoder–
decoder-based models, the U-Net, and SegNet architectures. Following our evaluation, the
SegNet-based model emerged as the most effective choice in our experiments. Below, we briefly
describe these two architectures.

The U-Net architecture introduced by Ref. 31 is based on a downsampling–upsampling
procedure that concatenates feature maps between each encoder and corresponding decoder
by skip connections (see Fig. 4). In each step in the encoder path, two 3 × 3 convolutions fol-
lowed by a ReLU and a 2 × 2max-pooling with stride two are repeated. Furthermore, the number
of feature channels in each downsampling step is doubled. After each upsampling in the decoder
path, a 2 × 2 convolution that halves the number of feature channels is applied. These features are
concatenated with the cropped feature of the corresponding encoder step, and then two 3 × 3

convolution-ReLU blocks are implemented.
Due to the unpadded convolutions utilized in the U-Net, the output size of the model is

smaller than the input. Therefore, we avoided unpadded convolutions to keep the size of each
output equal to the corresponding input (named U-Net_p). On the other hand, a common strategy
in DL research for training the CNNs properly and avoiding training from scratch is to use a

Fig. 3 Proposed data preparation and annotation pipeline.
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pretrained CNN as the initializer or as the fixed feature extractor, called transfer learning.
Therefore, we trained a U-Net model whose encoder path was replaced by VGG-16 (named
U-Net_v) and initialized that with weights trained on the ImageNet dataset. However, the model
overfitted the training set. The last trained U-Net-based model (named U-Net_s) has fewer
features. In this model, there is only one convolution block in each layer that is also batch
normalized.32

The SegNet architecture was first introduced by Ref. 33. Similar to the U-Net, SegNet
includes an encoder and a decoder part with the advantage that the need for learning to upsample
is eliminated. Since each decoder uses pooling indices computed in the max-pooling step of the
corresponding encoder. After each convolution layer in the encoder path, a ReLU non-linearity is
used, whereas, in the decoder, no ReLU non-linearity is presented. Furthermore, the number of
channels per layer is constant (see Fig. 5). In the employed architecture (called SegNet_d),
despite the original form, the number of feature channels is doubled at each downsampling step.
Batch normalization is applied after each convolution layer.

The collected images correspond to different reservoirs geographically spread in Brazil and
have different visual properties. They may be obtained in different seasons, atmospheric con-
ditions, geological conditions, and so forth. A possible approach to address such variability is to
adopt domain adaptation techniques. Since this is out of the scope of this paper, we explored a
data splitting approach to ensure variability in the training, validation, and test sets. Samples from
every mosaic image are used in these sets in the following proportions: 60% for the training set,
20% for the validation set, and 20% for the test set.

Fig. 4 U-Net architecture.

Fig. 5 SegNet architecture.
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Postprocessing: Feeding models by mosaic images instead of patches are impossible
because of the available GPU memory limits. In many cases, patches do not contain important
information about objects, such as their shapes, sizes, and locations in the images. However,
this information is essential for detecting some water bodies from reservoirs. On the other
hand, spectral similarities between objects of different classes also cause errors. Therefore, we
proposed a postprocessing stage to fix these errors.

In this stage, the segmented patches are initially assembled to form the reservoir map. The
morphological opening is applied to remove small false positive pixels and other non-interesting
water objects that are segmented partially or completely as reservoir objects. Next, morphological
closing is applied to remove small false negative objects inside the reservoir objects.

Applying morphological transformations with a large kernel causes changes in the shapes of
objects predicted as the reservoir. In order to remove errors inside reservoirs (such as floating
vegetation) and noisy objects (such as large water bodies around reservoirs), without removing
reservoir objects that are separated because of constructed bridges, the following rules are
proposed.

• If a non-reservoir object is surrounded by a reservoir object, it is classified as the reservoir.
• If the size of a reservoir object is smaller than one-tenth of the size of the largest reservoir

object, or the minimum distance between these two objects is >300 m, then it is classified
as non-reservoir.

2.4 Phase-2: RoIaR Man-Made Object Segmentation
RoIaR extraction: Once the reservoir is segmented, the next step is to detect and extract the
RoIaR. Two possible approaches for RoIaR detection have been considered: polygonal approxi-
mation-based and mathematical morphology-based. The polygonal approximation approach has
been described in Sec. 2.2, which is the one adopted for dataset annotation. Although this
approach is useful for sparse data annotation (because we may control the polygonal approxi-
mation parameters), it produces patches of varying sizes that may not be suitable for analyzing
man-made objects’ evolution, for instance.

Therefore, a mathematical morphological approach is also explored. Let I denotes the seg-
mented reservoir object and s a structuring element. The dilated reservoir object is defined as
Id ¼ I � s, where � is the morphological dilation. The RoIaR R is defined as R ¼ Id − I,
where − denotes set difference.

Following the data annotation procedure illustrated in Fig. 3, the detected RoIaR is applied
as a mask to the mosaic image for RoIaR extraction. The extracted RoIaR is then segmented into
man-made and non-man-made objects.

Man-made object segmentation: Two widely used network architectures for RS segmen-
tation are the pyramid networks and encoder–decoder networks.34 In phase-2, we assessed the
PSPNet, FPN, and LinkNet networks, whose details are presented in the next paragraphs.

The PSPNet has been introduced by Ref. 11 and won the ImageNet Scene Parsing Challenge
2016. It is a pyramid pooling module that enables the network to capture the context of the whole
image. In this module, the feature map is pooled at different sizes and passed through a con-
volution layer. Next, these features are upsampled and concatenated with the original feature map
and passed through a convolution layer to produce the final prediction (see Fig. 6). We imple-
mented PSPNet with different backbones in this study.

Figure 7 presents the FPN’s general schema, a network initially proposed by Ref. 35 for
object detection. The construction of this architecture involves a bottom-up path, a top-down
path, and lateral connections. The scaling step in the bottom-up path (and consequently in the
top-down path) is two. Each lateral link combines feature maps from the bottom-up and top-
down pathways with the same spatial size. Finally, the feature maps in the top-down stages are
upsampled to be the same size as the input image. These feature maps are combined and used to
produce the prediction map. The ResNet is used as the backbone, whereas in this study, other
backbones have also been experimented.

The LinkNet architecture proposed by Ref. 36 is a fast semantic segmentation method that is
constructed from an encoder and a decoder path (see Fig. 8). Each residual block in the encoder
path consists of two consequent convolution blocks. The input of each residual block is bypassed
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to its output. The decoder blocks consist of three convolution layers, and the middle is a full
convolution. The advantage of the proposed architecture is passing the input of each encoder
block to the output of the corresponding decoder block.

Splitting data into the training and test sets are reported to work well when the dataset size is
modest. On the other hand, the training and test sets must represent possible distributions of the
addressed problem. Therefore, 70% for the training set and 30% for the test set are selected
randomly from each RoIaR.

Fig. 6 An overview of PSPNet. The size of feature map channels is denoted below each box. The
size of the last feature map in (a) is 1/8 of the input image size.

Fig. 7 Overview of FPN.

Fig. 8 Overview of LinkNet architecture.
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Loss function: The focal loss proposed by Ref. 37 and the Dice loss (DL)38 are utilized as
the loss functions for training the networks. Focal loss down-weights easy examples and hence
helps the model to learn complex examples better. It is reported by Ref. 39 that focal loss works
best when the data is highly imbalanced. To see how it works, first, consider the binary cross
entropy loss (CE):

EQ-TARGET;temp:intralink-;e001;114;676CEðp; yÞ ¼
�

− log p; if y ¼ 1

− logðp − 1Þ; otherwise
; (1)

where p is the predicted probability for class with label y ¼ 1. Now let define a new notation pt:

EQ-TARGET;temp:intralink-;e002;114;627pt ¼
�

p if y ¼ 1

p − 1; otherwise
: (2)

Using this notation, we can rewrite Eq. (1) as CEðptÞ ¼ − logðptÞ. To balance the impor-
tance of positive/negative examples, we can consider αt as the weight for class 1 and 1 − αt for
class 0, then α-balanced CE will be written as

EQ-TARGET;temp:intralink-;e003;114;553CEðptÞ ¼ −αt logðptÞ: (3)

Finally, to down-weight easy examples, they add factor ð1 − ptÞγ to CE where γ > 0 is a
tunable parameter. Based on the experiment, γ ¼ 2 works best and is used in this study too.

The DL is based on the dice coefficient (DC) [see Eq. (4)]. In the case of binary classifi-
cation, A is the set of all positive examples, and B is the set of correct predicted positive exam-
ples:

EQ-TARGET;temp:intralink-;e004;114;469DC ¼ 2jA ⋂ Bj
jAj þ jBj : (4)

Then DC can be expressed as the following form:

EQ-TARGET;temp:intralink-;e005;114;419DC ¼ 2 ·
TP

TPþ FPþ FN
; (5)

where TP, FP, and FN are true positive, false positive, and false negative, respectively. The DL
takes the following form:

EQ-TARGET;temp:intralink-;e006;114;361DL ¼ 1 − 2 ·

P
N
i¼1 piriP

N
i¼1 ri þ pi

; (6)

where pi is the predicted probability for pixel i’th and ri is the ground truth of the corresponding
pixel. The imbalance between the foreground and background can be efficiently reduced using
DL. However, it disregards the imbalance in data difficulty.

3 Experimental Results
This section describes the experimental evaluation of the proposed workflow. Phases 1 and 2
have been evaluated, and the results are discussed below. We have explored some open-source
libraries40,41 in our code for developing the DL architectures.

3.1 Performance Evaluation Metrics
We adopted three common statistics, precision [Eq. (7)], recall [Eq. (8)], and F1-score [Eq. (9)],
as well as the confusion matrix of segmentation maps:

EQ-TARGET;temp:intralink-;e007;114;170precision ¼ TP

TPþ FP
; (7)

EQ-TARGET;temp:intralink-;e008;114;124recall ¼ TP

TPþ FN
; (8)

EQ-TARGET;temp:intralink-;e009;114;95F1 ¼ 2 ·
precision × recall

precision þ recall
: (9)
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3.2 Phase-1 Experimental Results
The trained architectures for this phase are modified versions of U-Net and SegNet. All trained
models use the binary cross entropy as the loss function. The learning rate in the Adam optimizer
(proposed by Ref. 42) is set to 0.001, which is reduced by a factor of 0.2 after every five epochs
with no reduction in validation loss down to 10−7. Although the number of epochs is set to 100,
training is stopped after 20 epochs with no reduction in the validation loss. Patches with 416 ×
608 pixel sizes are fed into the networks, and training, validation, and test sets contain 6017,
2009, and 1998 patches, respectively. Vertical and horizontal flips are two types of data aug-
mentation that each one is applied randomly on 50% of training set patches. The F1-score
of trained models in segmenting the training and validation sets are presented in Table 3.
As is illustrated in this table, the U-Net_v overfits the training set.

Table 4 presents the performance of models with healthy learning curves in the segmentation
of the validation set, and it is worth noting that SegNet_d outperforms the U-Net-based models.
The performance of SegNet_d in segmenting the test set is illustrated in Table 5. Some patches of
studied reservoirs with different spectral properties besides their ground truths and SegNet_d,
U-Net_s, and U-Net_p prediction outputs are shown in Fig. 9.

In addition to errors that occur because of spectral similarities between reservoirs and some
other objects (such as shadows), there are small water bodies in the images that are segmented as
the reservoir by the models. This issue is unavoidable because of feeding patches to the models
instead of the original images. Therefore, postprocessing the network outputs is an essential task.
Figure 10 presents examples of non-interesting water bodies in the collected dataset and their
segmentation results in the generated reservoir maps.

Table 3 Performance of trained architectures for phase-1 segmentation
stage.

Model

F 1-score

Training set Validation set

U-Net_p 96.19 95.46

U-Net_v 92.11 68.86

U-Net_s 98.16 97.80

SegNet_d 98.40 98.03

Table 4 Performance of models with healthy learning curves for phase-1 segmentation stage on
the validation set.

Model

Precision Recall F 1-score

Non-reservoir reservoir Non-reservoir Reservoir Non-reservoir Reservoir

U-Net_p 98.18 93.72 98.71 91.27 98.44 92.48

U-Net_s 98.63 93.85 98.71 93.49 98.67 93.67

SegNet_d 98.79 94.39 98.82 94.24 98.81 94.32

Table 5 SegNet_d performance in segmenting the test set.

Class Precision Recall F 1-score Support (No. pixels)

Non-reservoir 98.82 98.87 98.85 4,211,777,759

Reservoir 94.33 94.11 94.22 84,172,385
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Fig. 9 Examples of the test set patches beside their corresponding ground truths and segmenta-
tion outputs.

Fig. 10 Examples of non-reservoir water bodies in the collected dataset and corresponding
segmentation results.
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Morphological operations in postprocessing are highly effective in removing minor errors,
as described above. The applied structuring element size for each reservoir is set to 100 divided
by the spatial resolution. For instance, if the spatial resolution of a mosaic image is 1 m, the
structuring element size is 100 × 100.

As the reservoirs contain branches, applying morphological operations with large kernel
sizes increases FP and FN objects. Accordingly, significant errors are removed by applying the
two rules to objects in the produced segmentation maps. Postprocessing solely using rules is
time-consuming because of the high number of FP and FN objects in prediction maps, whereas
morphological operations speed up this process. Anta-2014 and Nova-2021 mosaic images,
besides their ground truths, model outputs, and postprocessing outputs are illustrated in Fig. 11.
The SegNet_d performance in segmenting these two reservoirs besides postprocessing perfor-
mance are presented in Table 6. Applying the proposed postprocessing improves the accuracy of
produced reservoir maps except for two of the 16 studied cases.

3.3 Phase-2 Experimental Results
As discussed above, VGG-16, ResNet-50, and ResNet-101 are the most frequented backbones.7

In this study, these three backbones besides EfficientNet-B4 have been experimented. All back-
bones are initialized with weights trained on the ImageNet dataset. The Adam optimizer is used
as the optimizer in all models. The initial learning rate is set to 0.0001 or 0.001, which is auto-
matically reduced by a factor of 0.2 after every five epochs with no reduction in validation loss

Fig. 11 Two examples of produced mosaic images, corresponding ground truths, prediction
outputs, and postprocessing outputs. Anta-2014 with 11;687 × 14;430 pixel size, and Nova-2021
with 24;830 × 23;193 pixel size are depicted in the first and second columns, respectively.
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down to 10−7. The mini-batch size is set to two and power of two (up to the possible size based on
the model’s size and available memory). The number of epochs in training all models is set to 80.
The vertical and horizontal flips are two data augmentation methods that are implemented on
different portions of images (up to 0.7). We added dropout regularization (<0.3) to the models
with overfitting. Furthermore, experiments are on two training sets, a training set containing 70%
of data or the oversampled training set. The oversampled images are images with at least 200
man-made objects pixels.

The evaluation metrics for the highest performance model constructed using each architec-
ture are presented in Table 7. These models are all trained on the oversampled training set with
a learning rate of 0.0001. Furthermore, the data augmentation rate in these models is set to 0.7
for each data augmentation method, and the dropout regularization is set to 0.0, 0.3, 0.3, and
0.0, respectively. Regarding the F1-score, the best performance belongs to FPN; however, the
differences are insignificant. The utilized backbones for each model in this table are ResNet50,
VGG-16, VGG-16, and Efficientnet-B4, respectively. Except for the PSPNet that VGG-16 could
improve the performance of the model significantly (2.34%), the performances of the rest models
are slightly affected by changing their backbones (<0.73%). In our experiments, oversampling
images with more than 200 man-made object pixels improved the performances. Despite the
expectation, increasing batch size did not increase the performance metrics in all cases.
Adding the DL to the focal loss function significantly improved the models’ performances.
Although increasing the data augmentation rate prevented overfitting in some cases, in other
cases increasing dropout and data augmentation rates were both essential. Though the FPN
outperforms the PSPNet, each epoch training time of PSPNet is less than one-third of the FPN.
FPN performance in segmenting test set is presented in Table 8.

Moreover, the FPN performance in segmenting RoI of reservoirs located in the countryside
and urban areas are computed separately and shown in Table 9. Some examples of patches
besides their ground truths and segmentation outputs are illustrated in Fig. 12. This figure illus-
trates examples of different types of roads, rooftops, and urban and countryside constructions
with different density levels.

Table 6 Prediction and refinement performance metrics for Anta-2014 an Nova-2021.

Reservoir Class

Model Postprocessing

Precision Recall Precision Recall

Anta-2014 Non-reservoir 98.45 98.95 99.15 99.56

Reservoir 89.75 85.53 95.72 92.07

Nova-2021 Non-reservoir 98.33 98.03 98.67 99.13

Reservoir 92.56 93.65 96.63 94.90

Table 7 Highest achieved performances using trained models for phase-
2 segmentation on training and test sets.

Model

F 1-score

Training set Test set

U-Net 91.64 90.13

PSPNet 91.39 89.76

FPN 92.16 90.32

LinkNet 91.95 90.15
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3.4 Workflow Evaluation
We evaluated the proposed workflow using a dataset collected from the Barra Grande reservoir
(Barra). Barra is located in Santa Catarina and Rio Grande do Sul states in Brazil. The collected
images belong to 2021, and their spatial resolution is two meters. To evaluate the proposed

Table 8 FPN performance in segmenting test set into the man-made and non-man-made objects
pixels.

Class Precision Recall F 1-score Support (No. pixels)

Non-man-made 99.52 99.56 99.54 327,065,669

Man-made 81.79 80.43 81.10 8,101,819

Table 9 FPN performance in segmenting countryside and urban man-made objects. C and U are
the abbreviations for countryside and urban.

Class

Precision Recall F 1-score

C U C U C U

Non-man-made 99.68 99.39 99.73 99.26 99.71 99.33

Man-made 78.70 86.62 75.78 88.75 77.21 87.67

Fig. 12 Examples of studied reservoirs RoI patches beside their corresponding ground truths and
prediction outputs.
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workflow using the collected data, first, patches with 416 × 608 pixel size are constructed from
the mosaic RGB image of Barra. Next, patches are fed to the trained SegNet_d to be segmented
into the reservoir and non-reservoir. The SegNet_d performance is evaluated by comparing
model outputs with manually produced ground truths. In the next step, the SegNet_d outputs
are assembled to be refined using the proposed postprocessing stage. The refined reservoir map
is used to detach the RoI around Barra. The covered distance from the border of the reservoir is
200 meters. In Table 10, the performances of the phase-1 segmentation stage, besides the per-
formance of proposed postprocessing, are reported. Table 11 shows the evaluation metrics for the
phase-2 segmentation stage. Furthermore, some samples of phase-1 and phase-2 segmentation
outputs are illustrated in Figs. 13 and 14, respectively.

Table 10 Performance of phase-1 segmentation and postprocessing stages in segmenting Barra
dataset to reservoir and non-reservoir.

Class

Model Postprocessing

Precision Recall F 1-score Precision Recall F 1-score

Non-reservoir 98.39 96.86 97.62 98.38 98.36 98.37

Reservoir 84.00 91.21 87.45 90.92 91.04 90.98

Table 11 Performance of phase-2 segmentation stage in segmenting
Barra RoI to man-made and non-man-made.

Class Precision Recall F 1-score

Non-man-made 99.99 99.99 99.99

Man-made 73.29 79.43 76.23

Fig. 13 Two samples of Barra phase-1 patches, besides their corresponding ground truths and
reservoir segmentation results.
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3.5 Benchmark
In order to show the effectiveness of our proposed two-phase approach, we applied a single-
phase network to segment images into reservoir, man-made, and non-man-made, as the baseline.
In this model, the VGG-16 is used as the backbone, the learning rate is set to 0.0001, the number
of epochs is set to 150, the early stopping is not applied, and the summation of Dice and focal
losses is used as the loss function. The learning rate is reduced by a factor of 0.2 after every five
epochs with no reduction in validation loss down to 10−7. Same as the phase-2 training phase,
we constructed patches with 384 × 384 pixel size and split them into two sets, training and test.

Since man-made objects inside RoIaR are annotated as man-made and outside as non-man-
made (because they are not around the reservoir), the baseline performance is poor (see Table 12),
as expected. This simple baseline approach illustrates the importance of our proposed two-phase
approach.

4 Discussion
The experimental performance evaluation has addressed the results of phases 1 and 2 of the
proposed workflow, workflow validation by an external testing dataset, and the single-phase
segmentation benchmark result.

Reservoir segmentation is addressed in phase-1 of the workflow. We trained three U-Net-
based models in this phase. The vanilla U-Net was changed to keep the size of each output
equal to the corresponding input to produce a pixelwise classification. In addition, a U-Net with

Fig. 14 Two samples of Barra RoI patches, their corresponding ground truths, and man-made
object segmentation results.

Table 12 U-Net performance in segmenting the training and test sets into reservoir, man-made,
and non.

Class

Precision Recall F 1-score

Train Test Train Test Train Test

Reservoir 96.58 96.15 96.52 95.72 96.55 95.94

Man-made 62.17 59.02 50.78 49.13 55.90 53.62

Non 98.64 98.37 98.88 98.69 98.76 98.53
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VGG-16 as the backbone was trained. The model over-fitted highly to the training set.
Decreasing the number of feature maps in the model (named U-Net_s) caused performance
improvement and fixed the overfitting issue, as shown in Table 3. A SegNet-based architecture
was also trained to examine its ability to enhance segmentation outputs. However, it outper-
formed the U-Net_s slightly (1.23% in F1-score).

In the DL segmentation studies, the reservoirs are considered in a broad class called water
bodies. In this study, a postprocessing stage is proposed to eliminate errors caused by floating
vegetation and delete FP and FN objects caused by spectral similarities between reservoirs and
other objects. The proposed postprocessing improved the overall accuracy and provided a clear
map of the reservoirs, as shown by the examples in Table 6 and Fig. 11.

Phase-2 restricts the segmentation of man-made objects in the RoIaR. Four DL architectures
have been evaluated to segment the man-made objects: U-Net, FPN, LinkNet, and PSPNet. This
problem typically involves imbalanced data because of government policies to protect such areas
besides difficulty in segmenting countryside man-made objects.

In order to address these issues, we tried out the capability of two recommended loss func-
tions (dice and focal losses) and the oversampling strategy. Although focal loss was reported as
the best loss function for segmenting unbalance data, adding DL to the focal loss significantly
improved the performances. Furthermore, oversampling improved the performances as well.
We trained each architecture with four different backbones, ResNet50, ResNet101, VGG-16,
and EfficientNet-B4. The highest improvement caused by changing the backbone belongs to
VGG-16 in PSPNet, 2.34%, whereas changing the backbone in other architectures had a low
contribution.

Workflow validation has been carried out using data not seen by the model during training
(Barra reservoir, see Sec. 3.4). The validation data included realistic noise and difficulties, such
as clouds. Despite this, the phase-1 model achieved to 92.54% average F1-score that was even
improved to 94.68% by applying postprocessing techniques (see Table 10). Additionally, the
reservoir is in the countryside. The majority of roads are not asphalted, and man-made objects
present different visual features from urban areas. Also there are fewer samples of them in the
training data. Accordingly, segmenting them is more complicated compared to urban areas.
Nonetheless, the phase-2 model could gain an acceptable performance, as seen in Table 11.

In order to show the effectiveness of the proposed two-phase approach compared to a single-
phase approach, we trained a network to segment images into reservoir, man-made, and non-
man-made. We increased the feature maps in the phase-2 trained U-Net-based model, the VGG-
16 is used as the backbone, the learning rate is set to 0.0001, the number of epochs is set to 150,
and the summation of dice and focal losses is used as the loss function. The learning rate is
reduced by a factor of 0.2 after every five epochs with no reduction in validation loss down
to 10−7. The data were split into the training and test sets, and no early stopping was applied.
Nonetheless, the model was poor in segmenting man-made objects (see Table 12), and its man-
made F1-score is 35.74 % less than the phase-2 U-Net-based model.

5 Conclusions
In this study, we proposed a two-phase workflow to segment man-made objects around reservoirs
in an end-to-end procedure. In order to improve produced reservoir maps, a postprocessing stage
is proposed that, besides increasing the precision metric, its effect is remarkable by visual evalu-
ation. A small portion of images belongs to the class of man-made object, specially countryside
man-made object. Nonetheless, we gained promising results by collecting images of reservoirs
mainly located in the countrysides, and defining a suitable loss function. The collected RS
images have high spatial resolutions, contain reservoirs with different spectral properties, contain
urban areas as well as countrysides, and are acquired from different states and seasons. These
factors increase the reliability and robustness of constructed models and the proposed workflow.
The trained workflow was evaluated with an external testing dataset. Although the collected
images are noisy in some areas and the RoIaR is in the countryside, the average F1-scores
of phase-1 and phase-2 outputs show the reliability of the prepared workflow. The workflow
outperformed significantly in man-made object segmentation compared to the single-phase
segmentation benchmark.
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We suggest two relevant directions for future research: change detection and domain adap-
tation. An important possible application of RoIaR man-made object segmentation is the timely
detection of unauthorized constructions around the reservoirs. This social problem might lead to
serious consequences, such as reservoir contamination and dangerous situations for communities
living in such places. Unfortunately, if such constructions are not detected in their first stages and
local communities start to live there, it becomes more and more difficult for public services to
move such communities. Hence, timely man-made object change detection in the RoIaR is an
important application that might rely on the segmentation procedure described in this paper.

On the other hand, a key issue of RS imaging is the challenges in analyzing data from differ-
ent locations and dates. Geographical and atmospheric variations affect the images, and domain
adaptation approaches must often be developed. This problem has been circumvented in this
paper by sparse annotation of all considered reservoirs, reflected by our sampling strategy.
We are considering other possible domain adaptation approaches, such as few-shot and self-
supervised learning. A context-aware network could be adopted as a possible alternative.
This is left as future work since it involves its challenges.

Code and Data Availability
Data supporting this study cannot be made available due to Google Earth’s terms of service. The
code is available through the GitHub repository [https://github.com/NayerehH/Man-made-objects-
segmentation-in-RoI-around-reservoirs]
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