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Abstract. Traditional saliency detection can effectively detect possible objects using an atten-
tional mechanism instead of automatic object detection, and thus is widely used in natural scene
detection. However, it may fail to extract salient objects accurately from remote sensing images,
which have their own characteristics such as large data volumes, multiple resolutions, illumi-
nation variation, and complex texture structure. We propose a sparsity-guided saliency detection
model for remote sensing images that uses a sparse representation to obtain the high-level global
and background cues for saliency map integration. Specifically, it first uses pixel-level global
cues and background prior information to construct two dictionaries that are used to characterize
the global and background properties of remote sensing images. It then employs a sparse rep-
resentation for the high-level cues. Finally, a Bayesian formula is applied to integrate the saliency
maps generated by both types of high-level cues. Experimental results on remote sensing image
datasets that include various objects under complex conditions demonstrate the effectiveness and
feasibility of the proposed method. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.095055]
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1 Introduction

Object detection in remote sensing images is of vital importance and has great potential in many
fields such as navigation reconnaissance, autonomous navigation, scene understanding, geologi-
cal survey, and precision-guided systems. Remote sensing images are captured by sensors on an
airplane or other aircraft as an aerial view under various luminance and viewing angle conditions.
In contrast to natural scene images taken from the ground, remote sensing images have more
complex backgrounds (e.g., forests, lakes, sand, roads, and lawns) that sometimes share similar
characteristics with the interesting objects. In addition, remote sensing images with down-
looking or front-downward views are more likely to be disturbed by noise, luminance fluctuation,
fog, cloud cover, and blur caused by flight vibration. Therefore, it is difficult and time-consuming
to precisely and quickly extract objects from complex backgrounds in practical applications.
In order to achieve automatic, rapid, and accurate remote sensing target detection, saliency detec-
tion was introduced to the remote sensing field in the last decade.1–6 This method imitates human
visual attention to identify the attention-grabbing regions that may contain candidate objects.7–9

There are two main types of models for saliency detection: data-driven bottom-up
models10–22,23,24 and task-driven top-down models.25 The bottom-up model has shown that
low-level cues (e.g., frequency26,27 and contrast10,11,13–20,22,28,29,30,31) are quite useful for
saliency detection. Itti et al.10 exploited the contrast of the center and its surroundings at multi-
ple scales with multiple features to detect salient regions in an image. Bruce and Tsotsos11

*Address all correspondence to: Danpei Zhao, E-mail: zhaodanpei@buaa.edu.cn

Journal of Applied Remote Sensing 095055-1 Vol. 9, 2015

http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
mailto:zhaodanpei@buaa.edu.cn
mailto:zhaodanpei@buaa.edu.cn
mailto:zhaodanpei@buaa.edu.cn


extracted the local Shannon’s self-information to generate the saliency map. Color contrast
(e.g., RGB or LAB)10,13–20,22,28,29,30,31,32 has been utilized to form low-level cues, and many
studies7,15–18,20,22,28,31 have shown that the LAB color space is more suitable for human visual
perception. Compared with local contrast,12,13 which highlights the object boundaries, global
contrast8,17 usually highlights the entire prominent region, but it easily mistakes noisy regions
as salient parts. Most recently, methods16–18,22 exploiting foreground and background priors
have proven to be efficient. In particular, the extraction of background information16–18 pro-
vides a background template and achieves unsupervised saliency detection. Despite all this,
models employing only low-level cues fail to generate object-level saliency maps. To discover
more effective cues for detecting salient regions, high-level saliency cues have been investi-
gated. Shen and Wu19 designed a unified model based on low-rank matrix recovery to obtain
the saliency map. Margolin et al.20 computed saliency by exploiting the reconstruction error of
the principle component analysis to analyze the distinctness of a region. Xie et al.21 proposed a
Bayesian model via low and midlevel cues to produce a saliency map. Borji and Itti22 detected
the salient regions by calculating local and global patch rarities after reconstructing the image
using a sparse representation. Li et al.18 achieved efficient saliency maps with dense and sparse
reconstruction errors. In contrast to low-level cues, these high-level cues can generate a better
saliency detection performance. Some researchers tend to combine existing saliency models to
detect saliency. Sun et al.1 employed a combination of edge- and graph-based visual saliency
models by fusing two saliency maps to detect salient regions in remote sensing images. Zhang
and Yang6 proposed a method based on frequency domain analysis and salient region detection
to extract salient regions. However, the methods that fuse two saliency maps generated by
different saliency models can easily lead to a less effective performance of saliency detection
in remote sensing images because of the complex and abundant image content. Consequently,
it is important to seek new cues that effectively predict salient regions where candidate objects
are likely to exist in remote sensing images.

Because the objects in remote sensing images are different from complex backgrounds in the
visible spectrum, we attempt to discover persuasive cues to extract salient regions from complex
backgrounds. In this paper, we propose a sparsity-guided saliency model (SGSM) that combines
global cues with background priors for saliency detection in remote sensing images. Our pro-
posed model takes a sparse representation approach by measuring the relationship between
image patches and a dictionary to generate an objective saliency map. This method exploits
a sparse representation to produce high-level cues via global-based and background-based dic-
tionaries. These two dictionaries are, respectively, obtained by low-level cues based on global
cues and the background prior, and they contain the category information (i.e., object or back-
ground). Hence, high-level cues can reveal the intrinsic similarity of images and determine the
categories of patches. Using the patch category information, the saliency map is obtained by a
clustering algorithm. As there are no benchmark datasets for saliency detection in remote sensing
images, we constructed two datasets to validate the efficiency of our proposed model. The
images in the datasets contain various objects (e.g., house or vehicle) captured by Google
Earth under varying conditions. The single-object dataset (SOD) contains 500 images of a single
object, while the multiple-object dataset (MOD) contains 1000 images of multiple objects.

The remainder of this paper is organized as follows: Sec. 2 demonstrates the theory and
motivation of our proposed model first and then illustrates the specific implementation of
the proposed model. In Sec. 3, the experimental results and analysis are shown. Finally, Sec. 4
provides the conclusion.

2 Sparsity-Guided Saliency Model

This section presents the theoretical basis of SGSM in detail.
First, we provide the general theory that is necessary to understand our proposed model.

SGSM exploits a combination of global cues and background prior information to provide global
and background information, respectively. With the global cues, the false positive detection of
regions that contain candidate objects can be avoided, especially when these regions are similar
to the background. In addition, by using the background prior information, regions that are
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different from the background stand out. The low-level cues based on global cues and back-
ground priors are, respectively, clustered into global-based and background-based dictionaries.
These two dictionaries separately contain the category information (i.e., object or background) of
global and background cues. Based on these two low-level dictionaries, high-level cues are
generated using a sparse representation. Finally, these high-level cues are clustered to obtain
a saliency map. The overall procedure is presented in Fig. 1.

2.1 Low-level Feature Description via Global Cues and Background Prior

In order to determine the visual uniqueness of image regions, we decompose the image into
nonoverlapping patches of uniform size. Because the LAB color space7,15,16–18,20,22,28,31 corre-
sponds more closely to human vision, we chose it for the low-level representation. Generally,
global information comes from global cues, and background information stems from the back-
ground prior. According to the background prior assumptions17,18 that salient objects usually
appear in the center of the image and the boundaries are mostly background, we use boun-
dary-based cues to extract background information.

Given a color image I of size T ¼ W ×H (W and H are, respectively, the image width and
height), we first divide it into nonoverlapping patches of size Tp ¼ P ×Q such that the whole
image contains tðt ¼ T∕TPÞ patches. There are then n ¼ 2ðW∕PþH∕QÞ − 4 patches at the
four boundaries to form the background set. For the i’th (1 ≤ i ≤ t) patch containing Tp pixels,
the values of all pixels in the three LAB channels form the rows of matrix GlabðiÞ, and the pixel
values of the j’th (1 ≤ j ≤ n) patch in the background set form the rows of matrix BlabðjÞ.

Y

Fig. 1 Sparsity-guided saliency model saliency detection.
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Furthermore, all t patches form the global information set Glab, and all n patches at the four
boundaries of the image form the background information set Blab.
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The two matrices Glab and Blab are clustered into global-based dictionary DGlobal and back-
ground-based dictionary DBackground, respectively, using K-means with clustering number KD.
These two dictionaries, respectively, contain the global and background information. The details
of this procedure are illustrated in part I of Fig. 1.

2.2 High-Level Feature Transformation Using a Sparse Representation

Sparse representation22,33,34,35,30 has been a focus of research in the area of computer vision and
pattern recognition. Based on a dictionary consisting of a set of bases, sparse representation can
represent an image by a sparse coefficient vector. A nonzero element in the vector reflects the
correlation between the image and the bases in the dictionary. As we divide the image into
patches, the sparse coefficients of each patch can be learned by sparse representation. We choose
one group of sparse coefficients to express the patch-dictionary relationship by max pooling the
Tp groups of sparse coefficients in every patch. These sparse coefficient vectors are used to
compute the patch categories.

Concretely, we represent the image using a sparse representation by minimizing the l1-norm
using a given dictionary. Every patch in the global-based set Glab can be represented by the
corresponding global coefficients αGlobal from the global-based dictionary DGlobal. Similarly,
each patch in the background-based set Blab can be represented by the corresponding background
coefficients αBackground from the background-based dictionary DBackground. This representation is
shown as follows:

EQ-TARGET;temp:intralink-;e005;116;227GlabðiÞ ¼ DGlobalαGlobalðiÞ BlabðiÞ ¼ DBackgroundαBackgroundðiÞ: (5)

We then encode all the patches in image I by

EQ-TARGET;temp:intralink-;e006;116;181

min
α

kDGlobalαGlobalðiÞ − GlabðiÞk2 s:t: kαGlobalðiÞk1 ≤ β

min
α

kDBackgroundαBackgroundðiÞ − BlabðiÞk
2

s:t: kαBackgroundðiÞk1 ≤ β
; i ¼ ð1;2; · · · ; tÞ;

(6)

where β ≥ 0 is a tuning parameter. The sparse coefficients of all patches αGlobal and αBackground are
optimized using the least absolute shrinkage and selection operator (Lasso).36 After max pooling
in every patch, we obtain the global-based coefficient set αmax

Global and background based coef-
ficients’ set αmax

Background. Coefficients’ sets α
max
Global and αmax

Background are separately clustered into two
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categories (i.e., object and background) by K-means to determine the patch category labels. We
obtain global-based estimate maps EMGlobal and background-based estimate maps EMBackground

by returning the category labels to the corresponding patches. The saliency map integration pro-
cedure is shown in part II of Fig. 1.

2.3 Sparse Representation-Based Saliency Computation

According to the background prior principle16,18,22 mentioned in Sec. 2.1, we assume that the
edges of the image are generally background. We then obtain the patch object probability PObject

by calculating the ratio of the patches confirmed as objects to all edge patches. Similarly, we
obtain the patch background probability PBackground by calculating the ratio of the patches con-
firmed as background to all edge patches. These probabilities, respectively, form the estimated
maps EMGlobal and EMBackground. According to the background prior, PObject should be less than
PBackground. Therefore, we define the parts with lower probability to be objects and the parts with
higher probability to be background. We then form a binary object map BMðiÞ of the clustered
pixel patches defined as follows:

EQ-TARGET;temp:intralink-;e007;116;543BMðiÞ ¼
�
1 PObject < PBackground

0 Otherwise
; i ¼ 1;2; : : : ; t: (7)

The mean values of the sparse coefficient vectors after pooling show the degree of the patch-
dictionary relationship. If the patches are similar, their pooling coefficients are analogous, and
the mean values of the sparse coefficients indicate only slight differences. We then define
the mean values of sparse coefficients after pooling to be the saliency scores of the patches.
A labeled map SðzÞ is obtained by returning saliency scores to the corresponding patches if
they are confirmed as objects

EQ-TARGET;temp:intralink-;e008;116;425SðzÞ ¼
�
meanðαmax

i Þ BMðiÞ ¼ 1

0 BMðiÞ ¼ 0
; i ¼ 1;2; : : : ; t; z ¼ 1;2; : : : ; T; (8)

where αmax
i denotes the sparse coefficients of the i’th patch after max pooling.

The primary saliency maps SGlobalðzÞ and SBackgroundðzÞ are, respectively, obtained from
αGlobal and αBackground according to Eq. (8). This high-level feature transformation is illustrated
in part III of Fig. 1.

2.4 Saliency Map Integration

Because remote sensing images are captured by sensors in aircraft, there is no certainty regarding
the location of the objects in the images. Therefore, an object-biased Gaussian model18 is more
suitable than a center-biased Gaussian model22 for erasing interference. Finally, we employ a
Bayesian formula to integrate primary saliency maps SGlobalðzÞ and SBackgroundðzÞ using posterior
probability.

2.4.1 Object-biased Gaussian smoothing

We employ object-biased Gaussian smoothing to erase the interference judged to be noise. Borji
and Itti22 noted that a center-bias exists in some saliency detection datasets and hence removes
noise by the Gaussian model

EQ-TARGET;temp:intralink-;e009;116;162GðzÞ ¼ exp

�
−
�ðxz − xÞ2

2σ2x
þ ðyz − yÞ2

2σ2y

��
; (9)

where σx and σy denote the covariances, ðx; yÞ denotes the coordinates of the object center, and
ðxz; yzÞ are the coordinates of any pixel in the map, where x ¼ 0 and y ¼ 0 indicate the image
center. Li et al.18 refined the model to be object-biased with dense and sparse reconstruction
errors. In this paper, we adopt patch labels from Eq. (7) instead of dense and sparse
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reconstruction errors to determine a more accurate object center. We set the coordinates ðx; yÞ of
the object center to be the position determined using the labels of the image region as

EQ-TARGET;temp:intralink-;e010;116;711

8<
:

x ¼ P
i
xi � SðiÞ∕

P
j
SðjÞ

y ¼ P
i
yi � SðiÞ∕

P
j
SðjÞ : (10)

An object-biased Gaussian model is generated using Eq. (9) with coordinates ðx; yÞ in
Eq. (10). The final result S is a convolution of the primary saliency map SðzÞ and refined
object-biased Gaussian model GðzÞ. We refine global-based saliency map (G-map) SGlobal and
background-based saliency map (B-map) SBackground via this object-biased Gaussian model with
its more accurate object centers.

EQ-TARGET;temp:intralink-;e011;116;591SGlobal ¼ GðzÞ � SGlobalðzÞ; SBackground ¼ GðzÞ � SBackgroundðzÞ: (11)

2.4.2 Bayesian integration

As illustrated in Ref. 18, an effective saliency map is obtained by the Bayesian integration of
two given saliency maps. Bayes’ formula states that

EQ-TARGET;temp:intralink-;e012;116;497pðFjSmapÞ ¼
pðFÞpðSmapjFÞ

pðFÞpðSmapjFÞ þ ½1 − pðFÞ�pðSmapjBÞ
; (12)

where pðFÞ is the prior probability, namely, the saliency map pðSmapjFÞ is the probability
of foreground for the whole saliency map, and pðSmapjBÞ is the respective probability of
background.

We utilize a global-based saliency map SGlobal or background-based saliency map SBackground
as the prior, and, respectively, either SBackground or SGlobal is then used to compute the likelihood.
Together, these maps determine the final saliency map S

EQ-TARGET;temp:intralink-;e013;116;379S ¼ pðFGlobaljSBackgroundÞ þ pðFBackgroundjSGlobalÞ; (13)

where FGlobal and FBackground, respectively, denote the foreground segmented by the mean
saliency value from SGlobal and SBackground. The saliency map integration procedure is shown
in part IV of Fig. 1.

2.5 Algorithm

The full SGSM algorithm consists of the following steps:

Step 1: Divide input color image I into patches of size P ×Q.
Step 2: Extract global information Glab and background information Blab from the three LAB

channels and then, respectively, cluster them into dictionaries DGlobal and DBackground using
K-means with clustering number KD.

EQ-TARGET;temp:intralink-;sec2.5;116;212Glab!K-means
DGlobal; Blab!k-means

DBackground:

Step 3: Learn coefficients αGlobal and αBackground using Eq. (2) via a sparse representation based
on DGlobal and DBackground.

Step 4: Cluster sparse coefficients after separately max pooling αmax
Global and αmax

Background into two
categories by K-means to get estimated maps EMGlobal and EMBackground.

Step 5: Compute the patch saliency values to get primary saliency maps SGlobalðzÞ and
SBackgroundðzÞ by Eqs. (7) and (8).

Step 6: Smooth SGlobalðzÞ and SBackgroundðzÞ using an object-biased Gaussian model by Eq. (11)
to get SGlobal and SBackground, respectively.

Step 7: Obtain saliency map S by a Bayesian integration of SGlobal and SBackground in Eq. (13).
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2.6 Multiple Scales Integration

We obtained different results at different spatial scales for objects at different depths and of
different sizes, hence we divided the input image into patches of size ðk � PÞ × ðk �QÞ at
the k’th scale to generate the SGSM saliency map at that scale. Large patches contribute to
the definition of properties for the image region, but they generate jagged edges because of
the few pixels that do not have the same property as the majority of the pixels within that
patch. The final saliency map was obtained by fusing the maps at the k scales as follows:

EQ-TARGET;temp:intralink-;e014;116;644Sfinal ¼ εSscale 1 þ ψSscale 2þ · · · þϑSscale k; εþ ψþ · · · þϑ ¼ 1; (14)

where ε;ψ ; · · · ; ϑ are the weights for different scales. We then normalized the saliency map Sfinal
to the range of [0,1] to obtain the final saliency map Sfinal.

3 Experiments

This section presents the database used to validate the efficiency of our proposed method and
evaluates it with respect to 10 other state-of-the-art methods.

3.1 Databases

SGSM aims to detect salient objects in remote sensing images that mainly contain houses and oil
tanks. All images were collected from Google Earth and were captured under conditions of
diverse illumination and various viewpoints. We collected images taken at heights of 300 to
2000 m, the resolution is about 0.4 to 1.9 m. It is important to ensure that detailed images
can be captured. There are 500 images containing a single object and 1000 images containing
multiple objects. Each group of images forms a database, respectively, called the SOD and
MOD, and their corresponding binary ground truth GT is manually obtained. In remote sensing
images, all kinds of interesting objects have different appearances and shapes, but the objects
share a great deal in common with surrounding backgrounds in color, texture, and shape.
Complicated backgrounds (such as forest, lakes, sand, roads, and lawns) and various conditions
(including fog, shadow, and luminance fluctuation) easily lead to false detection. Sample images
from the two datasets are shown in Fig. 2.

3.2 Experimental Setup

The database test images were resized to 400 × 400 pixels. For these experiments, we set the
patch size P ¼ 2, Q ¼ 2, the first clustering number KD ¼ 10, the parameters σx ¼ 100 and
σy ¼ 100 in Eq. (9).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

Fig. 2 Samples from the databases: (1)–(10) are from the single-object dataset (SOD) that con-
tains 500 single-object images and (11)–(30) are from the multiple-object dataset (MOD) that con-
tains 1000 multiobject images. These objects have different shapes, colors, and illumination.
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We carried out the experiments to certify the efficiency of the combination of global cues and
background prior, and the experimental results are detailed in Sec. 3.2.1. We note that the selec-
tion of patch size affects the performance of SGSM, and there are different outputs at different
scales. Hence, we employed multiple scales to produce a better saliency map. The selection of
these multiple scales is based on the experimental results of Sec. 3.2.2.

3.2.1 Combining global cues and background prior information

The global-based saliency map (G-map), background-based saliency map (B-map), and final
saliency map (C-map) obtained by combining both maps were obtained for all 1500 images
from the SOD and MOD. The performance of these three saliency maps is shown in Fig. 3(a),
where it can be seen that the information selected to generate the dictionaries affects the results of
saliency detection. The sparse coefficients computed by the global- and background-based dic-
tionaries show different relationships among the same patches. The objects are easily confused
with the background if they have sparse coefficients that are similar to it. In addition, sparse
coefficients computed by the global-based dictionary interpret the relationship between image
patches and all the categories that the image contains, while sparse coefficients computed by
background-based dictionary interpret the relationship between image patches and the categories
that the background contains. The C-map clearly generates the best results. From Fig. 3(b),
we can see that the integration of global cues and background prior information results in better
precision and recall (PR) values and detects salient regions more accurately and efficiently.

3.2.2 Selection of multiple scales

We can obtain k saliency maps with the procedure in Sec. 2.5 in k scales, and chose the scale on
the basis of experimental analysis. According to the results of different scales shown in Fig. 4, we
chose k ¼ 2 to generate SGSM saliency maps at two scales in order to obtain an efficient and
accurate saliency map. Furthermore, we set ε ¼ 0.2 and ψ ¼ 0.8 in Eq. (14).

3.3 Experimental Evaluation Measures

3.3.1 Precision and recall curves and F-measure

We evaluated the results of our algorithm to a manually generated ground truth using the PR
curve28,37 and F-measure.28,37 Precision measures the ratio of correctly assigned salient pixels to

Fig. 3 Comparison of G-map, B-map, and C-map: (a) saliency maps computed from different
clustering dictionaries and (b) average precision and recall (PR) curves of 1500 images from
the SOD and MOD.
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all pixels of the extracted regions. Recall measures the percentage of detected salient pixels to the
salient ground truth in the same image. A binary map is generated with the threshold T ∈ ½0;255�
and then compared to the ground truth image to obtain the average PR values of all the images in
the datasets to measure the overall performance. The F-measure is computed as the weighted
harmonic of precision and recall and is defined as:

EQ-TARGET;temp:intralink-;e015;116;454Fβ ¼
ð1þ β2ÞPrecision × Recall

β2Precisionþ Recall
: (15)

We set β2 to 0.3 for these experiments.9,15,16,28

3.3.2 Mean absolute error

Similar to Ref. 28, we also evaluated the mean absolute error (MAE) between the binary ground
truth GT and final saliency map Sfinal to obtain a more balanced comparison. MAE is defined as:

Fig. 5 Saliency maps of the proposed method and 10 state-of-the-art methods for SOD images.

Fig. 4 Comparison of saliency maps at different scales: (a) visual results of four scales from SOD
and MOD and (b) average PR curves in four scales and the combination of multiple scales.
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EQ-TARGET;temp:intralink-;e016;116;735MAE ¼ 1

W ×H

XW
x¼1

XH
y¼1

jSfinalðx; yÞ − GTðx; yÞj; (16)

where W and H, respectively, denote the width and height of the saliency map and ground
truth image.

3.4 Comparison with 10 State-of-the-Art Methods

We compared our proposed method (SGSM) with 10 state-of-art methods: dense and sparse
reconstruction (DSR),18 graph-based manifold ranking (GBMR),16 global cues (GC),14 a
model of information maximization (AIM),11 saliency-based visual attention (Itti),10 fre-
quency-tuned (FT),27 histogram-based contrast (HC),15 spatial attention model (LC),8 spectral
residual (SR),26 and region-based contrast (RC).15 We find that it is very difficult for all these
methods to exactly detect the saliency region in remote sensing images. Two experiments were
performed to validate the efficiency of the proposed method. The first experiment detected a
single salient object from the SOD, while the second group detected multiple salient objects
from the MOD. The results of single object detection are illustrated in Figs. 5 and 6, and
those of multiple object detection are illustrated in Figs. 7 and 8. Figures 5 and 7 show 11
saliency models, and Figs. 6 and 8 show the PR curves and F-measure values. Table 1 lists
the MAE results for both the SOD and MOD.

3.4.1 Single salient object detection

Methods exploiting low-level cues such as AIM, Itti, FT, and SR tend to find the boundaries of
the salient object. Methods employing global cues such as GC, RC, and LC are likely to mistake
background noise as salient points. Methods based on background priors such as DSR and
GBMR fail to accurately detect salient regions, specifically when the salient regions have a sim-
ilar appearance to the background. Our method, exploiting both global cues and background
prior information, produces a more precise saliency map. It can distinguish features when
the object and background regions share the same appearance. The high-level cues of the
patches, which are learned from the global and background dictionaries, can precisely reveal
the category of the patches. Therefore, the categories of all patches can be obtained by the
machine learning method.

Figure 6 shows that our proposed SGSM can highlight the entire salient region of an object.
Furthermore, it has a higher F-measure. It is superior to 10 state-of-art methods both in terms of
integrity and accuracy of object segmentation. When the object has similar color and a different
structure compared with the background, SGSM can detect the differences and highlight the

Fig. 6 Performance of the proposed method and 10 state-of-the-art methods: (a) average PR
curves and (b) F -measures.
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corresponding regions. All kinds of interesting objects in the testing database have different
colors, sizes, type attributes, and forms, which makes every detection task unique and difficult.
Facing these complicated situations, our method can still acquire the better saliency detection
results. From Table 1, we can see that our method is closer to the ground truth and reduces MAE
by 24.44% with respect to the previous best method, GBMR.

Fig. 7 Saliency maps of proposed method and 10 state-of-the-art methods for MOD images.
The images show man-made objects including houses and oil depots.

Fig. 8 Performance of the proposed method compared to 10 other methods: (a) average PR
curves and (b) F -measures.

Table 1 Mean absolute errors of the proposed method and 10 state-of-the-art methods.

Ours DSR GBMR GC AIM Itti FT HC LC SR RC

SOD 0.0306 0.0842 0.0405 0.0637 0.1833 0.2203 0.1348 0.1842 0.1147 0.1547 0.2024

MOD 0.0320 0.1169 0.0639 0.0971 0.1682 0.2187 0.1267 0.1697 0.1079 0.1418 0.1973
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3.4.2 Multiple salient object detection

In contrast to the detection of a single object, it is difficult to identify two or more objects with
different colors and shapes in one image. Figure 7 shows that our model achieves the best results
visually of all the saliency models. Methods exploiting low-level cues such as AIM, Itti, FT, and
SR hardly detect the objects at all. Methods employing global cues such as GC, RC, and LC
cannot generate accurate saliency maps because of noise interference.

GBMR is unable to detect the objects if they have different appearances because of its
dependence on ranking with queries, as it is likely to mistake objects with a lower ranking
score as background. GC fails to detect objects that have an analogous appearance to the back-
ground because it relies on the color histogram. But our method can avoid these situations,
because it stems from the machine learning theory. It can precisely categorize the patches though
there are multiple salient objects in one image.

Figure 8 shows that our model also has better PR values and F-measures than the other 10
saliency methods. Because it ignores background patches judged to be salient parts by the others,
the final saliency maps of SGSM are much closer to the ground truth. In comparison to single
salient object detection, it is more difficult to detect multiple salient objects in one image because
not only do the objects have different types and appearances, but a portion of object areas are
similar to the background. In addition, the objects may be covered by the fog, sheltered by the
trees, or interfered with by their own shadows. The test results demonstrate that our proposed
method can weaken these interferences and precisely detect the edge of the multiple salient
objects. Table 1 proves that our method has less error when detecting multiple objects, reducing
the error by 52.11% with respect to the second-best method, GBMR.

4 Conclusion

In this paper, we proposed a sparsity-guided saliency detection method based on global cues and
background prior information for remote sensing images. This method uses a sparse represen-
tation to obtain high-level global and background cues, and then integrates the saliency maps
generated by both of these cues using a Bayesian formula. Consequently, SGSM not only
considers the global and background properties of the image content, but also introduces a
sparse representation for high-level cues. The proposed method was evaluated on a database
of remote sensing images that contained diverse textures, structures, and complex conditions.
Experimental results showed that our method outperforms 10 state-of-the-art saliency detection
methods, yielding higher precision and better recall rates, in particular when multiple salient
objects have analogous appearances. But our propose method is not very effective for low-
resolution remote sensing images with fewer detail features. Furthermore, the problem of the
time consumed problem also urgently needs to be resolved. In the next work, we intend to use
enforcement learning or a deep learning algorithm to obtain more high-level cues and obtain
fast and precise saliency detection results.

In addition, rather than performing a traversal search, quickly and accurately extracting some
salient object regions can be useful for large data volumes of remote sensing images, which in
turn will improve the object detection and recognition rate in cluttered scenes. Hence, our future
work will also focus on how to automatically detect and recognize objects (e.g., houses and oil
depots) based on SGSM.
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