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Abstract. Synthetic aperture radar (SAR) image segmentation is investigated from feature
extraction to algorithm design, which is characterized by two aspects: (1) multiple heterogeneous
features are extracted to describe SAR images and the corresponding similarity measures are
developed independently to avoid the mutual influences between different features in order
to enhance the discriminability of the final similarity between objects. (2) A method called
fuzzy clustering based on independent subspace iterative optimization (FCISIO) is proposed.
FCISIO integrates multiple features into an objective function which is then iteratively optimized
in each feature subspace to obtain final segmentation results. This strategy can protect the dis-
tribution structures of the data points in each feature subspace, which realizes an effective way to
integrate multiple features of different properties. In order to improve the computation speed and
the accuracy of feature description for FCISIO, we design a region merging algorithm before
FCISIO which can use many kinds of information to quickly merge regions inside the true
segments. Experiments on synthetic and real SAR images show that the proposed method is
effective and robust and can obtain good segmentation results with a very short running
time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.9.095060]
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1 Introduction

With the advantages of all weather, all time, and strong permeability, synthetic aperture radar
(SAR) images have found wide applications, such as resource management, environmental,
archaeology, military, and so on. As a fundamental step for many image-processing tasks
such as SAR image understanding and content-based image retrieval, SAR image segmentation
is a process that decomposes an image into disjoint regions of different characteristics. Effective
segmentation of SAR images can not only reduce computation cost but also increase the effi-
ciency for further SAR image processing tasks. Compared with other kinds of images (such as
optical images, infrared images, and so on), SAR images own some specific properties. For
example, (1) due to the coherent processing of backscattered signals from multiple distributed
targets, SAR images contain speckle noise, which leads to random changes of pixels’ bright-
ness.1 (2) The exhibition of the same terrain target in SAR images is often nonstationary2 and has
complex variation which, on the other side, make different objects have a similar appearance.
(3) Different radars or the same radar with different parameters will produce different SAR
images even for the same scene. (4) SAR images contain tremendous information. These proper-
ties of SAR images bring great challenges to the segmentation task.

On one side, we need effective and efficient features to accurately describe SAR images.
Actually, there are many kinds of information in SAR images. First, due to unique geometric
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structures, moisture levels, and canopy surface roughness, different land covers in SAR images
will produce different brightnesses and textures. Second, there are obvious edges in SAR images,
for example, the coast and riversides in natural scenes, and roads and buildings in man-made
scenes. In addition, the objects in SAR images are also spatially related. Thus, many kinds of
features are extracted for SAR images, such as the brightness after denoising,3,4 texture,5–9 and
edges.10–13 These features can describe some properties of SAR images, but no single feature can
completely and accurately characterize miscellaneous objects in SAR images. The pixels’ bright-
nesses always change randomly due to the speckle noise, different terrain surfaces often show
similar textures, and the speckle noise and large-scale texture often create positive false edges.
Therefore, it is necessary to integrate multiple heterogeneous features to accurately describe
SAR images. Some work has been done on this subject. Deng and Clausi14 adopted image
brightness to discriminate ice from water and further used texture to identify distinct ice
types. Yu and Clausi15 combined brightness and edges into the traditional Markov random
field context model to obtain more accurate segmentation. The texture and spatial information
have been fused in kernel density estimation to segment SAR images.16 However, how to inte-
grate heterogeneous features of different structures is still a difficult task and the related work
is rare.

On the other side, effective and efficient segmentation schemes are also necessary to manage
different kinds of features. Researchers have proposed many kinds of segmentation algorithms
for SAR images, which include threshold methods,3,17–19 spectral clustering (SC) algorithms,20,21

statistic model-based methods,1,14,15,22–25 artificial intelligence methods,26–30 support vector
machine (SVM),6,31 region growing methods,15,32–35 and so on. Among these algorithms,
cluster-based algorithms form one popular and representative family, whose main idea is to
group pixels in such a way that the pixels in the same group are more similar to each other than
those in other groups. The key point in these algorithms is to define an objective function (or a
criterion) that computes the overall similarity (or dissimilarity) of clusters (segments), which thus
decides the final image segmentation. One direct solution to improve the accuracy and robust-
ness of the objective function is to extract more information from SAR images. Such consid-
erations have driven the emergence of a large amount of literatures5–9,20,27,29,36,37 concerning the
texture classification of SAR images. Clausi9 carefully compared and integrated different texture
features into the classification task of SAR ice images. Kandaswamy et al.8 proposed a statistical
occupancy model to analyze the efficiency of different texture features in SAR image classifi-
cation. However, so far as we know, little research has been done to combine texture and
brightness together to describe SAR images, which are two different and complementary fea-
tures for SAR image interpretation. This is mainly because of the different structures of texture
and brightness, which will be further discussed in Sec. 2.2. Another solution for improvement of
the objective function is to take advantage of some data mining technologies on the extracted
features so as to accurately compute the similarity (or dissimilarity) between operation elements
(e.g., pixels). Using this train of thought, Zhang et al.20 applied SC based on eigenvector decom-
position to SAR image segmentation, which can recognize the clusters of unusual shapes and
obtain the global optimal solutions in a relaxed continuous domain. In order to accurately
characterize the structure of clusters, Yang et al.29 adopted two conflicting and complementary
objective functions, and they proposed a multiobjective optimization algorithm for texture
classification of SAR images. Some machine learning techniques, such as SVM,6,31,37 have
also been modified for SAR image texture classification.

Based on the consideration above, we study the problem of SAR image segmentation from
the feature extraction to the algorithm design in this paper. First, we extract multiple hetero-
geneous features to accurately describe SAR images, which include brightness features, texture
features, and edge features. Then in order to maximize the discriminability of features, three
kinds of similarity measures are independently developed based on the properties of the corre-
sponding features. The three similarity measures can accurately compute the similarity from
different aspects. Second, a method called fuzzy clustering based on independent subspace iter-
ative optimization (FCISIO) is proposed to manage the multiple heterogeneous features. The
designed objective function of FCISIO is iteratively optimized in each independent subspace
to avoid the mutual influence between different kinds of features. In FCISIO, we adopt over-
segmented regions as the operation elements to reduce the influence of speckle noise and the
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computation cost. In order to further improve the computation speed and the accuracy of feature
description for FCISIO, we design a region merging algorithm before FCISIO, which can make
use of more information to quickly merge regions inside the true segments. The proposed
method is compared with four state-of-the-art segmentation algorithms by experiments on syn-
thetic and real SAR images, which show that the extracted features are robust and accurate to
describe SAR images, and the proposed algorithm can obtain a balance between the computation
speed and the segmentation accuracy.

The remainder of this paper is organized as follows. Section 2 describes the multifeatures’
extraction and similarity measures for SAR images. The proposed segmentation method will be
presented in Sec. 3. In Sec. 4, the proposed method is validated by experiments on synthetic and
real SAR images. Summary and future works comprise Sec. 5.

2 Multifeatures Extraction and Similarity Measures for Synthetic
Aperture Radar Images

Without loss of generality, let S ¼ fðr; cÞj1 ≤ r ≤ R; 1 ≤ c ≤ Cg denote the discrete rectangular
lattice, and the input SAR images are defined as I ¼ fIðr; cÞjðr; cÞ ∈ Sg. Then the segmentation
problem is formulated to decomposes the input image into L disjoint regions, satisfying

1. si ¼ fðr; cÞjlðr; cÞ ¼ i; 1 ≤ i ≤ L; ðr; cÞ ∈ Sg,
2.

S
L
i¼1 si ¼ S,

3. ∀ i ≠ j, si ∩ sj ¼ ∅.

Here, lðr; cÞ represents the label of pixel ðr; cÞ in the segmentation result. The number L of
true segments is assumed to be known beforehand in this paper.

2.1 Preprocessing to Obtain Oversegmented Regions

SAR images suffer from speckle noise, which make the pixel-based methods run very slowly and
produce errors. To cope with these problems, oversegmented regions are adopted as the oper-
ation elements instead of pixels in this paper. An oversegmented region consists of a group of
pixels that are consistent inside according to some constraints such as brightness, texture, and so
on. There are many algorithms that can produce oversegmented regions, such as the mean shift
algorithm,38 the normalized cuts algorithm,39 the graph-based segmentation algorithm,40 and the
watershed segmentation algorithm.41 In this paper, a level-set method called TurboPixels42 is
utilized to oversegment an input image into NS regions fsigNS

i¼1, where all the pixels in one region
have the same label and will be treated as a whole in the proposed algorithm. Five examples by
TurboPixels are illustrated in Fig. 1 for real SAR images. Note that these oversegmented regions
preserve most edges of the images and are approximately uniform in size and shape, which
makes them very suitable for further processing task of SAR images.

2.2 Multifeatures Extraction for Synthetic Aperture Radar Images

Multiple heterogeneous features are extracted for SAR images in this section. The first kind of
feature is brightness, which reflects the microwave scattering properties of the area on earth in

Fig. 1 The oversegmented regions of five real synthetic aperture radar (SAR) images overlapping
the original images.
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SAR images. The brightness feature fBðr; cÞ, ðr; cÞ ∈ S, is obtained by linearly normalizing the
SAR image Iðr; cÞ to [0,1] such as the example shown in Fig. 2(a).

The second kind of feature is texture, which describes the characteristic structure of a terrain
surface in a finite sampling window. Texture is an important tool for identifying land covers in
SAR image, and many methods have been proposed to extract the texture features of SAR
images, such as gray level co-occurrence matrix,43 wavelet transforms,44 and Markov random
field (MRF).9 Because of the relationship with the visual perception of human beings and the
optimal joint localization in both space and frequency domains, Gabor filters have been widely
used to describe texture in images.9,43 In this paper, a heuristically designed Gabor filter bank45 is
utilized to produce multiscale texture features of SAR images. The method in Ref. 45 first filters
the input image using a bank of Gabor filters with different scales ω and orientations θ, then the
normalized magnitudes of Gabor filter responses are computed to produce texture images.
Finally, the texture feature for pixel ðr; cÞ ∈ S is made up of the values of all texture images
at ðr; cÞ in the form of a row vector denoted as fTðr; cÞ ¼ ½fT1 ðr; cÞ; fT2 ðr; cÞ; · · · ; fTNω×Nθ

ðr; cÞ�,
where fTi ðr; cÞ stands for the value of the i’th texture image at pixel ðr; cÞ, i ¼
1;2; · · · ; Nω × Nθ. Nω and Nθ are the number of scales and orientations in the Gabor filter
bank, respectively.

The parameters of the Gabor filter bank play an important role in extraction of texture
features. In this paper, the parameters are set by an unsupervised self-adapted way as follows.
Since a Gabor filter is nonorthogonal basis set, in order to reduce redundancy, the half-peak
magnitude supports of the filter responses in the frequency spectrum are made to touch each
other.46 Based on this consideration, the scale ω of the Gabor filter bank is equal toffiffiffi
2

p
∕4;

ffiffiffi
2

p
∕8; : : : ;

ffiffiffi
2

p
∕2NΔ−4, where NΔ ¼ bðlog2½minðR;CÞ�Þc, b•c denotes the largest integer

that is no larger than its argument. The orientation θ is set as 0, 30, 60, 90, 120, and 150 deg. The
study46 shows that this strategy for setting θ and ω is in agreement with the characteristic of the
human visual system. Figure 2(b) illustrates four isotropic texture images of different scales with
respect to Fig. 2(a), from which we can notice that the multiscale texture images can effectively
characterize different textures in the real SAR image.

Especially noteworthy is that the brightness feature and the texture feature are two important
and complementary features for SAR image interpretation, which describe SAR images
from different aspects. The terrain objects with different microwave scattering properties show
obvious different brightnesses in SAR images, e.g., the farm area and the river area in Fig. 2(a).
However, different objects sometimes display similar brightness, e.g., some forest area and the
farm area in Fig. 2(a). In this situation, the texture feature can make a clear separation just as
illustrated in Fig. 2(b). On the other side, the brightness can also complement the texture. Take
the farm area and the river area in Fig. 2 for instance, which have similar texture features but
apparently different brightness features. Therefore, it is quite necessary to integrate the bright-
ness and the texture together to characterize SAR images. However, most of the existing seg-
mentation methods for SAR images rely on either brightness or texture, and only a few recent

Fig. 2 Multifeatures extraction for a real SAR image. (a) A brightness SAR image where the three
areas with red borders denote three kinds of terrain surfaces: (A) river area, (B) forest area, and
(C) farm area. (b) Four Gabor texture images of different scales for (a). (c) The multiscale edge
images for (a).
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approaches35,47 incorporate brightness and texture simultaneously into the same framework. One
major reason is the different structures (such as dimensions and ranges) of the brightness feature
and the texture feature.

Besides brightness and texture, SAR images are full of edges such as coast and riversides in
natural scenes and the bridges and roads in man-made scenes. Comparing with brightness and
texture, edges can not only accurately locate boundaries between objects, but can also be par-
ticularly helpful to characterize the gradually changing regions of the same class which often
invalidate the appearance-based features. However, due to speckle noise and the coexistence of
multiscale objects, it is not as easy to accurately extract edges in SAR images as in ordinary
images. In this paper, a multiscale edge detector35 is utilized to extract the edge features, as
shown below. The input image is first convolved with a bank of Prewitt kernels of different
scales to obtain the multiscale edge images, which can be written as below.

EQ-TARGET;temp:intralink-;e001;116;592Gr
λ ¼ I ⊗

2
4−1 · · · −1

..

. . .
. ..

.

−1 · · · −1

������
0

..

.

0

������
1 · · · 1

..

. . .
. ..

.

1 · · · 1

3
5
λ×ð2λþ1Þ

;

Gc
λ ¼ I ⊗

2
666666666664

−1 · · · −1
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.

−1 · · · −1
−−−−−−

0 · · · 0

1 · · · 1

..

. . .
. ..

.

1 · · · 1

−−−−−−
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777777777775
ð2λþ1Þ×λ

;

(1)

where λ is the scale parameter of the Prewitt kernel,⊗ denotes the convolution operation, andGr
λ

and Gc
λ are the vertical and horizontal edge images at a given scale λ, respectively. When λ

increases, the size of the Prewitt kernel and the scale of the extracted edges will increase.
The basic kernel type is not limited to Prewitt, and other derivative filters (such as Roberts filter
and Sobel filter48) can also be options that experimentally result in similar results. Next, the
orientation information is eliminated by the computation of the normalized magnitude of
the horizontal and the vertical edge feature images. Then the edge feature for pixel
ðr; cÞ ∈ S is composed of the values of all edge images at ðr; cÞ and is denoted as
fEðr; cÞ ¼ ½fE1 ðr; cÞ; fE2 ðr; cÞ; · · · ; fENλ

ðr; cÞ�, where fEi ðr; cÞ stands for the value of the i’th
edge image at pixel ðr; cÞ, i ¼ 1;2; · · · ; Nλ. Nλ is the scale number of Prewitt kernels,
which is set the same as the scales of the Gabor filter bank above. An example of multiscale
edge images corresponding to Fig. 2(a) is shown in Fig. 2(c). It can be clearly noticed that
various edges in the SAR image have been effectively found by the multiscale edge detector,
which yields another cue about the terrain surface in SAR images.

After obtaining the pixel-level features, we next extend them to region-level following an
average strategy: for the brightness and texture features, the feature of any oversegmented region
is defined as the average of the corresponding features of all pixels in the region; for the edge
feature, the edge feature of any pair of adjacent regions is defined as the average of the edge
features of all pixels along the boundary between them. This averaging strategy can improve
the accuracy and robustness of the feature description and reduce the negative influence of
speckle noise. For any two adjacent regions sm and sn, m ≠ n, m, n ¼ 1;2; · · · ; NS, the bright-
ness feature, the texture feature, and the edge feature are computed by

EQ-TARGET;temp:intralink-;e002;116;155fsBm ¼
P

ðr;cÞ∈smf
Bðr; cÞ

jsmj
; fsTm ¼

P
ðr;cÞ∈sm f

Tðr; cÞ
jsmj

; fsEmn ¼
P

ðr;cÞ∈Bðsm;snÞf
Eðr; cÞ

jBðsm; snÞj
; (2)

where fsBm and fsTm , respectively, denote the brightness feature and the texture feature of sm, fsEmn

represents the edge feature between sm and sn, j • j computes the cardinality of the argument, and
Bðsm; snÞ stands for the set of pixels on the boundary between sm and sn.
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2.3 Similarity Measures

Because the multiple heterogeneous features are generated by different methods, they will have
different properties, e.g., different dimensions, different ranges, and different numbers of
involved operation elements, which require separate measures of the similarity according to
each kind of feature. Otherwise, if all dimensions from different features are treated equally,
such as concatenating all features into a single vector and measuring the similarity by
Euclidean distance, the feature with a high dimension or with a large range will become dom-
inant. The edge feature involves two operation elements and is not straightforward to combine
with the brightness feature and texture feature in such a scheme. In this section, three measures
based on the properties of the different features extracted above are introduced to compute the
brightness-based similarity, the texture-based similarity, and the edge-based similarity between
oversegmented regions, which will be further integrated in the proposed algorithm in the next
section.

Since the brightness feature is one-dimension, the brightness-based similarity is computed
directly by the difference of the brightness features between oversegmented regions, which are
denoted as below:

EQ-TARGET;temp:intralink-;e003;116;537dsBmn ¼ kfsBm − fsBn k1; (3)

where fsBm and fsBn , m ≠ n, m, n ¼ 1;2; · · · ; NS represent the brightness features of sm and sn,
respectively. k • k1 computes the 1-norm distance of the arguments.

The texture feature is an Nω × Nθ-dimension vector, any value of which represents the
response of the operation element to the Gabor filter with a specific scale and orientation.
In SAR images, the texture responses of land covers show a great diversity in appearance as
shown in Fig. 2(b), which mainly lies in two aspects: (1) the same types of objects are
more sensitive to some scale or orientation than to others and (2) different objects usually
have different response ranges. Take Fig. 3, for example, which plots the distributions of the
texture features of three kinds of terrain surfaces shown in Fig. 2(a), where the scale and ori-
entation increase from left to right along the horizontal axis. Figure 3(a) is for the river area,
Fig. 3(b) is for the forest area, and Fig. 3(c) is for the farm area. Note that the water area has very
low texture responses and can be considered as textureless; the texture of the forest area has
obvious orientational selectivity; and the selected farm area is more sensitive to small scale filters
than to the large ones. The texture features belonging to the three areas are different not only in
range, but also in distribution pattern. Therefore, the texture-based similarity cannot simply be
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Fig. 3 The distribution of the texture features of three kinds of terrain surfaces shown in Fig. 2(a):
(a) the river area, (b) the forest area, and (c) the farm area.
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computed as the sum of the element-to-element distance between the texture features, even if
a normalization operation is performed beforehand. For this reason, the texture-based similarity
in this paper is computed by the χ2 distance that is used to assess whether or not an observed
frequency distribution differs from another distribution, which can be written as below:

EQ-TARGET;temp:intralink-;e004;116;687dsTmn ¼
1

2

XNω×Nθ

k¼1

ðfsTm;k − fsTn;kÞ2
ðfsTm;k þ fsTn;kÞ

; (4)

where fsTm;k, k ¼ 1;2; · · · ; Nω × Nθ, m ¼ 1;2; · · · ; NS is a component of the texture feature fsTm .
The edge feature is an Nλ-dimension vector. Similar to the texture feature, each value in this

vector represents the corresponding response of an edge with a fixed scale. When the scale of the
edge feature is very small, we can obtain many tiny edges such as shown in the upper left sub-
figure of Fig. 2(c), which also includes some false positive edges. This is mainly caused by
speckle noise and the large-scale texture. As the scale of edge feature increases, the false positive
edges gradually disappear such as shown in the upper right and bottom left subfigures of
Fig. 2(c). This is because the Prewitt kernel of a large size can, in effect, reduce the influence
of small local changes in images. But, when the scale of edge filter reaches too large of a value,
the output responses will be blurred so as to reduce the accuracy of the edge location such as is
shown in the bottom right subfigure of Fig. 2(c). In order to reduce the false positive edges and
increase the accuracy of the edge location at the same time, a minimum operator is used to fuse
the multiscale edge features to obtain the edge-based similarity, which can be written as below:

EQ-TARGET;temp:intralink-;e005;116;481dsEmn ¼ minðfsEmn;1; f
sE
mn;2; · · · ; f

sE
mn;Nλ

Þ; (5)

where fsEmn;k, i ¼ 1;2; · · · ; Nλ,m ≠ n, andm, n ¼ 1;2; · · · ; NS stands for the k’th edge feature of
any adjacent pair of sm and sn. minð•Þ denotes the minimum operator, which is a T-norm oper-
ator in fuzzy sets and possibility theory,49 performing a severe behavior: an edge will finally be
deemed to exist, if and only if it is believed to exist in all channels of the edge feature.

In order to make the three kinds of similarity measures have an equal effect on assessing the
similarity between oversegmented regions, a normalization operation is applied to linearly trans-
form each type of similarity to [0,1], which results in three consistent similarity measures from
different aspects. For any two regions sm and sn, i ¼ 1;2; · · · ; Nλ, m ≠ n, m, n ¼ 1;2; · · · ; NS,
the normalization operation is performed as below:

EQ-TARGET;temp:intralink-;e006;116;340

8>>><
>>>:

d̃sBmn ¼ dsBmn−minðDsBÞ
maxðDsBÞ−minðDsBÞ

d̃sTmn ¼ dsTmn−minðDsT Þ
maxðDsT Þ−minðDsT Þ

d̃sEmn ¼ dsEmn−minðDsEÞ
maxðDsEÞ−minðDsEÞ

; (6)

where DsB, DsT , and DsE represent the sets of the brightness-based similarity, the texture-based
similarity, and the edge-based similarity between all pairs of oversegmented regions. Note that
different features play different roles for different SAR images. For example, some images have
more edge information, while some have more texture information. Therefore,DsB,DsT , andDsE

should include similarities of all pairs of oversegmented regions of all SAR images which can
accurately rank the importance of each similarity. However, it is impractical to accurately com-
pute DsB, DsT , and DsE. To deal with this problem, we use all pairs of oversegmented regions of
all synthetic and real SAR images in this paper to make an approximation. maxð•Þ denotes
the maximum operator. For convenience of expression, we still use dsBmn, dsTmn, and dsEmn to denote
the normalized similarities d̃sBmn, ~d

sT
mn, ~d

sE
mn in the following sections.

An example of the three kinds of similarity measures is illustrated in Fig. 4, where Fig. 4(a) is
a real SAR image and Figs. 4(b)–4(d) illustrate the brightness-based similarity, the texture-based
similarity, the edge-based similarity, respectively. In Figs. 4(b)–4(d), the values on each boun-
dary denote the corresponding similarity between the two involved adjacent oversegmented
regions. Note that each kind of similarity measure can accurately compute the similarity between
adjacent regions from its corresponding aspect, e.g., the brightness-based similarity can clearly
separate the runway area from other areas, the texture-based similarity can effectively distinguish
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the building area, and the edge-based similarity can accurately locate the true boundary between
different objects. However, no single similar measure can distinguish all kinds of objects, which
confirms our previous view that these features are different and are complementary for describ-
ing the objects in SAR images.

3 Unsupervised Segmentation Algorithm

The purpose of the segmentation algorithm is to reduce the number NS of the initial overseg-
mented regions to the number L of true segments. To realize this aim, we divide the segmentation
process into two stages: (1) a fast region merging stage and (2) a fine region classification stage.

3.1 Region Merging Stage

Although the adoption of oversegmented regions can greatly reduce the number of operation
elements and improve the robustness of features, there is still much space to further cut
down their number, because what we are really concerned about in the segmentation problem
is the oversegmented regions along the boundary between true segments. Many oversegmented
regions inside true segments are actually not relevant to the quality of the segmentation results.
In addition, when the scales of objects in SAR images are much larger than the size of the
oversegmented regions, the features of the regions cannot effectively capture the characteristic
structure of the underlying image contents and may lead to inaccurate descriptions. This will
cause misclassification of global clustering methods. In order to speed up the segmentation proc-
ess and improve the segmentation accuracy, a fast region merging algorithm is first performed on
the initial oversegmented regions which can merge regions at a very high speed in order to cut
down the computation burden for the further fine region classification stage.

The basic assumption of the region merging algorithm is that the more similar two adjacent
oversegmented regions are, the more probably they will be in the same segment and can be
merged. Since it is performed in the image domain, the region merging algorithm can naturally
make use of all three kinds of similarities as defined in Sec. 2. Therefore, the merging criterion
here is to globally merge the most similar adjacent oversegmented regions based on brightness,
texture, and edge.

For the sake of explanation, let G ¼ ðS;EÞ be a region adjacency graph (RAG), where each
node sm ∈ S, m ¼ 1;2; · · · ; NS, represent an oversegmented region and each edge emn ∈ E,
m ≠ n, m, n ¼ 1;2; · · · ; NS, represent a link between the adjacent pair of sm and sn. When
we say sm and sn are adjacent, it means there is a common boundary between sm and sn.
Since the three kinds of similarities originate from different aspects, it cannot be determined
which one is more important than the others. For any two adjacent regions sm and sn, the sim-
ilarity criterion in the region merging algorithm is defined by the product of the three kinds of
similarities as follows:

EQ-TARGET;temp:intralink-;e007;116;114dsRMS
mn ¼ dsBmn × dsTmn × dsEmn; emn ∈ E; (7)

where dsBmn, dsTmn, and dsEmn are the brightness-based similarity, the texture-based similarity, and the
edge-based similarity of sm and sn, respectively. In Eq. (7), we utilize the product operator to

Fig. 4 Illustration of the three kinds of similarity measures and the fusion effect by Eq. (7): (a) a real
SAR image; (b) the brightness-based similarity; (c) the texture-based similarity; (d) the edge-based
similarity; and (e) the final ensemble similarity by Eq. (7). Among (b)–(e), the values on each boun-
dary denote the corresponding similarity between the two involved adjacent oversegmented
regions.
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integrate the three kinds of similarities, which is a T-norm operator in fuzzy sets and possibility
theory,49 performing a strict judgment: two regions can be considered to be similar only when
they simultaneously have high similarity according to the three kinds of similarities. An example
of the fusion effect by Eq. (7) can be seen in Fig. 4(e). By the subjective observation, the final
ensemble similarity can take the advantages of the three kinds of similarities to separate the
different objects more accurately than any single similarity: the saliency of similarity along
the boundary between true segments has been improved and that inside the segments has
been suppressed.

Once the similarity criterion is obtained, a merging sequence can be defined in nondecreasing
order. Then a greedy search will find the most similar region pair argminemn∈EðdsRMS

mn Þ and merge
them. This process will not terminate until the merging condition below is satisfied.

EQ-TARGET;temp:intralink-;e008;116;604

�
minemn∈EðdsRMS

mn Þ ≤ α
N 0

S ≥ L
; (8)

where α is the halt condition of the region merging algorithm, determining whether or not the
regions are similar. N 0

S denotes the number of the remaining regions in the image domain. The
flowchart of the region merging algorithm is shown in Table 1. It is assumed by Eq. (8) that if
ðdsRMS

mn Þ ≤ α, then sm and sn are similar and can be merged together, and vice versa. The optimal
value of α for each input image cannot be determined a priori, since it depends on the similarity
between the true segments. This is related to the content of the image scene, which is unknown to
us. For simple scenes, the similarity between different true segments is large, while for complex
scenes, it is relatively small. Therefore, α will be selected by experiment. In this paper, α is set as
α ¼ 90% ×maxemn∈EðdsRMS

mn Þ for SAR images, and as α ¼ 80% ×maxemn∈EðdsRMS
mn Þ for real

SAR images. That is, the region merging algorithm will merge nearly 90% off the pairs of
oversegmented regions for SAR images and 80% of the pairs for real SAR images. It is
worth noticing that it is better to set α a little too small rather than too large because if α is
too large, there will be too many regions being merged, which will result in irreversible mistakes.
If α is a little too small, the further merging classification algorithm can reduce the large number
of regions to L, although with more computation cost.

One obvious advantage of the region merging algorithm is that it can take as much infor-
mation as possible to determine the similarity between oversegmented regions. The region merg-
ing algorithm will globally merge the two regions that are not only similar in brightness and
texture, but also have no distinct boundary. What is more, the spatial information has also been
employed by an underlying assumption that the closer two regions are, the more probable that
they will be in the same segment. This can reduce the ambiguity from the appearance of regions
and guarantee that the regions inside the true segments can be merged with priority. In addition,
as the sizes of the regions increase, the regions will contain complete patterns of objects, which
can improve the accuracy of features to describe the objects and aid in the further classification of
FCISIO. This process of the region merging algorithm can be illustrated by an example shown in
Fig. 5, where Fig. 5(a) is an SAR image, Fig. 5(b) shows the oversegmented regions after the
preprocessing step, and Figs. 5(c)–5(h) are the intermediate results during the region merging
algorithm. It can be clearly noticed that the oversegmented regions inside the true segments are
first merged, whereas the oversegmented regions along the boundary are not merged.

Table 1 Flowchart of the region merging algorithm.

Step 1. A greed search is performed to find RAG: G ¼ ðS;EÞ;

Step 2. Compute the similarity criterion by Eq. (7), and obtain the merging sequence;

Step 3. Find the most similar pair of adjacent regions. If the merging condition Eq. (8) is satisfied, then merge
them and turn to Step 4; Otherwise stop the merging process and output the results.

Step 4. Update G and the similarity criterion, and turn to Step 3.
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3.2 Region Classification Stage

After the region merging stage, the number of oversegmented regions is still larger than the
number L of true segments. The extra regions come from two sources: (1) the disconnected
regions of the same class and (2) the ambiguous regions that are difficultly merged in the region
merging stage, e.g., some small regions along the boundary between true segments. In this sec-
tion, we design a method called fuzzy clustering based on an independent subspace iterative
optimization to incorporate multiple heterogeneous features and further classify the remaining
oversegmented regions into L.

The purpose of clustering is to group similar data points in the same cluster and dissimilar
data points in different clusters, which is decided by a predefined objective function. Therefore,
the key point in the fuzzy clustering algorithm is the fuzzy objective function. The most studied
fuzzy c-means (FCM) algorithm, which was proposed by Dunn50 and later extended by
Bezdek,51 computes the weighted sum of the squared intraclass distance as the objective func-
tion. The analytical iterative optimization equation of the objective function can be conveniently
obtained by adopting the Euclidean distance as the similarity measure. With its simple imple-
mentation and high efficiency, FCM has been widely used, but its drawbacks are also obvious:
the distance measure adopted in FCM is not robust and accurate enough. As we know, the
Euclidean distance can effectively characterize the cluster of a spherical shape or hyperspherical
shape, but is ineffective for the data points with nonspherical and complex shape distributions.
If the separation boundaries between clusters are nonlinear, FCM will not work satisfactorily.
To deal with this problem, Chen and Zhang52 mapped the original data points into a higher
dimensional Hilbert space using a kernel function, which could induce a class of non-
Euclidean distance measures. This method can improve the algorithm’s robustness to noise.
But in this method, all dimensions of data are equally treated whether in the original space
or in the transferred space, which is not consistent with the practical situation because input
data is usually made up of values observed from different sources. Based on this consideration,
Chen et al.53 later extended their single-kernel method to a multiple-kernel one where different
kernels were defined for different information channels. As demonstrated in Ref. 53, the multi-
ple-kernel fuzzy clustering algorithm can obtain better segmentation results than the single-
kernel method, especially for the texture images. However, it can also be noticed that the results
of the kernel-based methods are very sensitive to the selection of the kernel function and its
related parameters, which were set by the “trial-and-error” method and is still an “open prob-
lem.”52 This problem also limits the use of complex and high-dimension features. The essence of

Fig. 5 A SAR image and the intermediate segmentation results of the region merging stage:
(a) the SAR image; (b) the oversegmented regions obtained by the preprocessing step;
(c)–(h) the intermediate segmentation results during the region merging stage.

Yu et al.: Independent feature subspace iterative optimization based fuzzy clustering. . .

Journal of Applied Remote Sensing 095060-10 Vol. 9, 2015



the multiple-kernel method53 is to concatenate all information channels together forming a com-
plete high-dimension feature space and then to change the proportions of different information in
measuring the distance between objects. This strategy is similar to the variable weighting clus-
tering algorithm54 where a weight is assigned to measure the importance of the corresponding
dimension and finally decides its proportion in the distance measure. However, we argue that this
strategy is not very reasonable and tractable. Each kind of information (or feature) characterizes
the objects from its own specific aspect. In each subspace, the corresponding feature can effec-
tively describe the related property of objects. For example, the brightness can accurately sep-
arate the objects with different brightnesses [such as the river area in Fig. 2(a)], and the texture
can accurately distinguish the objects with different texture properties [such as the forest area in
Fig. 2(b)]. But because the input data points have different distribution structures in the different
subspaces, if we concatenate all kinds of information together forming a complete high-
dimension space, they will affect each other and become indistinguishable. Therefore, as all
the features are concatenated together, the discriminability in each specific aspect is actually
weakened. From another point of view, different kinds of features require different methods
to compute the corresponding distance (similarity) just as mentioned in Sec. 2.3. It is not rea-
sonable to concatenate all features together and compute the final distance by the weighted sum
of the element-to-element differences in all feature dimensions. However, the similarity measure
adopted by the existed fuzzy clustering algorithm cannot solve this problem.

To cope with the drawbacks analyzed above, we construct the following fuzzy objective
function to be minimized:

EQ-TARGET;temp:intralink-;e009;116;484JsðU;VsÞ ¼
XN 0

S

m¼1

XL
n¼1

jsmju2mnðdsBmnÞ2ðdsTmnÞ2; s:t:
XL
n¼1

umn ¼ 1; (9)

where umn ∈ U is the degree of membership of them’th data point in the n’th cluster vsn, and j • j
computes the cardinality of the argument. Equation (9) first independently computes the
brightness-based similarity dsBmn and the texture-based similarity dsTmn between oversegmented
region sm and the n’th cluster vsn, m ¼ 1;2; · · · ; N 0

S, n ¼ 1;2; · · · ; L. N 0
S is the number of

the remaining oversegmented regions after the region merging stage. Then the product operator
is performed to integrate the two kinds of similarities together as the final distance. It can be
noticed that the different kinds of features will not affect each other which will preserve the
distribution structures of the data points in each subspace. Only when the data point is close
to the center simultaneously in both the brightness-based subspace and the texture-based sub-
space, it will obtain a short final distance to the center. This strategy can enhance the discrim-
inability of the similarity measure between data points.

Different from the simple data clustering problem, the data points here represent the corre-
sponding regions of different sizes. Since a large region is derived from the merging of many
small regions, it is unreasonable to equally treat the large regions and the small regions. In addi-
tion, the feature vectors of small regions are more likely to be influenced by speckle noise than
those of large regions. Therefore, the sizes of regions are introduced to let the large regions have
more weight in Eq. (9).

Similar to that in the conventional FCM, we apply the alternating minimization (AM)
approach to obtain the iterative optimization equation of Eq. (9). AM optimizes the objective
function over one group of variables at each subiteration, while keeping all the other variables
fixed, which provides a useful framework for the derivation of an iterative optimization algo-
rithm. According to Eq. (9), we divide the features into two groups: the brightness feature and
the texture feature. The objective function JsðU; vsB; vsTÞ will be alternatively minimized in the
brightness-based subspace and the texture-based subspace, respectively.

Introducing the Lagrange term of the constraint umn (m ¼ 1;2; · · · ; N 0
S, n ¼ 1;2; · · · ; L) into

the objective function Eq. (9), we have

EQ-TARGET;temp:intralink-;e010;116;119QsðU; vsB; vsTÞ ¼
XN 0

S

m¼1

XL
n¼1

jsmju2mnðdsBmnÞ2ðdsTmnÞ2 þ λ

�XL
n¼1

umn − 1

�
: (10)
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If ðumn; vsBn ; vsTn Þ is to minimize Qs, its gradient in all sets of variables must vanish. Thus,

EQ-TARGET;temp:intralink-;e011;116;723

∂Q
∂λ

¼ 0; (11)

EQ-TARGET;temp:intralink-;e012;116;680

∂Q
∂umn

¼ 0; (12)

EQ-TARGET;temp:intralink-;e013;116;640

∂Q
∂vsBn

¼ 0; (13)

EQ-TARGET;temp:intralink-;e014;116;599

∂Q
∂vsTn

¼ 0: (14)

From Eqs. (11) and (12), we obtain the updating rule of the weights umn:

EQ-TARGET;temp:intralink-;e015;116;549umn ¼
� ðdsBmnÞ2ðdsTmnÞ2P

L
l¼1 ðdsBmlÞ2ðdsTmlÞ2

�−1
: (15)

Substituting ðdsBmnÞ2 ¼ ðfsBm − vsBn Þ2 into Eq. (13), we obtain the updated cluster center in the
brightness-based subspace:

EQ-TARGET;temp:intralink-;e016;116;479vsBn ¼
PN 0

S
m¼1 u

2
mnjsmjðdsTmnÞ2fsBnPN 0

S
m¼1 jsmju2mnðdsTmnÞ2

: (16)

When obtaining the updated cluster center in the texture-based subspace, we let ðdsTmnÞ2 ¼
βmnkfsTm − vsTn k22, where k • k2 stands for the 2-norm distance of the arguments. Then from
Eq. (14), we obtain

EQ-TARGET;temp:intralink-;e017;116;391vsTn ¼
PN 0

S
m¼1 u

2
mnjsmjβmnðdsBmnÞ2fsTnPN 0

S
m¼1 jsmju2mnβmnðdsBmnÞ2

; (17)

where the parameter βmn can be approximately computed by the ratio of the texture-based sim-
ilarity and the square of the 2-norm distance between the data point and the cluster center at
the last iteration. As the algorithm approaches the local minimum, the differences between the
approximate value and the true value about βmn will decrease to zero.

Iteratively performing Eqs. (15)–(17) will lead to the local minimum of Js. The objective
function will be iteratively optimized along the direction of the gradient steepest descent in each
independent subspace, which can at the same time allow for a high convergence speed and pre-
serve the distribution structures of the data points in each subspace. The flowchart of the region
merging algorithm is shown in Table 2.

Table 2 Flowchart of fuzzy clustering based on independent subspace iterative optimization
(FCISIO).

Step 1. Set the number L of the true segments, and the stopping condition K ;

Step 2. Initialize randomly the fuzzy partition matrix ½umn �;

Step 3. Set the loop counter k ¼ 0;

Step 4. Compute the cluster centers using Eqs. (16) and (17).

Step 5. Calculate the fuzzy partition matrix using Eq. (15).

Step 6. If k > K then stop and output the results; otherwise set k ¼ k þ 1, and go to Step 4.
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4 Experiments

In this section, synthetic and real SAR images are used to test the proposed FCISIO and four
other comparing algorithms, which are

1. Classical FCM algorithm;
2. SC algorithm20 which can automatically obtain a tight structure of clusters by mapping

initial data points into a new space;
3. Multilevel logistic (C-MLL) model based segmentation algorithm,15 which is a classical

MRF model. C-MLL is based on RAG and designs a spatial context model to penalize
the boundary between different segmented regions.

4. Context-based hierarchical unequally merging for SAR image segmentation
(CHUMSIS),35 which models the context of oversegmented regions by three rules
inspired from the Gestalt laws and then designs two different strategies to combine
the rules for the region merging. The rules in CHUMSIS are different in essence
from the fuzzy operators adopted in this paper. Since CHUMSIS only relies on spatial
region merging, the disconnected region of the same class will be considered as two
segments by CHUMSIS. Therefore, for convenience of illustration, the final segmenta-
tion of CHUMSIS will be presented by the boundaries between segments.

For the sake of fairness, all five algorithms begin with the same initial oversegmented
regions. Although FCM and SC can directly operate on pixels, the adoption of oversegmented
regions can greatly improve the accuracy of feature description and the algorithms’ computation
speeds. In addition, the oversegmented regions42 used in this paper are more coherent inside and
can preserve image edges better than the oversegmented regions produced by the watershed
segmentation in Ref. 15, which will not decrease the performance of C-MLL. The brightness
feature and the texture feature extracted in Sec. 2.2 are concatenated together as the input of
FCM and SC, and the variables in each dimension have been linearly transformed into [0,1]
just as in Ref. 20. C-MLL adopts the mean brightness of the oversegmented regions in the feature
model. The related parameters of the algorithms are set as follows. Since SC is highly sensitive to
the scaling parameter σ, SC is performed with each parameter in the interval ð0;1� with a step
length of 0.05, and the best segmentation result is selected as the final result for the correspond-
ing input SAR image. It is found by experiments that this interval is sufficient because the seg-
mentation results of SC have been stable when σ is increasing to 1. The parameters of CHUMSIS
are set according to Ref. 35.

Considering the influence of random initialization, we independently run each algorithm
for the same input SAR image 20 times and select the best result as the final segmentation result.
For the SAR images, the percentages of correctly labeled pixels are computed as the scores to
compare the five methods. For the real SAR images, the performance of the methods is visually
assessed. All the experiments are conducted on a machine with Pentium® 4 and with 3.2 GHz
and 1 GB memory, and the operation system of Window XP SP3. The algorithms are imple-
mented in MATLAB 7.9.0(2009b).

4.1 Synthetic Aperture Radar Images Without Texture

In this section, we first use four groups of SAR images, as shown in Fig. 6, to quantitatively test
the five methods. The original SAR images are shown in the first column, where Fig. 6(a) is a
three-class image without texture, Fig. 6(b) is a four-class image without texture, Fig. 6(c) is a
three-class image with texture, and Fig. 6(d) is a four-class image with texture. The textures are
selected from the Brodatz Texture database. All the SAR images are 512 × 512 pixels in size.
Because the speckle noise can be modeled as a multiplicative Nakagami distribution, each group
of SAR images is created by adding multiplicative Nakagami distribution noise of different looks
to the original synthetic image. In each row, the 2-look, 5-look, and 10-look synthetic images are
shown on the right of the corresponding original synthetic image. In Fig. 6(a), the gray levels of
three classes are [96, 144, 160]. In Fig. 6(b), the gray levels of four classes are [128, 144, 160,
176]. Note that the gray levels in the original images are much closer, and the speckle noise
causes significant overlapping of the intensity ranges among different regions, especially for
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those two-look SAR images. In Fig. 6(c), it can be seen that the left part and the right part have
different texture characteristics and similar mean brightnesses in local regions. The brightness in
the left part gradually increases from top to bottom. The middle part is used to roughly simulate
the ocean scenes in real SAR images, which often have regular waves. In Fig. 6(d), the four
classes have different texture properties and obvious different mean brightnesses in local regions.
They are used to simulate different terrain surfaces, such as mountain area (the class on the top
left), farm area (the class on the top right), forest area (the class on the bottom left), and river area
(the class on the bottom right).

The segmentation results are shown in Fig. 7, where Fig. 7(a) is the three-class images with-
out texture, Fig. 7(b) is the four-class images without texture, Fig. 7(c) is the three-class images
with texture, and Fig. 7(d) is the four-class images with texture. In each subfigure, the number of
look increases from top to bottom, and the results from left to right are by FCM, SC, C-MLL,
CHUMSIS, the proposed region merging algorithm, and FCISIO, respectively. It can be noticed
from the first two columns in Figs. 7(a) and 7(b) that FCM and SC cannot produce satisfactory
segmentation results for the images without texture, especially for those with more classes and
heavy noise. On the contrary, FCM and SC perform quite well on the images with texture, as
shown in the first two columns in Figs. 7(c) and 7(d). That is mainly because of the low dis-
criminability of the concatenated brightness and texture features. On one side, when the bright-
ness feature is concatenated with the texture feature, the discriminability of the brightness feature
is weakened by the texture feature, which results in the unsatisfactory results by FCM and SC in
Figs. 7(a) and 7(b). On the other side, since the dimension of the texture feature is higher than
that of the brightness feature, the texture feature becomes dominant for classification, which
explains that FCM and SC can obtain better results on the images with texture in Figs. 7(c)
and 7(d). Relying on the transformation of the distribution structure of data points, SC obtains
improved results but still produces obvious regional errors. Therefore, it can be concluded that it
is not appropriate for the strategy to concatenate features and process them as a whole in the
complete high-dimension space.

C-MLL produces results with obviously better region consistency than FCM and SC, as
shown in the third column in Figs. 7(a)–7(d), especially for the images without texture.
That is mainly because of the context model adopted by C-MLL. However, due to the absence
of texture information, C-MLL is not successful at segmenting the images with texture, espe-
cially for the four-class ones. CHUMSIS obtains better results than FCM, SC, and C-MLL,
which is due to the utilization of multiple features. But since it is only operated in the
image domain, CHUMSIS will produce extra segments. When the images are complex such
as the texture images with heavy noise (e.g., two-look image with texture), the performance
of CHUMSIS will fall down.

It can be noticed in the fifth column in Fig. 7 that the proposed region merging algorithm has
merged most of the oversegmented regions inside the true segments. The successful segmenta-
tions have been given by FCISIO in the last column in Fig. 7. The results by FCISIO are clear of

Fig. 6 Four groups of SAR images. The original synthetic images are shown on the first column,
and the corresponding 2-look, 5-look and 10-look SAR images are illustrated on their right, respec-
tively. (a) Three-class SAR images without texture, the gray levels of which are [96, 144, 160].
(b) Four-class SAR images without texture, the gray levels of which are [128, 144, 160, 176].
(c) Three-class SAR images with texture. (d) Four-class SAR images with texture.
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any regional errors with only minor errors along the boundary. This implies that the strategy to
integrate brightness features, texture features, and edge features is effective and helpful for the
SAR images. Note that there are some teeth-like errors along the boundary, which is due to the
initial oversegmented regions. When the brightnesses of the two adjacent classes are close and
the noise is heavy, the boundary between the two classes will be unclear. As a result, the initial
oversegmented regions cannot accurately capture the boundary between true segments and will
produce such teeth-like errors. Against such errors, FCISIO can deal with the oversegmented
regions along the boundary better than the compared algorithms, especially for the images with
more classes and heavier speckle noise.

Table 3 summarizes the accuracies of the five algorithms for SAR images, among which the
best result for the same input image is in bold. Note that as the noise is reduced, the performance
of FCM and SC will increase. C-MLL can give good segmentation results for most of those
images, but is not stable, especially when the number of classes is large and the speckle noise
is heavy. CHUMSIS performs very well on the images without texture, but is not suitable for
the images with texture. By contrast, FCISIO is quite stable and obtains the best results.

4.2 Real SAR Images

In this section, we use two real Ku-Band SAR images from Sandia National Laboratories to
further test the five methods. The images are processed in real-time by the radar carried by
the Sandia Twin Otter aircraft. The results of the five algorithms and the intermediate segmen-
tation results of FCISIO are shown, respectively.

Figure 8(a) shows the first real SAR image that captures the area of China Lake Airport in
California with a 3-m resolution and 522 × 446 pixel size. There are three classes in this SAR
image: runway (dark), buildings (bright), and farms (gray). Note from Fig. 8(a) that the small
buildings are randomly distributed in the farms, and some areas of farm are quite similar to the
buildings or the runway by subjective observation, which increases the difficulty in segmenting
this image. The SAR image is first oversegmented into 1600 regions, as shown in Fig. 8(b).
Figures 8(c)–8(f) illustrate the segmentation results of FCM, SC, C-MLL, and CHUMSIS,
respectively. Figures 8(g) and 8(h) show the intermediate segmentation after the region merging

Fig. 7 The experiment results on the SAR images: (a) the three-class images without texture;
(b) the four-class images without texture; (c) the three-class image with texture; and (d) the
four-class image with texture. In each subfigure, the number of look increases from top to bottom,
and the results from left to right are by fuzzy c-means (FCM), spectral clustering (SC), multilevel
logistic (C-MLL), context-based hierarchical unequally merging for SAR image segmentation
(CHUMSIS), the proposed region merging algorithm and fuzzy clustering based on independent
subspace iterative optimization (FCISIO), respectively.
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stage in the proposed method and the final segmentation result by FCISIO. Due to the inappro-
priate similarity measure, FCM misclassifies the runway area and the building area. Compared
with FCM, SC can improve the classification accuracy a bit, but a runway track has been mis-
classified as a building area and the boundaries between objects are still not precise. Although
C-MLL can accurately segment out most of the runway due to the obvious different brightness,
as shown in Fig. 8(e), it cannot separate the building area from some farm area on the right part of

Fig. 8 Segmentation results of the first real SAR image. (a) A Ku-SAR image of the area of China
Lake Airport in California with a 3-m resolution and a 522 × 446 pixels size. (b) The overseg-
mented regions obtained in the preprocessing step overlapped the original image. (c), (d), (e),
(f) and (h) The segmentation results by FCM, SC, C-MLL, CHUMSIS and FCISIO, respectively.
(g) The intermediate segmentation after the region merging stage.

Table 3 Summary of segmentation results for synthetic aperture radar (SAR) images.

FCM SC C-MLL CHUMSIS FCISIO

SAR images without texture

Three-class 2-Look 0.78264 0.82857 0.98560 0.97456 0.98967

5-Look 0.82132 0.86392 0.99304 0.99246 0.99329

10-Look 0.87952 0.89481 0.99349 0.99402 0.99423

Four-class 2-Look 0.36703 0.56526 0.96154 0.95013 0.97471

5-Look 0.26171 0.73410 0.98032 0.98056 0.98357

10-Look 0.45784 0.78416 0.98357 0.98312 0.98609

SAR images with texture

Three-class 2-Look 0.97890 0.97953 0.97079 0.98117 0.98565

5-Look 0.97616 0.97974 0.93331 0.97668 0.98648

10-Look 0.97306 0.97872 0.97531 0.97564 0.98621

Four-class 2-Look 0.92422 0.97062 0.91089 0.88042 0.98652

5-Look 0.97716 0.97870 0.88743 0.95775 0.98769

10-Look 0.97482 0.97498 0.92056 0.97127 0.98714

Note: FCM, fuzzy c means algorithm; SC, spectral clustering algorithm; C-MLL, multilevel logistic model;
CHUMSIS, context-based hierarchical unequally merging algorithm for SAR image segmentation.
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the image. That is because such a farm area has large intraclass variations, which make the
building area and the farm area difficult to be separated by only the brightness feature.
CHUMSIS can obtain a much better segmentation result, as shown in Fig. 8(f), which supports
our previous conclusion that edge features and a region merging mechanism can effectively
improve the accuracy of segmentation results for the images with large intraclass variations.
In Fig. 8(h), the boundaries between different objects have been accurately located, and the
small buildings have also been exactly segmented out, which indicates that the proposed
FCISIO can deal with both the large intraclass variations and the small objects very well.
Figure 8(g) validates the effectiveness of a region merging algorithm for the real SAR
image, where the oversegmented regions within the true segments have been merged.

Figure 9(a) illustrates the second real SAR image that captures the area of the Rio Grande
River near Albuquerque, New Mexico, with a 1-m resolution and a 600 × 432 pixels size. This
SAR image has three classes: river (dark), farm (with small-scale texture), and forest (with
large-scale texture). This image is much more complex than Fig. 8(a): the brightness of the
farm varies greatly, and some farm areas are similar to the forest in brightness; the forest
has a large-scale texture that results in large shadow areas similar to the river; the small objects
like trees are randomly distributed in the farms. So, large intraclass variations, little interclass
difference, and the existence of multiscale objects make this image particularly difficult for seg-
mentation. The initial number of oversegmented regions is equal to 1900, as shown in Fig. 9(b).
Figures 9(c)–9(f) illustrate the segmentation results of FCM, SC, C-MLL, and CHUMSIS,
respectively. Figures 9(g) and 9(h) show the results after the region merging stage and
FCISIO. It can be noticed that FCM cannot effectively separate the three classes and misclas-
sifies the river area and the farm area. C-MLL and SC can segment out primary target areas of the
three classes and make a good segmentation for the regions with obvious different brightnesses,
such as the river. However, because of the similar brightness, the results by C-MLL and SC will
lose some details, such as trees and shadows. By visual assessment, CHUMSIS and FCISIO
obtain much better results, which is mainly because of the adoption of the texture feature.
FCISIO can preserve more details and make a better balance between the details and region
consistency than SC. Figure 9(g) clearly illustrates that the oversegmented regions without ambi-
guity have been merged during the region merging stage.

4.3 Complexity Analysis

Since the SAR images have the same size, we summarize the average running time of the five
comparing algorithms for all SAR images in Table 4. The running time for C-MLL is for 30

Fig. 9 Segmentation results of the second real SAR image. (a) A Ku-SAR image in the area of Rio
Grande River near Albuquerque, New Mexico, with a 1-m resolution and a 600 × 432 pixels size.
(b) The oversegmented regions obtained in the preprocessing step overlapped the original image.
(c), (d), (e), (f) and (h) The segmentation results by FCM, SC, C-MLL, CHUMSIS, and FCISIO,
respectively. (g) The intermediate segmentation after the region merging stage.
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iterations and that for FCM and FCISIO is for 100 iterations. Note that FCM spends the shortest
time due to the simple scheme. C-MLL costs the most time, because the oversegmented regions’
labels and the model’s parameters have to be updated in each iteration. On the contrary, the
region merging algorithm is deterministic and does not need such an iterative optimization proc-
ess, which saves a lot of time. It is worth noticing that although FCISIO is more complicated than
FCM, the running time of FCISIO is less than that of FCM, because the proposed region merging
stage has greatly reduced the computation burden for FCISIO. Considering the high accuracy
obtained by FCISIO, it can be concluded that the proposed method can produce a good balance
between the computation speed and the segmentation accuracy.

Considering the influence of implementation, the computational complexity for FCISIO is
next briefly analyzed. The preprocessing method need OðNIÞ42 to obtain the oversegmented
regions, where NI denotes the pixel number of the input image. It costs O½NIðNωNθ þ Nλ þ
1Þ� to extract the features and OðNωNθN2

sÞ to compute the similarity between oversegmented
regions. Because ðNωNθ þ Nλ þ 1Þ is a constant, the running time to extract features is linear
with the pixel number of the input image. Since the region merging stage is based on a RAG
model, it will at most cost O½N 0

e logðN 0
eÞ�40 to merge two oversegmented regions, and

O½MðNωNθ þ Nλ þ 1Þ� to make an update, where N 0
e represents the number of the edges in

the RAG at a certain iteration and M (usually <5) is the number of adjacent regions to the
merged regions. Therefore, the computation complexity of the region merging algorithm is
O½N 0

e logðN 0
eÞ� for one iteration cycle. The computational complexity of FCISIO is OðN 0

SLKÞ,
where N 0

S is the number of the remaining oversegmented regions after the region merging stage,
L is the number of the final segments, and K is the number of iterations.

5 Conclusion

The task of reducing the number of pixels to the number of true segments which is used through-
out this paper, consists of three steps: (1) Obtain oversegmented regions in the preprocessing
step; (2) merge oversegmented regions inside true segments by the region merging algorithm
where multiple information is employed; (3) classify the remaining oversegmented regions into
final segments by FCISIO. From step (1) to step (3), the number of the involved operation ele-
ments decreases, while the computational cost on every operation element increases. The strat-
egy of this framework is to spend a little time in segmenting the elements without ambiguity such
as the pixels or oversegmented regions inside true segments, while spending much more time in
partitioning the elements with ambiguity such as those along the boundary between true seg-
ments. This process is plausibly similar to that of human beings, in which people always pay
more attention to details such as the boundary between objects than the components inside
objects. Therefore, this two-stage method can improve the segmentation accuracy and reduce
the running time at the same time.

It is worth emphasizing that we investigate SAR image segmentation entirely from the fea-
ture extraction to the algorithm design, where we extract features of different properties for SAR
images, design three similarity measures according to different kinds of features, and finally
integrate the different similarities in the proposed algorithm. FCISIO realizes an effective
way to integrate features with different properties: on one side, the objective function with a
multifeatures ensemble is designed to avoid the influence between different kinds of features
and preserve the distribution structures in each subspace. On the other side, the optimization

Table 4 Summary of the average running time for the five algorithms.

FCM SC C-MLL CHUMSIS FCISIO

Preprocessing time (s) 43.09

Segmenting time (s) 28.95 55.51 4249.63 69.77 89.23

Total running time (s) 72.04 98.60 4292.72 112.86 132.32

100 iterations for FCM and SC, 30 iterations for C-MLL, and 100 iterations for FCISIO.
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process will iteratively search in each subspace of the corresponding feature along the direction
of the gradient steepest descent so as to accelerate the convergence speed of the algorithm. The
comparative experiments on the synthetic and real SAR images have proven that the proposed
method can achieve the best performance with a very short running time and is stable and effec-
tiveness for various kinds of SAR images.
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