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Abstract. Producing land use and land cover (LULC) maps, particularly in complex urban areas,
is one of the most important necessities in civil management programs and is an important
research topic in satellite image analysis. High-resolution satellite images provide more oppor-
tunities for cost-benefit production of such information. This paper proposes a hierarchical
LULC classification based on image objects that are created from multiresolution segmentation.
A rule-based strategy is used to implement a step-by-step object-based land cover classification
on a pan-sharpened IKONOS image taken from a complex urban region in Shiraz, Iran. A new
spatial geometrical analysis for the reclassification of unclassified land cover objects is also uti-
lized. After the initial classification, an object-based land use classification is implemented based
on the land cover results and using conceptual, spatial, and geometrical modeling of the relation-
ships between land use elements. Overall classification accuracy was 89 and 87% for land cover
and land use approaches, respectively. In the best unclassified object analysis, ∼70% of unclas-
sified objects were reclassified correctly. The hierarchical methodology proposed here results in
fewer unclassified objects since a multistage classification process is utilized rather than the
traditional one-pass classification. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096052]
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1 Introduction

The advent of high-resolution satellite images has increased possibilities for generating higher-
accuracy land use and land cover (LULC) maps.1 Considering that urban classes are presented as
a set of adjacent pixels, an object-based classification technique has an advantage over traditional
pixel-based classification.2,3 These procedures utilize the spectral, geometrical, textural, and con-
ceptual features of an image.4

As land use information cannot be derived directly from spectral information, an intermediate
step of land cover classification is required.3 Many researchers have employed object-based
methods to classify LULC from high-resolution satellite images.5–12 Most of these studies
have been implemented in areas that are not complex or where a limited number of urban classes
are available. Other researchers have applied textural and spectral information in an object-based
analysis.13,14 These methods are mostly applicable to semiurban areas and can only detect
a limited number of classes.

To improve classification accuracy in urban areas, some researchers have integrated high-
resolution and hyperspectral satellite images.15 Despite achieving acceptable accuracy, the
necessity of having access to hyperspectral images is a major limitation of this method.
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Apart from the aforementioned considerations, the use of ancillary data, such as statistical and
population information, for urban classification has been reported in other studies.9,16,17

Unlike land cover classification, fewer research works have focused on land use classification
of land cover elements only based on the high-resolution satellite imagery in urban areas.3 In
between them, even fewer have taken into account conceptual and spatial relations between land
cover elements for land use classification.

Differences in urban structure, local and cultural parameters, and development factors make
it difficult to generalize land use classification model applications. Researchers believe that
before land use information is extracted, spatial units of land use information must be deter-
mined.3,18 Various approaches have been used for the extraction of such land use spatial
units (spatial extent of land use units). Studies have used manual drawings19 or ancillary data,
such as road network maps,18 at the same time.

Other researchers have used land cover information for extracting land use spatial units.
Clustering criteria of building class as a basic element in urban areas are used for this purpose.18

This approach needs accurate extraction of building elements using ancillary data, such as
LiDAR. In other approaches, linear elements, such as roads and linear vegetation features,
have been used.3 Uncertainties are an obvious part of land use extraction. Low accuracy in
dense urban areas is the most common problem using the aforementioned methods, which usu-
ally have been implemented in well-structured urban areas and are not practical in developing
countries.18 Moreover, these approaches are efficient in extracting land use information over
large regions (coarser spatial resolution) rather than detailed information at the land cover object
level (finer spatial resolution). Additionally, errors from land cover classification can propagate
and influence the extraction and classification of land use elements.

The other main issue in land use analysis is in the classification stage. The simplest auto-
mated land use classification methods directly assign one or more land cover types to land use
classes. This approach requires additional data across time. Moreover, a land cover class may be
placed in multiple land use classes or vice versa.

A more sophisticated approach uses a moving window or a kernel over a land cover layer.
In this method, neighboring and spatial relationships between land cover classes are informa-
tive.18,20,21 However, selection of the best kernel size and probable geometric mismatches of land
use unit shapes with the rectangular shape of the kernel are the most important weaknesses of this
method. A method based on predefined land cover information has been used by some research-
ers. This approach comprises a step-by-step cycle of segmentation and classification based
on limited conceptual features, such as vegetation or building percent area.3 The classification
order assignment in this approach is based on ease of extraction. Because of intricate relations
between land use classes, this strategy cannot be used in all urban regions.

In this paper, we propose two novel algorithms (one supervised and one unsupervised) to
automatically generate LULC maps from multispectral remotely sensed images.22 This research
proposes a hierarchical LULC classification based on image objects that are created from a mul-
tiresolution segmentation. A rule-based strategy is used to implement a step-by-step object-based
land cover classification. The order of classification of each land cover class is based on the class
separability. To improve the overall accuracy of the land cover classification, we also use a new
spatial geometrical analysis for reclassifying unclassified land cover objects. After these stages,
an object-based step-by-step land use classification was designed and implemented based on the
land cover results and using conceptual, spatial, and geometrical modeling of relationships
between land use elements. The order of classification of each land use class is based on
the independence ability in the conceptual and spatial relationships between the land use classes.
This work differs from previous research in that multistage classification is implemented using
image segmentation as well as contextual and geometrical spatial information, within a hier-
archy-based scheme.

2 Methods

The major steps of this research consisted of the following: (1) land cover classification model
design and implementation, (2) land cover unclassified objects analysis, and (3) land use
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classification model design and implementation. Figure 1 illustrates the research methodology of
this paper.

To implement the proposed approach, a pan-sharpened IKONOS image from a complex
urban area and a digital surface model (DSM) of Shiraz, Iran, were used [Fig. 2(a)]. Shiraz
is located in the southwest of Iran, and it is the sixth most populous city of Iran and the capital
of Fars province. Figure 2 shows the selected input image, DSM, and its corresponding reference
map. The DSM layer was generated from aerial stereo image pairs recorded by the National
Cartographic Center of Iran. The resolution of the generated DSM was 0.5 m and the vertical
accuracy was 1 m. The reference map, which was used for accuracy assessment, was provided by
the National Cartographic Center of Iran at a scale of 1∶2000. In addition to the land cover
information for validation of the land cover classification, the reference map has enough infor-
mation for the land use categorization of each element.

The city of Shiraz has a high density of buildings, narrow secondary roads, and high diversity
in main roads and building classes. Vegetation in the form of trees and gardens and many cars on
the roads make the classification of this area at high spatial resolutions quite complex.

2.1 Image Segmentation

Any object-based analysis is based on image objects created from an image segmentation step.
Multiresolution segmentation is a bottoms-up region-merging technique starting with 1-pixel
objects. In numerous subsequent steps, smaller image objects are merged into larger ones.
Throughout this pair-wise clustering process, the underlying optimization procedure minimizes
the weighted heterogeneity nh of resulting image objects, where n is the size of a segment and h
a heterogeneity parameter. In each step, that pair of adjacent image objects are merged, which
results in the smallest growth of the defined heterogeneity. If the smallest growth exceeds the
threshold defined by the scale parameter, the process stops. Heterogeneity in multiresolution
segmentation initially considers object features such as color and shape [Eqs. (1) and (2)].

f ¼ wcolor · Δhcolor þ wshape · Δhshape; (1)

wcolor þ wshape ¼ 1: (2)

Fig. 1 General procedure of the suggested technique.
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The parameters wcolor and wshape in Eq. (1) represent weights and demonstrate the amount of
effect of any of these factors in approximating parameter f. The spectral heterogeneity [Eq. (3)]
allows multivariant segmentation by adding a weight wc to the image channel c. The spectral
heterogeneity Δhcolor is defined as

Δhcolor ¼
X
c

wc½nmerge · σc;merge − ðnobj1:σc;obj1 þ nobj2:σobj2Þ�; (3)

where ni (i: merge, obj1 and obj2) is the number of pixels within the merged object, object 1 and
object 2, and σc is the standard deviation within the object in channel c for those three objects.
To estimate Δhshape [Eq. (4)], it is essential to estimate Δhsmooth [Eq. (6)] and Δhcompact [Eq. (7)]
and their weights [Eq. (5)] as well. These represent divergences that are obtained from the
compactness and smoothness of the object’s geometry.

Δhshape ¼ wcompct:Δhcompact þ wsmooth:Δhsmooth; (4)

wcompact þ wsmooth ¼ 1; (5)

Δhsmooth ¼ nmerge ·
lmerge

bmerge

−
�
nobj1:

lobj1
bobj1

þ nobj2:
lobj2
bobj2

�
; (6)

Δhcompact ¼ nmerge ·
lmergeffiffiffiffiffiffiffiffiffiffiffiffinmerge

p −
�
nobj1:

lobj1ffiffiffiffiffiffiffiffiffinobj1
p þ nobj2:

lobj2ffiffiffiffiffiffiffiffiffinobj2
p

�
; (7)

where l is the perimeter of the object and b the perimeter of the object’s bounding box. wc, wcolor,
wshape, wsmooth, and wcompact are weight parameters that can be selected to obtain suitable seg-
mentation results for a certain image data. By determining parameter f, computed for the can-
didate integrated object, this criterion is compared with the segmentation threshold limit scale (S)
and the object integration process will continue up to the end of the threshold limit scale. Object-
based systems have the capability of creating various segmentation levels such that any object

Fig. 2 Case study: (a) area in Shiraz, (b) IKONOS image, (c) digital surface model, and (d) the
reference map.
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can be related with other objects in its sublevels or superlevels. For implementation of image
segmentation, scale and the weight parameters for each level must be selected.

In high-resolution images of an urban area with a variety of heterogeneities, the least weight
for spectral heterogeneity must be selected; otherwise, unnatural geometrical shapes will be cre-
ated for objects and geometrical features can be lost. In the lower scale levels, the variety of
heterogeneities is smaller than higher scale levels, so the weight of spectral heterogeneity
must be decreased with increasing scale levels. High values for the wcompact parameter will
make objects with compact forms. Under these conditions, classification of image object classes
with linear characteristics is laborious compared to nonlinear object classes. Based on the
previous discussion and empirical analysis, for LULC classification, three segmentation levels
were used. The parameters for these are shown in Table 1.

2.2 Land Cover Classification

2.2.1 Rule-based land cover classification

Considering the complexity of urban elements, it is necessary to design a stable strategy for land
cover classification. The aim of the proposed rule-based land cover classification approach was
to obtain least rules and feature space for the description of dense urban land cover classes. To
achieve this, a step-by-step strategy was implemented (Fig. 3).

In this method, the land cover classes were classified one after another and in a predetermined
order. The main strategy in the design of this arrangement is based on higher separability and
class significance. Given the spectral characteristics of vegetation classes in the visible bands,
vegetation classes have the best conditions for classification and so were classified first. After
classification of the vegetation class, its objects were reclassified into tree and grass classes. By
merging tree neighbor objects, this class was reclassified into single tree and garden tree (cluster)
classes. The building objects, using the features based on the DSM, were classified in the next
stage. The buildings, based on the DSM features, were reclassified into one, two, or more than
two story (level) classes. After these stages, the road classes (considering the class importance
criterion) were detected. Road class objects were reclassified into main and secondary road
classes. Considering the spatial and conceptual correlation between car and bus elements with
roads, the objects of these two classes were classified in the next stage. The shadows have higher
separability between the remaining classes. The bare soil and open space class with high spectral
heterogeneity and any geometrical attributes were classified at the end. According to the sig-
nificance measure, the road class was extracted after these two classes. Vehicle and shadow
classes were classified in the next stage. The bare soil and open space class with its spectral
diversities, which have the least geometrical and conceptual attribute, were classified in the
final stage in this model.

Fig. 4 shows the rules and feature space for classification of various land cover classes based
on the rule-based model in Fig. 3. The rows in this table show the classes and the columns define
the feature space used in the rule-based classification.

In Fig. 4, the required features for the separation of mixed classes and the threshold for each
feature are provided. It is important to mention that the logical relation between the class rules is
AND logical operator. To separate the vegetation class, the Normalized Difference Vegetation

Table 1 Segmentation parameters of the three levels.

Scale level Scale

Heterogeneity weight Heterogeneity weight

Spectral–Shape Compactness–Smoothness

Level 10 10 0.4–0.6 0.1–0.9

Level 30-LC 30 0.1–0.9 0.1–0.9

Level 30-LU 30 0.1–0.9 0.1–0.9
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Index (NDVI) was used. For uncertainty management created by the segmentation step, fuzzy
thresholding on the NDVI was used. For this, a fuzzy s-shape membership function was
designed for classification of the vegetation class. In fact, part of a plant may include non-
vegetation pixels and vice versa, which shows fuzzy properties. Thus, in the vegetation and
nonvegetation cluster center determination, fuzzy concepts must be considered. Accordingly,
the fuzzy c-means clustering algorithm17 was used to locate the vegetation and nonvegetation
cluster centers. Vegetation and nonvegetation object samples were collected from red and near-
infrared (NIR) bands, and the NDVI image and the c-means algorithm for fuzzy clustering was
performed for each pair. The results of this implementation are demonstrated in Fig. 5.

The NDVI cluster center was calculated from the centers of the red and NIR bands. The
vegetation and nonvegetation cluster centers were calculated from the average of the preliminary
NDVI clusters and the measured value of the NDVI cluster. Considering the obtained final NDVI
amount for vegetation and nonvegetation classes, designing the s-shape function was thus com-
pleted. Figure 6 illustrates the s-shape designed membership function and the histogram of the
NDVI data.

According to Fig 4, the objects for which the fuzzy NDVI value is >0.6 in level 30 were
allocated to the vegetation class. After this, vegetation objects were merged using the merge
region method. For tree and grass class separation from the vegetation class, mean brightness

Fig. 3 General procedure of step-by-step rule-based land cover classification.
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in all visible bands was used to highlight differences in density leaf and water capacity. Tree class
objects have a high threshold for red, NIR, and green bands. The grass class has a low threshold
for these bands. For this reason, the NDVI is not suitable for detection of these two classes. After
this stage, a mask was made from vegetation classes and the other classes were classified in the
nonvegetation part. The tree class objects were merged by a merge region algorithm. After this,
the area feature was used for classification of garden tree and single tree classes.
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For classification of building subclasses based on number of levels, first the building objects
were merged with the condition that the utmost value of the standard deviation of DSM for
the merged object was <2 m. After this stage, the mean value DSM of the merged object was
deduced from the minimum value of its neighboring objects. The value obtained showed the
height value of the building object. Finally, the height value was divided by 3.3 m (the approxi-
mate height of a level), and the building objects were subclassified into three classes: one level,
two levels, and more than two levels.

2.2.2 Unclassified land cover objects analysis

As a novel strategy in each step, some of the small objects were removed from the classification
results based on the natural dimension of each desired urban class to obtain a smooth classi-
fication without any noise. Consequently, a final stage for the reclassification of these objects
must be considered. Our strategy used the classification results of neighbors for the reclassifi-
cation of unclassified objects. Based on logical relations between urban objects, the possibility of
an unclassified object having the same class as one of its neighbors is quite high. Three geo-
metrical/spatial features were designed and extracted for all of these objects. The first feature was
the number of classified neighbor objects (NCNO) feature based on each class for unclassified
objects. The second was the total common boundary (TCB) feature between the object and its
neighbor objects based on each class. The third feature was the minimum distance between
centers of gravity (MDCG) feature for the unclassified object and its neighbor objects.
Unclassified objects were classified based on each one of these features. Figure 7 shows an
example of the classification scheme. According to this example, the unclassified object is clas-
sified into class A based on the NCNO and TCB features, and class B based on the MDCG
feature.

In the TCB and NCNO features, unclassified objects are classified to a class that has a maxi-
mum value of this feature between the other classes for the desired unclassified object. However,
in the MDCG feature, the desired unclassified object must be classified into a class with the
lowest value.

2.3 Land Use Classification

Land use classification generally cannot be derived directly from spectral or geometrical features
based on satellite images. Therefore, extraction of land use information is conceivable based on
land cover information. Land use classification was performed on level 3 and for four classes
(road, building, vegetation, and bare soil-open space) that have a land use concept.

Fig. 6 NDVI histogram, designed membership form, and the amount of vegetation and nonvege-
tation cluster centers. Vegetation cluster center principal NDVI ¼ 0.153; nonvegetation cluster
center index NDVI ¼ 0.024.
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2.3.1 Step-by-step land use classification model

As there are many relations between land use classes, a step-by-step land use classification
model was designed accordingly and implemented in this study. This model commences
with the land use classification of the road class, followed by land use classification of the build-
ing area. Vacant space and green space were classified in the next stages of this model (Fig. 8).

The road land use class has the most independent attributes compared to the other land use
classes, and based on the proposed model, the road class is considered the final step of land use
classification. In this study, traffic measure was used for road land use classification. As a con-
sequence, traffic criterion was the best feature to show the concentration of urban area activities
in a satellite image. The remaining classes were then defined based on the relations and spatial

Fig. 7 An example of unclassified object analysis.

Fig. 8 Step-by-step rule-based land use classification.
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arrangements of the land cover classes and the road land use classes. The order in the proposed
land use model is based on class independency.

Road land use classification. The simplest strategy for the classification of transportation
land use regions is that all road objects in land cover levels are classified into the transportation
class. However, in this research, we attempted to subclassify tranportation areas into a number of
classes based on traffic measures. This measure is the only observable criterion of urban activity
concentration in a satellite image. The road class is subclassified into two classes based on car
and bus objects. The common border feature of the main road land cover class with vehicle
classes is used for transportation land use classification. Before this stage, the main road
class objects need to be preprocessed. Indeed, road objects must be analyzed with similar con-
ditions. In using a common border feature, main road objects must have similar dimensions. The
merge region approach for merging of the main road class was used. The condition that the
merged object should not have a length > 100 m was used.

The main reason for the length feature in the merging condition is that the road class has
generally linear attributes and vehicles run in the length direction of the road. By using this
condition, the common border of the road class with the vehicle class is not an optimized feature.
Actually, the dimension of the road merged objects influences this classification. So an index
feature, the ratio of the aforementioned feature in the object area, was used. In addition, sec-
ondary roads were classified in the alley land use class (Fig. 8).

Building land use classification. In developing countries such as Iran, the regional land
use arrangement is generally based on local prospects. So, for example, institutional and com-
mercial areas are comixed, and residental and commercial spaces are located adjacent to each
other. Because of this heterogeneous form, the only way to recognize institutional-commercial
regions is by utilizing the traffic in the margin of these regions during the daily crowded period.
The margin building parts of urban blocks closer to the crowded main roads class are classified as
institutional-commercial, and the inner regions of blocks are classified as residental. Before the
implementation of this stage, building objects were merged with the condition that the area was
<100 sq:m (the approximate area of a building in the case study).

For building land use classification, a class related conceptual feature was used. With this
feature, the merged building objects that were placed at a distance <50 m from the crowded main
roads class were classified as institutional-commercial building space. The building regions
placed at a distance >50 m from the crowded main roads class and <30 m from the alley
class was classified as residental. The remaining building objects that had>60% common border
with garden tree or grass classes were defined as recreational or green space building area
(Fig. 8). The threshold value was determined based on experimental analysis.

Vacant space land use classification. The concept of this class is contrary to land use
concepts. The main purpose of the land use classification of vacant space was to meet planning
requirements for the management of this region based on its proximity to other land use classes.
All of the vacant areas have different planning costs. This class is either merged with residential
and commercial regions or not classified at all in many studies. The bare soil-open space class
was subclassified into three classes: commercial vacant, residential vacant, and green space
vacant regions. The criteria for this classification included the distance from crowded main
roads, commercial, residential, garden tree, and grass classes.

Recreational and green space land use classification. A common green space in
urban areas is the margin green space of the streets. For classification of this class, spatial and
geometrical features were used. The spatial feature was the distance to the main road land cover
class for all vegetation classes. This class has linear attributes similar to the road class. The next
feature was length/width, which was used for the description of the linear classes. The next class
was grass land, where the grass class objects in land cover classification were merged with the
condition that the area was >100 sq:m.
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Garden or tree planted classes were classified after the merging of garden tree class objects.
The remaining green space classes were residential and commercial. The objects of these classes
were classified based on their distance from commercial and residential regions.

3 Results and Discussion

3.1 Land Cover Classification Results

The results of rule-based land cover classification are shown in Fig. 9.
Based on the proposed unclassified analysis approach, 100 random unclassified objects were

selected and then real classes for each random sample were determined using a reference map
and visual interpretation. Table 2 shows the result of the unclassified objects analysis using the
aforementioned features.

The accuracies obtained were calculated based on two criteria: with object area weight and
without object area weight. Based on the previous table, the center of gravity feature has the best
result. Based on this feature, ∼70% of the unclassified objects were correctly classified.
Accuracy assessment criteria for the land cover classification are shown in Table 3.

Accuracy assessment was performed based on the object samples provided from the existing
reference map. The overall accuracy and kappa were 89% and 0.86, respectively. Regarding the
complexities of the case study, the accuracy obtained was satisfactory. The vegetation classes

Fig. 9 Results of land cover classification in various hierarchies. The second set of images shows
the zoomed-in region marked in (c). (a) separating buildings class from nonbuildings, (b) classify-
ing the nonbuildings class into vegetation, roads and open spaces, and (c) final level of classi-
fication of the buildings, vegetation and open space classes.

Table 2 Accuracy assessment of unclassified objects.

Feature Overall accuracy
without area weight

Overall accuracy
with area weight

Number of neighbor objects 35% 30%

Total common boundary 27% 35%

Distance between centers of gravity 64% 70%
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were classified with 95% accuracy. Grass and the two tree classes had mixed objects. The car and
bus classes were classified with high accuracy (both>95%). These two classes have spectral and
geometrical similarities with building classes, but by using the DSM layer and conceptual fea-
tures in building classification and two vehicle classes, respectively, they had low mixed objects.
Nonetheless, the user accuracy of the building class was ∼88%.

3.2 Land Use Classification Results

The results of the land use classification are shown in Fig. 10.
The comparison of reference data with the results of selected land use classes is shown

in Fig. 11.

Table 3 Accuracy assessment of land cover classification.

Building

Bare
soil–open
space Grass Tree Vegetation Road

Main
road

Secondary
road Car Bus Shadow

Producer
accuracy

88% 97% 76% 77% 97% 84% 89% 80% 100% 95% 85%

User
accuracy

94% 89% 83% 92% 92% 86% 80% 95% 100% 100% 89%

Kappa 92% 86% 75% 74% 91% 82% 88% 77% 100% 91% 82%

Overall accuracy: 89.2% Kappa factor: 0.863

Fig. 10 (a) Land use classification result and (b) land cover classification results.

Fig. 11 Top row—reference map (commercial space sample, grass land space, garden space,
main road). Bottom row—classification results (commercial space, grass land, garden space,
highly crowded main road, less crowded main road).
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The results demonstrate the effectiveness of the proposed land use classification model.
The main road class in the reference map is classifed into two classes: highly crowded or
less crowded. The proposed approach classifies these two classes based on instantaneous vision
(as captured by the satellite image). Table 4 shows the accuracy assessment of land use
classification.

The overall accuracy was 86.8%. Based on the area weight for any land use class, the overall
accuracy was 88.9%.The accuracy assesment of the results, with high detail and without any
additional data, shows the effectiveness of the proposed approach. The vegetation class has low
accuracy for two reasons. The width of some real vegetation objects were <1 m (e.g., shrubs)
and, according to the resolution of the pan-sharpened IKONOS image, these objects could not be
recognized. The time difference between the reference data and the IKONOS image capture also
lowers accuracy.

4 Conclusion

In this research, an object-based method based on a hierarchical model for land use and land
cover classification in a dense urban area from high spatial resolution satellite images is
presented. We propose a contiguous cycle of approaches to extract land use information from
high-resolution imagery.

In the first step, a rule-based land cover classification was designed and applied using object-
based features including spectral, geometrical, and conceptual. In the proposed method, a step-
by-step strategy is used. Evaluation of results obtained from the implementation of the proposed
approach on an IKONOS image from a dense urban area showed the efficiency of this method.
The most important achievements of this research include satisfactory classification results in
a complex dense urban area with no need for training samples.

The class hierarchy of the proposed rule-based land cover classification includes 16 classes at
two levels. Classes such as car and bus are used for finding the centers of activity in the land use
classification for defining commercial and institutional regions. The main purpose of using this
class hierarchy is to apply a stable and detailed input for land use classification analysis. The
hierarchical order of the land cover classes is based on the classification capability of the classes
and class significance.

After the implementation of land cover classification, a geometrical spatial analysis is
used for the reclassification of unclassified objects in the land cover stage. The distance
between the gravity center feature gives the best result in the reclassification of unclassified
objects.

In the land use classification phase, a stage-by-stage strategy is used. In the present study,
conceptual relations and attributes between land cover classes are used for the implemetation of
land use classification. Attributes such as traffic reflect the concentration of activity in urban
areas and are likely used for the first time in this study.

The combination of methods proposed in this paper results in fewer unclassified objects
since a multistage classification process is utilized rather than the traditional one-pass clas-
sification. Furthermore, the proposed approach emphasizes the use and modeling of concep-
tual knowledge and regional information as an appropriate tool to exploit the information
content of high-resolution images in land cover and land use analysis. The methods described
here result in a land use layer as well as a land cover layer, with objects as small as a car being
classified with high accuracy due to the use of contextual as well as geometrical spatial
information.

Table 4 The accuracy assesment of land use classification results.

Residential Commercial-institutional Main road Grass land Garden
Linear main road
margin vegetation Alley

87% 88% 90.5% 81.3% 90.3% 76% 87%
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