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Abstract. Objective: although the preponderance of research on functional brain activity investigates mean
group differences, mounting evidence suggests that variability in neural activity is beneficial for optimal central
nervous system (CNS) function. Independent of mean signal estimates, recent findings have shown that neural
variability diminishes with age and is positively associated with cognitive performance, underscoring its adaptive
nature. The present investigation sought to employ functional near infrared spectroscopy (fNIRS) to derive two
operationalizations of cerebral oxygenation, representing mean and variability [using standard deviation (SD)] in
neural activity, and to specifically contrast these mean- and SD-oxyhemoglobin (HbO) estimates as predictors of
cognitive function. Method: a total of 25 older adults (71 to 81 years of age) completed a test of cognitive inter-
ference (Multisource Interference Task) while undergoing fNIRS recording using a multichannel continuous-
wave optical imaging system (TechEn CW6) over bilateral prefrontal cortex (PFC). Time-varying covariation
models were employed to simultaneously estimate the within- and between-person effects of cerebral oxygena-
tion on behavioral performance fluctuations. Results: mean effects were predominantly observed at the
between-person level and suggest that greater concentrations of HbO are associated with slower and less accu-
rate performance. Greater HbO variability at the between-person level was associated with slower performance,
but was associated with faster performance at the within-person level. Conclusions: these findings are in keeping
with assertions that mean and variability confer complementary (as opposed to redundant) sources of informa-
tion regarding the effective functioning of a neural system and suggest that fNIRS is a viable methodology
for capturing meaningful variance in the hemodynamic response that is characteristic of adaptive CNS function.
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1 Introduction
Moment-to-moment variability in neural activity is an emerging
area of research that shows promise for elucidating nuances of
the human nervous system. In stark contrast to the number of
studies examining cognitive behavioral and physiological vari-
ability, there is a paucity of research on variability in neural
activity, despite the longstanding knowledge that neural vari-
ability is not merely noise, but rather a central feature of a stable
and well-functioning neural system.1–3 In the present context,
neural variability refers to within-person fluctuations in func-
tional brain activity, with evidence to date primarily derived
from functional magnetic resonance imaging (fMRI) and
electroencephalogram (EEG) research. Neural variability exhib-
its an inverted U-shaped pattern, increasing through early life
and declining through late life, with higher levels generally con-
sidered adaptive.2,3 Theoretically, increased neural variability is

indicative of a more sophisticated neural system that can explore
multiple functional states.3 Variability in neural activity may be
functionally significant by facilitating a greater dynamic range
of potential responses, according to Bayesian optimization and
by enabling itinerant dynamics to avoid determinacy. Indeed,
variability in brain activations may arguably represent the sub-
strate for adaptive and stable neural function.3

Empirical support for the functional significance of neural
variability includes examples from lifespan developmental
phenomena as well as linkages to behavioral performance.
McDonnell and Ward4 argue that neural networks are more
robust when they are generated in the presence of greater
noise (through “stochastic facilitation”), which is further sup-
ported by studies showing increased neural variability from
infancy to early adulthood.5–8 In contrast, decreased variability
in the functional magnetic resonance imaging blood-oxygen-
level dependent (fMRI-BOLD) signal has been associated
with increasing age and diminished behavioral performance
in older adulthood.3,9,10 Recent investigations of variability in*Address all correspondence to: Drew W. R. Halliday, E-mail: drewh@uvic.ca
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cerebral oxygenation, using either functional near-infrared spec-
troscopy (fNIRS) or fMRI, have shown positive associations
with superior behavioral performance during measures of
scene recognition11 and cognitive flexibility, but not cognitive
stability,12 suggesting that neural variability during higher-
order cognitive tasks is not only beneficial, but also construct
specific. Further, Garrett and colleagues13 examined the impact
of increasing cognitive demands on the modulation of brain
signal variability. Increasing cognitive load was associated
with broad (i.e., multiregion) increases in brain variability for
younger and faster-performing adults, but comparatively fewer
changes in brain variability for older and slower-performing
adults. These age group differences, particularly under increas-
ing cognitive load, were interpreted to reflect a neural system
for the younger adults characterized by greater dynamic range
between brain states (fixation versus cognitive demand) and an
enhanced ability to efficiently process stimuli.

Neural variability also appears to be sensitive to developmen-
tal phenomena at both ends of the lifespan and to recovery fol-
lowing injury. EEG data from infants5–8 and fMRI data from
older adult populations3,9,10 suggest a developmental trajectory
of increasing-then-declining neural variability. Garrett and
colleagues9 observed that older adults exhibited less neural vari-
ability than their younger counterparts, and direct comparison of
standard deviation-versus mean-based BOLD patterns indicated
that the former shared a five-fold stronger association with age.
Further, increased neural variability has been associated with
superior behavioral performance3,6,8–10,12,13 and better recovery
from traumatic brain injury (TBI).14 The majority of studies
examining neural variability in older adults have used fMRI
to index the BOLD signal; however, given that the average
sampling rate of fMRI methodology is comparatively slow
(e.g., Garrett and colleagues3,9,10 used a repetition time (TR)
of 2000 ms, resulting in 1 image every 2 s), these studies provide
a relatively coarse estimate of BOLD variability reflecting sam-
ple-to-sample fluctuations. Further investigation of variability in
cerebral oxygenation is therefore an important avenue of explo-
ration, and may be better suited to neuroimaging methodologies
indexing cerebral oxygenation that use faster sampling rates
(e.g., fNIRS with signal sampling occurring once every 20 ms),
to derive estimates that are statistically more precise. For exam-
ple, for a single 30-s performance block, the SD estimate for a
common fMRI TR of 2 s would be based upon only 15 samples
(one every 2 s); in contrast, for the same length block within
an fNIRS paradigm (at 50 Hz sampling), the within-person
SD would be computed across 1500 individual samples
(50 per second × 30 s). As the hemodynamic signal is inher-
ently noisy,15 and more importantly as moment-to-moment brain
signal variability is hypothesized to also contain a durable
characteristic signal independent of stochastic noise,1,3,16 the
increased sampling density of fNIRS may be particularly useful
for deriving precise and reliable estimates of neural variability.

1.1 Within- and Between-Person Analyses

Given that the majority of the extant neural variability literature
is based on average between-person effects (e.g., does the older
age group exhibit less variability than the younger age group?),
it is of particular interest to investigate whether associations
between behavior and neural function are also observed within
persons (i.e., for any given individual, on occasions when neural
variability is higher, is behavioral performance also better?). It
has long been known that analyses executed at separate levels of

nested-data hierarchies (i.e., the between- and within-person
levels) do not necessarily yield equivalent results. Referred to
as the ecological fallacy,17 results at the individual level may
be of particular magnitude and direction, but when aggregated
at the group level, can not only differ in pattern but may also be
influenced by between-person confounds (e.g., age and cogni-
tive status) that may obscure the effect of interest. For example,
it is both conceptually and statistically possible for predictors to
account for large proportions of variance within-persons, but to
exhibit relatively little or no effect (or even opposite effects)
when pooled across individuals.18 Similarly, research on
ergodicity19 underscores the importance of examining within-
person associations and suggests that (a) process-oriented phe-
nomena (such as neural variability) are best examined within-
persons over time and (b) a singular reliance on between-person
averages to study such associations is incongruent with theoreti-
cal accounts. Therefore, despite being defined by the same
outcome, the variation at between- and within-person levels of
analysis may represent and be driven by completely different
theoretical constructs (e.g., the reason person A performs better
on a cognitive task relative to person B may be completely
different from why both individuals each exhibit gains across
the duration of a task).

1.2 Present Study

In the present study, we examined mean and variability opera-
tionalizations of the cortical hemodynamic response, at both the
within- and between-person levels, for older adults performing
an executive functioning task. Several key research aims were
explored. First, functional estimates for mean and variability
during an executive function task were derived. Relative to
fMRI, the faster fNIRS sampling frequency arguably yields
a more precise and reliable estimate of neural variability.
Although several operationalizations of neural variability have
been employed including a block normalized SD approach
(fMRI literature) as well as multivariate multiscale entropy
(MSE: EEG literature), these various approaches and the signals
they index may not be equivalent.3 The findings reported in this
investigation are based upon the normalized SD computation.9

Time-varying covariation models were then employed
to estimate the within-person (at the individual level) and
between-person (at the sample average level) associations
for these two oxyhemoglobin (HbO) indicators on behavioral
cognitive performance [Multisource Interference Task (MSIT)
response latency and accuracy] across all performance blocks
within the experiment. For variables such as functional
activation that are studied over any longitudinal interval, an esti-
mate for any given cross-sectional sample (e.g., block 1) com-
prises both between- and within-person sources of variance.20

Accordingly, failure to decompose variance into between-
and within-person sources results in estimates that conflate the
two—of particular concern to the extent that between-person
variance for the phenomenon under study (e.g., the association
between neural variability on cognitive performance) is distinct
from patterns observed for within-person variance. Our investi-
gation is particularly innovative as most investigations of neural
variability are based upon between-person differences; here, we
directly examine effects at both the between-person (i.e., effects
that pertain to differences in level of neural variability between
persons in relation to cognitive function) and within-person
(i.e., effects that pertain to neural variability and how this
couples with cognitive function within an individual) levels.
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As so few fMRI and fNIRS investigations have explored neural
variability, with virtually all focusing exclusively on between-
person differences, key foci of this objective were (a) to examine
associations of HbO mean and variability with cognitive
function at both the between- and within-person levels, (b) to
document whether the patterns were similar in magnitude and
direction of effect (an empirical question given the fact that
between- and within-person findings need not be identical),
and (c) to establish benchmark patterns for both the between-
and within-person effects, representing patterns for uncon-
founded sources of variance, to be replicated in subsequent
studies.

Finally, a related research objective pertains to understanding
whether the complementary operationalizations (mean and stan-
dard deviation) of cortical hemoglobin concentrations were dif-
ferentially modulated as a function of cognitive load (control
versus interference conditions) on the MSIT task. Neural vari-
ability remains poorly understood for higher-order cognitive
measures, such as executive function, and the modulation
of neural variability has not been explored within persons.
Consistent with some interpretations offered in the functional
literature for the impact of load modulation on mean neural
activations,2,13,21 we hypothesized that the more demanding
interference condition would result in greater recruitment of
neural tissue,2 but that the patterns would differ across opera-
tionalizations of the hemodynamic response as well by behav-
ioral metric (accuracy versus latency) and cortical region.

2 Method

2.1 Participants

This study was approved by the University of Victoria Human
Research Ethics Board and was conducted in accordance with
institutional guidelines. Data were collected from a narrow-age
cohort 71- to 81-years of age (m ¼ 75.88 and SD ¼ 3.28) of
25 older adults (13 females and 12 males), 92% of whom were

right-handed. Exclusionary criteria included self-report of (a) a
physician-diagnosed major medical illness with residual motor
or sensory deficits (e.g., Parkinson’s disease, stroke, heart
disease, dementia, cancer, and brain tumor), (b) severe sensory
impairment (e.g., difficulty reading newspaper-sized print,
difficulty hearing a normal spoken conversation, and difficulty
writing or pressing buttons), (c) drug or alcohol abuse, (d) his-
tory of inpatient psychiatric treatment, (e) significant cognitive
impairment (i.e., Mini Mental State Examination score below
24), or (f) English as a second language.

2.2 Measures

Participants completed the MSIT, which is a computerized task
of cognitive interference, and was designed to activate the
cingulo-frontal-parietal cognitive attention network in subjects
while undergoing functional neuroimaging.22,23 The task shares
similarities with the Stroop, Eriksen Flanker, and Simon tasks
and is suitable for the purposes of this investigation for notable
reasons. Previous investigations using the MSIT have elucidated
a reliable network of neuroanatomical correlates that are
engaged during task performance,22,23 including several that
are accessible by fNIRS methodology using a relatively basic
array positioned over the forehead (see Fig. 1). The MSIT
was designed with the assessment of neuropsychiatric popula-
tions in mind and is regularly employed in the studies of cog-
nitive aging; however, it has yet to be used to examine variability
in functional brain activity. The nature of the MSIT is such that
behavioral performance can be readily yoked to neural activity,
as the task demands remain relatively constant from trial to
trial within a block of the experiment.

In the MSIT, participants are presented with an array of three
numbers (ranging in value from 0 to 3), one of which is a differ-
ent numerical value than the others. Using a serial response
input device (Psychology Software Tools, Inc.) to ensure þ∕ −
1 ms timing latency, participants respond to the value of the odd
target as quickly as possible while remaining accurate, across

Fig. 1 The MSIT. Participants are presented with three numbers and indicate the value of the number
that is different. The value and location are congruent during control and incongruent during the inter-
ference condition.
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a total of 15 trials within a 30-s block. Trial durations are fixed at
2000 ms, allowing behavioral responses to be time-locked to
the corresponding samples within a neuroimaging recording.
Participants begin with either the control (location and value
of the target are congruent) or interference condition (location
and value of the target are incongruent), and complete a total of
four blocks for each of the conditions, which alternate (see
Fig. 1). A rest block of 20 s separates each experimental block
and a baseline of at least 90 s preceded the onset of the task. A
measure of interference can be derived by comparing the easier
(control) to the more demanding (interference) condition, across
several outcome measures of interest, including accuracy (per-
cent correct), response time (RT), and hemodynamic response.

2.3 Functional Near-Infrared Spectroscopy
Recording

fNIRS data were recorded using a continuous-wave TechEn
CW6 system (TechEn Inc., Milford, Massachusetts), with a
sampling frequency of 50 Hz (corresponding to TR ¼ 20 ms)
(For selected individuals (n ¼ 6), the frequency of fNIRS
data acquisition was downsampled to 25 Hz. Despite this,
sufficient individual samples were available to derive reliable
estimates of HbO mean and variability, with analyses indicating
no significant influences of these sampling differences on
our estimates or pattern of results.), resulting in 100 images
every 2 s. During computerized testing, the fNIRS system
recorded cortical hemodynamic responses that were time-locked
to events within the tasks. Participants wore custom-built fNIRS
headgear consisting of an array positioned over prefrontal cortex
(PFC) [Fig. 2(a)] containing 10 channels (8 at 3 cm separation,
2 at 1.5 cm separation) and were tested using wavelengths of
690 and 830 nm to index deoxyhemoglobin (HbR) and oxy-
hemoglobin (HbO), respectively. The array was designed to
maximize the coverage of PFC, given the relevance of PFC
areas during performance on the MSIT.

The optical array was positioned relative to several 10 to 20
landmarks (Fpz, Fz, F7, and F8). 3-D coordinates of scalp refer-
ence and optode locations were obtained using a Polhemus
Fastrak digitizer system (Polhemus, Colchester, Vermont), to
perform probabilistic spatial registration.24,25 Following this
procedure, Montreal Neurological Institute (MNI) coordinates
were generated for the midpoint of each source–detector pair
(i.e., channel) for each participant, as well as the average and
composite standard deviation values across the group (Table 1).
Lastly, we converted the MNI coordinates to Brodmann’s areas
(BA) to ascertain macroanatomical labels using Talairach Client

software.26 The lateral-most channels in both hemispheres
recorded over BA 46, with all the remaining channels recording
over BA 10 [Fig. 2(b)]. The 1.5 cm short-separation channels
(B4 and C8) were not of interest for the present investigation,
given the inability of these channels to capture information at the
cortical surface or to facilitate regression of the cardiac signal.
Therefore, they were dropped from subsequent analyses. Left
hemisphere channels covered inferior frontal gyrus (A1) and
middle frontal gyrus (A2, B2, and B3) and right hemisphere
channels covered superior frontal gyrus (C5 and C6) and middle
frontal gyrus (D6 and D7). To further ascertain whether the array
facilitated adequate coverage from PFC regions of interest, the
probabilistic path of the light photons using the Monte Carlo
forward model (106 photons) was simulated, to derive a sensi-
tivity matrix27 [Fig. 2(b)]. This model was based on the Colin27
atlas, which specifies the absorption properties of scalp, skull,
cerebral spinal fluid, gray matter, and white matter. As is evi-
dent, the array captured information that is uniformly distributed
across PFC.

The methods undertaken as part of this study were well sit-
uated to investigate the within- and between-person associations
between HbO variability and behavioral performance, as well as
the modulation of neural variability by cognitive load. Although
fNIRS is limited in its spatial resolution to cortical regions,
the greatest age-related group differences in BOLD variability
(between young and old) have emerged in relation to cortical
regions.9 Further, the PFC in particular is linked with greater

Fig. 2 (a) The array design showing the location of the sources (star), detectors (circle), channels
(dashed line), and Brodmann’s areas (squares). (b) Sensitivity profile based on the Monte Carlo forward
model (106 photons) for the fNIRS array.

Table 1 Group average MNI coordinates for the eight-channel array.

Channel X Y Z SD

A1 −49.00 46.33 12.33 14.76

A2 −44.67 52.33 13.67 14.81

B2 −40.33 57.67 14.33 13.37

B3 −33.67 62.00 16.00 13.53

C5 32.33 64.67 16.67 19.08

C6 39.00 60.67 16.00 19.54

D6 45.67 55.33 13.67 19.89

D7 50.67 48.33 11.00 20.05
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inconsistency in behavioral performance28 and is heavily impli-
cated in executive functions (e.g., cognitive interference).29

Thus, the array used in this study is limited to the coverage of
PFC, which is the area relevant to the phenomenon of interest.

2.4 Preprocessing

Preprocessing of the fNIRS data was performed using Homer 2
software.30 After converting the raw wavelengths to optical
density values, we corrected for motion using a wavelet trans-
formation algorithm31 using an interquartile range of 0.1.32,33

Next, we applied bandpass filtering to correct for physiological
noise using a high-pass filter value of 0.01 Hz and a low-pass
filter value of 0.1 Hz. We then converted from optical density to
hemoglobin concentrations by applying the modified Beer–
Lambert law, and then exported for subsequent operationaliza-
tions. Figure 3 displays the group-averaged time-course data,
sampled at 50 Hz.

2.5 Mean and Standard Deviation
Operationalizations

Mean- and SD-based operationalizations of HbO were derived
for the purpose of this study. Outliers were identified as values
>3 SD from the sample mean across block estimates and were
deleted pairwise, with subsequent modeling based on restricted
maximum likelihood.

Mean estimates of HbO were estimated by aggregating
across all samples contained within a given experimental
condition. We employed a block design to index HbO within
each condition. Specifically, we derived single estimates of
HbO within a given block. This equated to eight segments
for the MSIT (four control and four interference). Signal vari-
ance was estimated with block independent estimates, based on
in-house software following the approach used by Garrett and
colleagues.3,9,10 Percentage change from the onset value of
a given block was computed for each sample, with the corre-
sponding values subsequently averaged within a given block.

Given our interest in examining the within-person time-varying
covariation between HbO estimates (mean and SD) and
behavioral performance (described further below), we did not
normalize concatenated blocks to examine single SD estimates,
condition wise. In similar fashion, the corresponding estimates
for SD HbO were computed per block to facilitate estimation
of the time-varying covariation models examining within-
person associations between neural activity and cognitive
performance.

3 Results

3.1 Behavioral Data

MSIT scores were first screened for blocks with accuracy per-
formance <50%. Given the nature of the task and potential exec-
utive functioning difficulties experienced by the participants,
there were several blocks of interference results in which
participants appeared to have reversed the criteria, responding
to the location of the target instead of its value. These blocks
were removed from both behavioral and fNIRS analyses
(36 interference blocks removed from a total of 100 across all
participants). Table 2 displays the demographic and behavioral
data.

3.2 Examining Within- and Between-Person
Associations of Cognitive Function with
HbO Mean and Variability

Hierarchical linear and nonlinear modeling (HLM) 6.08 soft-
ware was used to fit linear mixed models to examine the
time-varying covariation (or “coupling”) between each opera-
tionalization of hemoglobin (i.e., mean and SD) and behavioral
performance (i.e., MSIT accuracy and response time), with sep-
arate models for each fNIRS channel (i.e., A1, A2, B2, B3, C5,
C6, D6, and D7). In order to avoid a type II error and incorrectly
rejecting a true finding, we did not correct for multiple
comparisons.34 Rather, given that the MSIT and variability oper-
ationalizations have not been used with fNIRS in older adults,

Fig. 3 Group-averaged time-course data for the MSIT task, sampled at 50 Hz. The presence of each
hemodynamic response function corresponds to a 30-s experimental block, separated by 20-s of rest.
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our preference was to provide a full account of the results. Given
our a priori hypotheses regarding expected directional effects,
we employed one-tailed (p < 0.05) tests for specific planned
comparisons. To derive distinct between- and within-person
estimates of cortical hemoglobin on behavioral performance,
each person-mean operationalization of hemoglobin was cen-
tered, before entering it into the model.20 In person-mean
centering, the person mean of the time-varying predictor is
subtracted from the original time-varying predictor, such that
the new time-varying predictor represents variation about one’s
own mean level, and thus facilitates the partitioning of HbO-
cognition associations into discrete and orthogonal between-
and within-person estimates. The following equations outline
the analyses conducted to examine the block-to-block covaria-
tion between hemoglobin and behavioral performance (i.e.,
accuracy and response latency):

EQ-TARGET;temp:intralink-;sec3.2;63;564

Behaviorij ¼ β0iþβ1iðblockijÞ þ β2iðhemoglobinij − hemoglobin:jÞ þ eij ðlevel-1Þ
β0i ¼ γ00 þ γ01ðhemoglobin:jÞ þ u0i ðlevel-2Þ
β1i ¼ γ10 þ u1i

β2i ¼ γ20 þ u2i

where behavior represents the outcome measures of accuracy or
response latency for person j and block i. Within-person vari-
ance is reflected in the level-1 residuals VarðeijÞ, associated
with within-person variability block to block. Between-person
variance is reflected in the level-2 residuals, VarðU0jÞ and
indicates the amount of variability in behavior that exists
between-persons. The parameter estimate for γ10 represents the
between-person effect of block on the cognitive outcomes
(MSIT accuracy and RT), with parameter γ00 (the fixed inter-
cept) reflecting the between-person average of the cognitive
outcome for values of 0 on all predictors (e.g., the very first
block for the person-mean-centered values of SD HbO). The
parameter estimate for γ01 represents the test of between-person
differences in the predictors (mean and SD HbO) on the cogni-
tive outcomes. Specifically, for every unit increase in the person
mean of mean or SD HbO, the mean of the cognitive outcome
goes up (or down) by the value of the γ01 parameter estimate.
Essentially, this parameter reflects the extent to which, for every
unit increase in the person mean of HbO (based on either mean
or SD computation), the mean of the behavioral performance
outcome variable increases or decreases. In contrast, the γ20
parameter estimate represents the test of coupled within-person
associations between the predictor and the outcome. Within
any given individual, within-person coupling tests whether on
occasions when mean or SD HbO is higher, the corresponding
estimates of cognitive performance are lower (or higher).
Essentially, this parameter reflects the extent to which deviations
from an individual’s average amount of HbO across the eight
experimental blocks (based on either mean or SD computation)
are associated with differences in the same individual’s
behavioral performance. The results for the between- versus
within-person analyses do not have to be identical and can con-
ceivably differ in magnitude of effect, direction of effect, or
both.17,18,20

HbO mean: The within- and between-person associations
of HbO mean on variation in behavioral performance were
tested separately for each behavioral metric and fNIRS channel.
Table 3 summarizes the effects. At the between-person

level, greater HbO concentration in the control condition was
associated with less accurate performance in two adjacent left
hemisphere channels (A1: γ01 ¼ −0.022, p ¼ 0.029; A2: γ01 ¼
−0.018, p ¼ 0.012). At the within-person level, greater HbO
concentration in the control condition was associated with faster
performance in one right hemisphere channel (D6: γ20 ¼
−23.14, p ¼ 0.019, pseudoR2 ¼ 0.137), such that on blocks
when participants recruited more HbO relative to their own
mean, they tended to perform faster (23.14 ms faster for
every μMol increase in mean HbO, relative to a given person’s
average). Of the total within-person variation in response time,
13.7% was accounted for by changes in HbO concentration,
with the pseudo-R2 estimate based upon the Snijders and
Bosker computation.35,36 Greater HbO concentration in the
interference condition was associated with less accurate perfor-
mance in both left and right hemisphere channels (A1:
γ01 ¼ −0.104, p ¼ 0.015; D6: γ01 ¼ −0.060, p ¼ 0.074) and
with slower performance in two left hemisphere channels
(A1: γ01 ¼ 68.46, p ¼ 0.063; B3: γ01 ¼ 59.55, p ¼ 0.085) at
the between-person level. At the within-person level, greater
HbO concentration was associated with less accurate perfor-
mance in one right hemisphere channel (D7: γ20 ¼ −0.060,
p ¼ 0.063, pseudo-R2 ¼ 0.049), such that on occasions when
participants recruited more HbO relative to their own mean,
they tended to perform less accurately (0.06% less accurate
for every μMol increase in mean HbO, relative to a given per-
son’s average). Of the total within-person variation in accuracy,
4.9% was accounted for by changes in HbO concentration.

HbO SD: The within- and between-person associations of
HbO SD on variation in behavioral performance were tested
separately for each behavioral metric and fNIRS channel.

Table 4 summarizes the effects. At the between-person
level, greater HbO variability in the control condition was
associated with slower performance in two adjacent left hemi-
sphere channels (A1: γ01 ¼ 0.66, p ¼ 0.041; A2: γ01 ¼ 0.39,
p ¼ 0.095). At the within-person level, greater HbO variability
in the control condition was associated with faster performance
in one left hemisphere channel (A2: γ20 ¼ −0.09, p ¼ 0.089,

Table 2 Descriptive statistics for the demographic and behavioral
data. Data for MSIT control and interference conditions are based
on blocks with at least 50% accuracy and RT data are based on
correct trials only.

Mean SD Min Max

Years of education 17.40 2.77 11 22

Age 75.88 3.28 71 81

Control accuracy 97.93 3.89 85 100

Control RT 631.22 128.80 484.92 1073.85

Interference accuracy 82.13 13.49 53 100

Interference RT 1142.09 126.43 988.20 1449.75
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pseudo-R2 ¼ 0.063), such that on blocks when participants
were more variable in HbO relative to their own average vari-
ability, they tended to perform faster (0.09 ms faster for every
μMol increase in SD HbO, relative to a given person’s aver-
age). Of the total within-person variation in response time,
6.3% was accounted for by changes in HbO variability. We
also found that greater HbO variability in the interference
condition was associated with more accurate performance in
one right hemisphere channel (D6: γ20 ¼ 29.0−4, p ¼ 0.087,
pseudo-R2 ¼ 0.243), such that on blocks when participants
were more variable in HbO relative to their own mean, they
tended to perform more accurately (0.003% more accurate
for every μMol increase in SD HbO, relative to a given
person’s average). Of the total within-person variation in
accuracy, 24.3% was accounted for by changes in HbO
variability.

4 Discussion
This investigation sought to examine complementary operation-
alizations of the cortical hemodynamic response for older adults
completing a measure of executive functioning. Neuroimaging
data have historically been examined through central tendency
computations, in order to derive what have been perceived as
more stable estimates based upon block averaging of neural
activity. Recent work has revisited previous assertions that
neural variability is not merely noise9,10 and has shown that
the variability inherent in neural activity conveys functional
significance, including associations with brain maturation,5–7

brain senescence,3,9,10 behavioral performance,3,6,8,10–12 and bet-
ter recovery from TBI.14 The variability literature on cerebral
oxygenation has been largely restricted to fMRI methodology,
which is limited by temporal sampling resolution. Thus, more
densely sampled profiles of variability for cerebral oxygenation

Table 4 Two-level multilevel models examining between- and within-
person associations for SD HbO with cognitive performance.
Coefficients are reported for the between- (γ01) and within-subject
(γ20) slope estimates. MSIT, multisource interference task; BS,
between-subject; WS, within-subject; BA, Brodmann’s areas.

MSIT accuracy MSIT response time

Control
HbO-BS
(γ01)

HbO-WS
(γ20)

HbO-BS
(γ01)

HbO-WS
(γ20)

BA 46 (A1) 1.42−4 −0.13−4 0.66** 0.02

BA 10 (A2) 0.70−4 0.18−4 0.39* −0.09*

BA 10 (B2) 0.64−4 1.85−4 −0.14 −0.00

BA 10 (B3) −0.35−4 0.08−4 0.23 −0.05

BA 10 (C5) 0.06−4 0.38−4 0.05 −0.08

BA 10 (C6) −0.44−4 0.04−4 −0.02 0.06

BA 10 (D6) 0.05−4 0.42−4 0.12 0.02

BA 46 (D7) 0.55−4 0.67−4 0.24 0.15

Interference
HbO-BS
(γ01)

HbO-WS
(γ20)

HbO-BS
(γ01)

HbO-WS
(γ20)

BA 46 (A1) 2.81−4 −0.45−4 −0.02 0.03

BA 10 (A2) −0.26−4 −1.04−4 0.28 −0.15

BA 10 (B2) 2.11−4 −1.92−4 −0.12 −0.11

BA 10 (B3) 0.95−4 1.13−4 −0.16 −0.16

BA 10 (C5) −5.53−4 −0.26−4 0.21 −0.15

BA 10 (C6) −2.56−4 0.11−4 0.01 0.05

BA 10 (D6) 0.76−4 29.0−4* −0.05 0.36

BA 46 (D7) −9.47−4 −0.59−4 0.08 0.23

*p < 0.05, one-tailed.
**p < 0.05, two-tailed.

Table 3 Two-level multilevel models examining between- and within-
person associations for mean HbO with cognitive performance.
Coefficients are reported for the between- (γ01) and within-subject
(γ20) slope estimates. MSIT, multisource interference task; BS,
between-subject; WS, within-subject; BA, Brodmann’s areas.

MSIT accuracy MSIT response time

Control
HbO-BS
(γ01)

HbO-WS
(γ20)

HbO-BS
(γ01)

HbO-WS
(γ20)

BA 46 (A1) −0.022** 0.005 −14.68 −11.97

BA 10 (A2) −0.018** −0.002 −2.09 −0.07

BA 10 (B2) −0.006 −0.024 −2.99 0.96

BA 10 (B3) −0.007 −0.008 7.43 −0.32

BA 10 (C5) −0.005 −0.002 −8.99 −9.95

BA 10 (C6) −0.002 −0.003 13.78 −11.20

BA 10 (D6) −0.008 −0.002 −7.88 −23.14**

BA 46 (D7) −0.007 −0.004 −21.00 −9.95

Interference
HbO-BS
(γ01)

HbO-WS
(γ20)

HbO-BS
(γ01)

HbO-WS
(γ20)

BA 46 (A1) −0.104** 0.016 68.46* −9.23

BA 10 (A2) −0.024 −0.008 21.15 22.09

BA 10 (B2) −0.003 −0.016 34.27 21.77

BA 10 (B3) −0.025 −0.015 59.55* 12.22

BA 10 (C5) 0.040 −0.020 34.20 41.95

BA 10 (C6) 0.021 −0.022 44.90 14.52

BA 10 (D6) −0.060** 0.044 22.41 90.48

BA 46 (D7) 0.014 −0.060* 17.41 97.83

*p < 0.05, one-tailed.
**p < 0.05, two-tailed.
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remain virtually unexplored. Another impetus for the present
investigation was to examine neural variability using fNIRS
and to exploit its comparatively faster sampling frequency
to derive variability estimates based upon a greater number
of samples that may be more statistically reliable. Further,
the ecological advantages of fNIRS (e.g., low cost, portability,
and noninvasiveness) may be particularly advantageous for
studying variability outside of highly controlled laboratory set-
tings. Finally, although evidence continues to mount in favor of
the functional significance of neural variability, it is less clear
whether these effects are driven by within- or between-person
factors. As emphasized earlier, effects at the between- versus
within-person level of analysis may systematically differ due to
unaccounted for confounds (e.g., age group differences in
performance and individual differences in practice) or due to
fundamental differences in the theoretical constructs indexed
at each level of analysis (e.g., between-person differences in
neural variability may reflect systemic differences in level
of central nervous system function, whereas within-person
fluctuations in neural activations may reflect more transient
influences including stress or momentary lapses of attention).
To the extent that variation between- versus within-persons
reflects distinct underlying sources, the observed patterns
for these distinct levels of analysis may differ in magnitude
or direction of effect, or both.20 Thus, it is both conceptually
and statistically feasible that as a predictor, neural variability
may account for variance at the between- but not the within-
person level (i.e., that it may be associated with superior
behavioral performance, but be driven by between-person
factors). Higher-order cognitive tasks may be more likely to
exhibit practice effects relative to other cognitive constructs
of interest, further underscoring the importance of separating
within- and between-person sources of variance. Among the
few fNIRS studies to examine variability, large between-
group differences have been reported;37 however, no investiga-
tions of variability within-persons have been reported to our
knowledge.

Using fNIRS, two operationalizations of HbO were derived,
based on central tendency (mean) and variability (SD).
Behavioral associations with each operationalization of HbO
differed across task difficulty (control or interference), behav-
ioral metric (accuracy or response latency), cortical area, and
level of analysis (between- versus within-person). In general,
greater amounts of mean HbO (i.e., higher mean activation)
were associated with less accurate and slower response in both
MSIT conditions, in lateral regions of PFC (including DLPFC).
Greater amounts of mean HbO were associated with faster
performance in the easier control condition, but with slower per-
formance in the more challenging interference condition. One
interpretation of this finding is that recruiting additional neural
tissue may have been beneficial as the task remained relatively
easy, but that as it became more challenging, additional recruit-
ment of neural tissue was no longer able to compensate for
the increased task demands.2 Greater variability in HbO at
the between-person level showed some associations to slower
performance, especially in the easier condition. At the within-
person level, however, greater variability in HbO showed
associations to greater accuracy and faster performance in
both conditions, with these effects occurring predominantly in
lateral areas of PFC. These within-person patterns replicate pre-
vious fMRI findings linking BOLD variability to faster and
more accurate cognitive performance.20

On balance, these results are in keeping with fMRI findings
that mean and variability in the HbO signal confer complemen-
tary sources of information.9 Although greater mean was associ-
ated with accuracy more so than response time, variability
showed a trend for the opposite pattern and showed more reliable
associations to response time. With regard to measurement reli-
ability of rapidly changing internal dynamics, response time met-
rics may afford more reliable estimates relative to accuracy, given
the sensitivity of the scales associated with each metric.38–40

Accordingly, the greater proportion of HbO variability associa-
tions with response time suggests that neural variability may
be effectively capturing moment-to-moment changes in internal
dynamics. Of additional note is that these effects were observed at
both between- and within-person levels. Although virtually all
studies have tested neural variability–cognition associations
at the population (group) rather than at individual level, the
most theoretically-empirically matched test of the hypothesis
(i.e., that on occasions when neural variability is higher, corre-
sponding estimates of cognitive function are also higher) should
be demonstrated within-persons.41 For the more conservative
within-person test, greater HbO variability tended to couple
with better behavioral performance, in keeping with previous
claims that greater variability is adaptive.1,3–15 In contrast, the
findings linking greater between-person variability to poorer cog-
nitive function may be artifactual based upon population mean
confounds, such as age differences.18 Although the coverage
of cortical regions is limited by both methodology (fNIRS)
and design (array covering regions of PFC only), these prelimi-
nary findings are consistent with previous results demonstrating
that mean and variability are spatially distinct and are orthogonal
in nature.9

4.1 Limitations and Future Directions

The observed effects that have been reported in this study are
limited due to sample size constraints and duration of task (i.e.,
number of blocks), resulting in decreased power. To ascertain
fully the extent to which each operationalization of HbO is
driven by within- or between-person effects, a greater sample
size is required; ideally, one in which the incidence of a potential
cognitive impairment is apparent (e.g., mild cognitive impair-
ment). Similarly, additional experimental blocks would allow
for greater exploration of the within-person associations
between HbO and behavior. Event-related designs will also
allow for more precise yoking of neural variability with
behavioral performance, with an increased number of blocks
increasing statistical power for the coupling analyses. The
use of short-separation channels would have allowed for a
more precise estimate of high-frequency physiological artifacts
(e.g., Mayer waves),42 and future studies would benefit from
this approach. In using bandpass filtering with relatively
conservative thresholds, the reported variability operationaliza-
tion may result in underestimating the true relationship of neural
variability with behavioral performance; future research might
replicate these findings employing less conservative screening
criteria. As previous results have shown patterns of mean-
and SD-based computations of neural activity that are spatially
and inferentially distinct,9 the discrepancies reported here
between associations of each operationalization of HbO with
behavioral performance are likely to become clearer with greater
statistical power. The block normalized SD computation was
conducted for each channel yielding a total of eight estimates;
a distinct approach from that employed in fMRI studies to date.
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In these studies, a whole-brain estimate across all voxels and
regions is derived, which is used subsequently during inferential
statistical comparisons (e.g., between young and old adults).
Future investigations may seek to examine regional differences
in neural variability (e.g., between frontal and parietal cortices)
using expanded head coverage, as well as whole-brain SD, to
facilitate comparison with fMRI reports. Given the originality
of neural variability operationalizations in the fNIRS literature,
replication and extension of the reported findings will be essen-
tial. Multimodal fNIRS–fMRI recording in particular would
allow for an investigation of the comparability of the neural
variability signal derived from the same collection.

5 Conclusions
Variability operationalizations of neuroimaging data are emerg-
ing as complementary metrics to conventionally employed
mean-based computations. Our results demonstrate that variabil-
ity in HbO recorded using fNIRS is sensitive to behavioral per-
formance and further substantiate claims that increased neural
variability is adaptive. Notably, these associations were apparent
at the within-person level, suggesting that they were not driven
by between-person confounds such as age differences or indi-
vidual differences in practice or learning. These patterns are
consistent with suppositions that increased neural variability
connotes moment-to-moment fluctuations indicative of a nim-
ble, responsive, and dynamic system.3,43 Mean and variability
operationalizations of HbO may be sensitive to different metrics
of behavioral performance (accuracy or response time), with
variability showing greater sensitivity for moment-to-moment
changes in rapidly changing internal dynamics. Additional
work is needed to further examine the associations between
alternative operationalizations of HbO from tasks of varying
complexity (e.g., examining the modulation of the HbO signal
in tasks that vary in complexity and difficulty). The relatively
high temporal sampling frequency of the current fNIRS systems
places the methodology in good standing for such future work,
as it facilitates deriving variability estimates that are relatively
precise and reliable. Further, this line of research may represent
a next frontier in facilitating our understanding of the complex
interrelations among brain function, cognition, and age.
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