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Abstract. Chen, Dougherty, and Bittner [Y. Chen, E. R. Dougherty,
and M. L. Bittner, J. Biomed. Opt. 2(4), 364-374 (1997)] provided the
derivation of a probability density function (PDF) for a signal ratio
from a DNA microarray. This PDF is potentially useful for testing
whether a pair of signals from the same gene has a common mean.
The derivation of the PDF assumes the normality of all signal distri-
butions and a common coefficient of variation (CV) for all signals
within a microarray. The testing procedure requires the calculation of
a common confidence interval for a microarray, based on a maximum
likelihood estimator of the “common” CV, and the determination of
whether or not a ratio for a particular gene falls within this interval.
This study used Monte Carlo techniques and demonstrated that the
procedure is robust to violations of normality and also to constancy in

the coefficients of variation. A closer examination of the dynamics of
the procedure found that the robustness was the result of offsetting
effects. The size of the confidence interval was increased as a result of
higher estimates of the common CV, as the actual CV pattern became
heterogeneous. This effect mitigated the inflation in the size of the
ratio as a result of increasing CV heterogeneity. These findings suggest
that the Chen-Dougherty-Bittner procedure may be used even if un-
derlying assumptions do not hold. © 2002 society of Photo-Optical Instrumenta-
tion Engineers. [DOI: 10.1117/1.1501561]
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nome Systems, Inc., to measure the expression of RNA from
.. female mouse liver tissues as it related to the level of serum
corticosterone. Our data consisted of five pairs of samples that
compared the livers of mice with high and low serum corti-
costerone, thus permitting the calculation of a coefficient of
variation (CV) for each of the 8772 genes in the study. We
found that the ranges for the CVs were substantial. For 28%
of the genes, ratios from the five pairs of samples produced
CVs in the range of 0.05-0.9. About 53% of the gene ratios
were in the range from 1.0 to 4.9 and 19% were in the range
from 5.0 to 9.9. Our experience is that wide ranges such as
these are not unusual in studies involving large numbers of

1 Introduction

DNA microarray technology has emerged as a useful techno
ogy in genetic research. Using this technology, it is possible to
quantitate nucleic acids through fluorescent intensities of sig-
nals from distinct tissue samples. The ratios of these signals
can be calculated and inferences drawn as to which differ-
ences in signal intensity are meaningful.

Chen, Dougherty, and Bittnestudied the problem of ana-
lyzing the mRNA from two distinct tissue samples. They de-
rived an elegant formulation for the probability density func-
tion of a signal ratio under the condition that the means of the

two component signals are equal. The density function was . . . g .
P 9 g y genes in complex biological systems. In this particular study,

derived with the assumption that signal expression levels the 20 genes with the lowest expression intensities had an

across the gene population of a microarray are independent L
random variables. Further assumptions are that the signal ex2verage CV of 6.5+2.6), a phenomenon commonly ob-

) S . served with low expression intensities. The 20 genes with the
pression levels follow a normal distribution and that all signal | . T "
expression levels share a common coefficient of variation highest expression intensities, on the other hand, had a lower
Fl)nformal discussions with biolodists have suagested t.hat average CV of 1.0=1.9). Of the many genes in a large study,
th t'l uf : WL t ! ?f' ient \:c u.gtg for th some may be tightly regulated while others may be inducible
€ assumption of a constant coetiicient ot variation for the . repressible by factors that may not be related to experimen-
entire gene set may not always be appropriate. For example

. . . tal parameters.
in a recent study we utilized the microarray approach of Ge- o1 concerns with the normality and constant coefficient

of variation assumptions led us to conduabbaustnesstudy
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in connection with the Chen—Dougherty—BittH&DB) pro-

Robustness of Chen—-Dougherty-Bittner Procedure . . .

of significance by integrating Eq(3) and finding the

cedure. The question of robustness is an important issue with100°(«/2) and the100*(1— a/2) percentile points of the

respect to any applied statistical techniquerobust proce-
dure is one that is affected only slightly by appreciable depar-
tures from the assumptions involved. In regard to the CDB

procedure the question of robustness reduces to the following:

suppose the expression levels aot normally distributed and
the coefficients of variation across the entire gene sehare
constant. Can we still use the CDB procedure for constructing
approximately accurate confidence intervals? How likely are

we to draw erroneous conclusions about observed differences

in expression ratios?

If the CDB procedure is robust, it may be used regardless
of whether or not theoretical assumptions of normality and
constancy in the coefficient of variation are satisfied. This

distribution of T,. Performing this integration, however, re-
quires a value foc. This value is obtained by use of a maxi-
mum likelihood estimator, obtained by calculating the likeli-
hood function across the entire gene array and then solving
for € as the maximizing value. Thuscan be estimated from
the data as follows:

n
e= \/ (L) 2 (4= 1P/ (L1+18), @
k=1
where n is the number of genes in the array apdis the
observed signal ratio, calculated from the data.
With ¢ estimated from the data using Ed), the rejection

paper reports results of Monte Carlo studies that assessed theegion for testing, Eq.(2), can be established. Under the

impact of varying sample sizes, distribution shapes, and de-

grees of heterogeneity in coefficients of variation. We shall

assumption of Eq.2), approximatelya*100% of the t,
values would fall outside the region of rejection, i.e.

demonstrate that the Chen—Dougherty—Bittner procedure is(1— «)*100% of the t, values would be contained in the

unaffected by varying sample sizes and is, indeed, quite ro-
bust to even extreme deviations from normality and to sub-
stantial inequalities in the coefficients of variation.

2 Chen-Dougherty-Bittner Procedure

Chen et al. developed an expression for the probability den-
sity function for a signal ratio. Assuming we hawegenes

represented in a microarray then two signal expressions for

the kth gene are denoted as, and Y,, respectively. For
example, these two signals might come from treatment an
control conditions, where&, represents a signal for theh
gene obtained from a sample of mRNA taken from a treated
cell andY, represents a signal for theh gene taken from a
cell in the control condition. Let the ratio of the two signals
for the kth gene be denoted by, . Therefore

d

Tk:xk/Yk, k:].,...n, (1)

and the probability density function is derived for ahfy in
the microarray under the null hypothesis that the meanXfor
andY, are equal, i.e.,

)

Assuming that all genes in the array have a common coef-
ficient of variation,c, that the distributions oK, andY, are
N(uk,c?ud), and that all signal measurements are indepen-
dent random variables, thapproximateprobability density
function for T, is given by

Ho: mx, = my, = pk-

fr (O ={[(1+ D1+ [c(1+t3)?V2m])

xexd — (t—1)%/2c?(1+1?)]. ©)
The density function is approximate because no signal inten-

interval between the critical values for such a region of rejec-
tion. This assumes the distribution of the ratio behaves in
accordance with Eq3).

3 General Method and Research Questions

The dependent variable of interest throughout this paper is the
empirical containment rat@ECR) of the CDB procedure. The
ECR is the proportion of times the CDB procedure correctly
accepts the null hypothesis of equal signal means under spe-
cific sets of experimental conditions that are described below.
The ECR is the complement of the empirical type | error rate
(EER). The ECR and the EER must sum to 1.0. For example,
suppose under a specific experimental setup, the proportion of
times the procedure accepts the null hypothésie ECR is
0.937. Then the proportion of times the procedure rejects the
null hypothesis(the EER is 0.063. Thus, in this example,
ECR+EER=0.937+0.063=1.0. Since the ECR and the
EER always sum exactly to 1.0, whatever factors explain the
ECR also explain the EER.

The three independent variables that we consider(Bre
sample size, the number of simulated pairs of signals per gene
array, (2) distribution shape, the proximity of the simulated
data to normality, and3) pattern of coefficients of variation
within a given gene array.

Three general questions are proposed and evaluated in this
paper.(1) Is the CDB procedure robust with respect (ip
violation of the normality assumption artil) with respect to
violation of the assumption of a common coefficient of varia-
tion across all genes in the arrag?Z) Can an adequate statis-
tical model be developed to predict ECR from the indepen-
dent variables in the study?3) What accounts for the
robustness or lack of robustness of this procedure?

The answer to the second question will determine to a

sity can assume a negative value. Therefore, strictly speaking,great extent the answer to the first question. If a highly accu-
signal measurements cannot be normally distributed. The por-rate predictive model can be developed for ECR, then the
tions of the normal curves that fall into the negative regions robustness or nonrobustness of the CDB procedure is infer-
are taken to be negligible. able from such a model. In fact, the answer to the second

The probability density functiofPDF) in Eq. (3) depends guestion can even provide a more sensitive answer to the
only on the common coefficient of variatiap and not on the robustness question by informing researchers about what lev-
parameters of the distributions &, and Y. Thus a test of els of deviation from basic assumptions do not cause substan-
the null hypothesis in Eq2) can be conducted at thelevel tial deviations from nominalexpectedl rates of containment.
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The answer to the third question involves an analysis of Table 1 CV values for CV patterns: Study .
the dynamics of the CDB procedure to determine how it pro-
duces a decision to reject or not reject the null hypothesis. The pattern CV values® SD of CVs
procedure computes a ratio and then calculates a pair of criti-
cal values to be used as criteria for rejection. The latter de- 0.120 - 0.120 0.000

pends on the proper estimation of the common coefficient of
variation, ¢. Thus, non-normality and heterogeneous coeffi-
cients of variation can affect the procedure in two different
ways: (1) by a possibledistortion in the distribution of the
ratio, or (2) by a possible effect on thestimationof c. The
robustness, or lack thereof, of the CDB procedure will depend

on the interplay of these two effects. 0.090 - 0.150 0.021
4 Study I: Method and Results

The first simulation study investigated the effects of the three

independent variables on the empirical containment rate. The

three independent variables are described in turn. 7 0.060 _ 0.180 0.042

4.1 Sample Size

The sample size refers to the size of the microarray of paired

signals. Four sample sizes were considered: 1000, 2000, 4000,

and 8000. For a sample sizemfan array ofn rows and two

columns was generated, with the first column representing the 10 0.030

. - 0.210 0.063
X values and the second column representingtthalues.

@ Mean CV for all patterns=0.120.
4.2 Shape of Distribution

Four distribution shapes were simulated. These shapes wer
(1) extreme non-normality, skewness of 1.75 and excess kur
tosis (i.e., kurtosis—3) of 3.75, (2) moderate non-normality,
skewness of 1.00 and excess kurtosis of 1(@Dmild non-
normality, skewness of 0.50 and excess kurtosis of 0.25, and
(4) normality, skewness of 0.0 and excess kurtosis of 0.0.
The same distribution shape was induced for bothXhe
andY columns of each gene pair for a microarray witrows.
The distribution shape was induced by means of the Fleish-
man power method.In this method, the desired distribution
shape is induced by transforming a standard normal variate by
means of a cubic transformation,

%fficients of variation was induced by multiplying these en-
“tries by the desired coefficient of variation and then adding
one to both theX and Y entries in each row. Because the
Fleishman transformation produces random variates with a
mean of zero and a standard deviation of unity, the multipli-
cation by the desired coefficient of variation and then the
addition of one produces a random variate with mean equal to
one, standard deviation equal to the desired coefficient of
variation, and skewness and kurtosis values as desired.

4.4 Design of Simulation

The ratios(T’s) were calculated by dividing th¥ entries by
U=A+BZ+CZ2+DZ3, (5) the Y entries for each row in the array. The estimated “com-

) mon” coefficient of variation was obtained by means of Eq.
whereZ~N(0,1), A, B, C, andD are constants corresponding (4) i a row contained a negative value firand/or a nega-
to the particular skewness and kurtosis that is required, with e value forY. it was not used in the simulation.

the condition thaA= —C, andU is a resulting random vari- Once the estimate of the common coefficient of variation
ate with mean equal to zero, variance equal to one, and Wlth(e) was obtained, a 95% confidence interval was generated
the required skewness and kurtosis. for the entire array. Eachi value was checked to see if it was

. L. contained in this interval or not. The total proportion of valid
4.3 Coefficient of Variation Pattern rows (those containing both positivé andY values that had

Ten different patterns for the coefficients of variation of e  a T value contained within the 95% confidence interval was
andY signals were used. For each pattern, 10 different levels computed. This proportion represented the ECR for that array.
of coefficient of variation were employed for a given array of The design of the simulation thus constituted a completely
sizen. One tenth of the rows in each array received a poten- crossed design with 4 sample sizes, 4 distribution shapes, and
tially different coefficient of variation. A pattern for an array 10 coefficient of variation patterns. The resultidgx 4X 10
is thus defined by the degree of variation in the coefficients of design produced 160 cells. For each cell in the design, 100
variation that was induced in the array. Selected patterns arereplicates(i.e., 100 arrayswere simulated. The dependent
presented in Table 1. The average coefficient of variation in measure, the ECR, was computed for each replication within
each pattern is equal to 0.12 and the standard deviation withineach cell. Thus a total di60X 160=16 000cases was gen-
the pattern is calculated. erated in the simulation. All simulations were accomplished
Once an array witim rows and two columns was generated via programs written in thesAuss programming languade
with a given distribution shape throughout, the pattern of co- and independently confirmed by programs writtersipLus*
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Table 2 Three-way fixed effects ANOVA model for Study I. Dependent variable: ECR. Weighted least

squares.
Source Degree of freedom  Sum of squares  Mean square  Fstatistic ~ p value of F

Sample 3 3.151 1.050 2.57 0.053
Shape 3 9900.964 3300.321 8077.68 <0.0001
CV Pattern 9 19948.005 2216.445 5424.85 <0.0001
Sample 9 6.333 0.704 1.72 0.078
Shape
Sample 27 11.069 0.410 1.00 0.459
CV Pattern
Shape 27 1402.131 51.931 127.10 <0.0001
CV Pattern
Sample 81 29.225 0.361 0.88 0.764
Shape
CV Pattern
Error 15840 6471.792 0.409

4.5 Analysis of Results coefficient of variation were used in this second study. Se-

The data from the simulation were analyzed by means of a l€cted CV patterns are given in Table 3. We note that the
three-way fixed effects analysis of varianG®NOVA). The average CV in each pattern is 0.15. Each of the 30 CV pat-
analysi& was done via weighted least squares with ECR being terns was simulated 1000 times for each of the four distribu-
the dependent variable and the three independent variabledion shapes. This led to 30000 ECRs for each distribution
previously described as factors. Each ECR was weighted by Shape. The simulations were done by means of programs writ-
the reciprocal of its respective sampling variance to compen- (€N in theGAuss computer languageand results were inde-

. . . 4
sate for the heterogeneity of variances that is inherent in the Pendently confirmed by a set of programs writtersinLus
analysis of proportions. In addition to the ECR, the quantity ECR15 was computed.

For this analysis the ECR was multiplied 1§¢ — ECR) The ECR15 statistic is the rate of containment in a 95% con-
and then divided by the number of valid rows for the gene fidence interval for the signal ratio, assuming the coefficient

array to establish the sampling variance for the estimated pro-©f variation is fixed at 0.15. Thus the ECR is computed by the
portion. The results for this analysis are given in Table 2. actual estimate of the assumed to be the common coefficient

From this analysis a preliminary step towards a general Of variation using Eq(4). The ECR15 is computed by fixing
model can be made. Sample size shows no statistically sig-the CV at the average CV level for each pattern, i.e., 0.15.
nificant relationship with ECR, either in terms of main effects More precisely, the ECR15 was computed by specifically us-
or interaction effects. On the other hand, the distribution "9 the lower and upper 95% confidence limits o+ 0.15.
shape and CV pattern both show significant main effects and
a significant interaction effect. The results suggest a two-way 5.2 Assessment of Robustness
model for ECR with both CV pattern and distribution shape g total impact of the variation in distribution shape and CV

playing explanatory roles. pattern is defined as the difference between 0.95 and the ECR.
Thus, thetotal effect TE, of variation in both the CV pattern

5 Study II: Method and Results and distribution shape is given by
To further investigate the relationship between non-normality,
CV pattern, and ECR, a more extensive study was done. TE=0.95-ECR. (6)

Given the lack of a significant relationship between sample A positive value of the TE reflects a rate of containment less

size and ECR, the data for all cells was simulated with & than 0.95, i.e., a rate of rejection in excess of 0.05. A negative
sample size of 8000. The study also took into account the factyalue of the TE reflects a rate of containment greater than
that an interaction effect was found between the CV pattern g 95 je. a rate of rejection less than 0.05.

and the distribution shape in study I. The ECR is a composite of two separate effects. The CDB
procedure estimates the assumed to be the common coeffi-
5.1 General Procedure cient of variationgc, and produces the estimaielt then uses

To investigate the fact that the relationship among CV pattern this value to calculate a confidence interval that either con-
and ECR is influenced by distribution shape, a separate simu-tains the calculated value @for does not. Thus, the ECR is in
lation was done for each of the four distribution shapes that part affected by the size of this confidence interval due to the
were employed in study |. Thirty different patterns for the value ofC. It is also affected by any distortion in the distri-
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Table 3 CV values for CV patterns: Study II. EE=ECR15- ECR. @)
Pattern CV valves® SD of CVs A_posmve_ value of_EE reflc_acts a higher rate of contalnmen_t
with the fixed confidence interval as opposed to the confi-
1 0.150 B 0.150 0.000 dence interval deriving from the estimation of the CV. A nega-

tive value of EE reflects a lower rate of containment with the
fixed confidence interval size as opposed to the confidence
interval deriving from the estimation of the CV. It is true that
the larger the estimated CV the larger the size of the corre-
sponding confidence intervalThus, larger estimated CVs are
associated with higher ECRs and smaller EEs.

8 0.115 - 0.185 0.024 Combining Egs(6)—(8) permits the statement of the fol-
lowing relationship:

TE=DE+EE. (9)

Robustness can thus be conceived of as the pattern of behav-
ior of TE. If TE is always zero, we would have “perfect”

15 0.080 - 0.220 0.049 robustness. If TE has an average value far removed from zero
under conditions where either distribution shape deviates
from normality or the CV pattern deviates from equality of
CV, then it can be concluded the CDB procedure is not robust.

Furthermore, by using the relationship in Ef) the ques-
tion of why the procedure is robust or not robust may be

23 0.040 _ 0.260 0077 addressed. By examining the patterns of DE and EE in addi-
tion to that of TE, one may determine whether a finding of
robustness is due to comparably small absolute average DEs
and EEs across different experimental conditions, or is due to
large absolute DEs and EEs that are moving in opposite di-
rections. Likewise, a finding of nonrobustness might be due to
near zero EEs and huge DEs or vice versa, or moderately

30 0.005 - 0.295 0.101 large departures from zero for both DEs and EEs.
@ Mean CV for all patterns=0.150.

5.3 Results

. . . B . To demonstrate that the data were generated according to
bution of T itself. The TE might thus be a good "bottom-line specifications, the average values of the mean, variance,

statistic in assessing robustn_ess, but it does not tell us why theskewness, and excess kurtosis are reported for botk trel
ECRs deviate from the nominal value of 0.95.

. . . Y variables, for h distribution sh , he CV rn th
Two components of TE are now defined. Tistortion ariables, for each distribution shape, at the CV pattern that

S - involves complete homogeneity of CV. These results are pre-
effect.(DE) reflects the amount qf deviation of the empirical sented in Table 4. The four moments of the distribution are
containment rate from the nominal value of 0.95 when the

. - . . . very close on average to the intended values, although the
size of the confidence interval is held constant. In this study, gygigyman procedure slightly underestimates the excess kur-
the size of the confidence interval was held constant by using

. . . tosis.
E; interval based on a CV equal to 0.15. The DE is thus given The average estimated coefficients of variation by the CV

pattern are displayed in Figure 1 for each distribution shape.
_ The average estimated CV increases as the heterogeneity of
DE=0.95-ECRI15. @) the CV pattern increases. This relationship holds for all dis-
A positive value of DE reflects a rate of containment less than tribution shapes, although in the three non-normality condi-
0.95 and a negative value reflects a rate of containmenttions, the common CV of 0.15 is underestimated under the
greater than 0.95, with the rates of containment being com- experimental condition of complete homogeneity of the CVs.
puted by holding the size of the confidence interval constant. The degree of underestimation is in direct proportion to the
Variation in the size of DE reflects the pure effect of the non-normality of the distribution.
distortion of the distribution ofT because of different CV The average, minimum, and maximum values of ECR for
patterns and different distribution shapes. each CV pattern by distribution shape are given in Table 5. A
A second component of TE reflects the difference in the quick summary of the findings shows that of the 120 000 rep-
rate of containment with the fixed confidence interval size and lications in the entire study, the lowest ECR observed was
the rate of containment based on a variable confidence inter-0.916(minimum for CV pattern 30 with Extreme NNand the
val size. The variation in confidence interval size is a function highest ECR observed was 0.968aximum for CV pattern 1
of the variation in the estimated common coefficient of varia- with Mild NN). For the condition combining the most serious
tion. This effect is termed thestimation effectEE) and is deviation from normalityExtreme NN and the most extreme
defined as follows: heterogeneity of coefficients of variati¢€V pattern 30, the

654 Journal of Biomedical Optics ¢ October 2002 « Vol. 7 No. 4



Robustness of Chen—-Dougherty—Bittner Procedure . . .

Table 4 Average mean, variance, skew, and excess kurtosis by distributional shape, CV pattern reflect-
ing all CVs equal to 0.15. (Averages are based on 1000 replications.)

Statistic Normal Mild NN Moderate NN Extreme NN
Avg mean X 0.999 97 1.000 07 1.000 09 1.000 03
Avg variance X 0.022 48 0.024 90 0.022 51 0.022 49
Avg skew X 0.000 60 0.49673 0.992 99 1.73332
Avg xkur X -0.007 67 0.23894 0.968 38 3.63337
Avg mean Y 1.000 01 1.000 09 0.999 95 0.999 93
Avg variance Y 0.022 50 0.022 51 0.022 48 0.022 48
Avg skew Y -0.00018 0.49517 0.992 66 1.737 66
Avg xkur Y? -0.007 14 0.23205 0.965 50 3.639 52

@ xkur=excess kurtosis.

average ECR was 0.922. The ECRs are represented graphidistribution shapes. This reflects the fact that the estimated
cally in Figure 2. Also represented in Figure 2 are the coefficient of variation increases with the heterogeneity in the
ECR15s. Note that for the CV pattern reflecting complete ho- CV pattern. Likewise, the displacement in the graphs of EE
mogeneity[standard deviatiofSD) of CV=0] and with a by the distribution corresponds to the displacement in the
normal distribution of the signals, both the ECR and the graphs of the estimated coefficients of variation by distribu-
ECR15 are precisely equal to 0.95. The two sets of contain- tion shape. The pattern in the DE shows an opposing pattern
ment rates exhibit the same decreasing pattern for all distri- to that in the EE. DE increases for every distribution shape as
bution shapes. the heterogeneity of the CV pattern increases. Furthermore,
TEs, DEs, and EEs were computed and are representedunder the homogeneity of the CV condition, there was no
graphically in Figure 3 as a function of the heterogeneity of observed distortion effect for the normal distribution shape
the CV pattern. The EE shows a decreasing pattern for all but there were negative distortion effects for each of the non-

Normality Mild Nonnormality

Mean estimated cv
Mean estimated cv

14| R R
200000! 027968

006992 020876 034960 048944 062929 076913 090897

std cv pattern

Moderate Nonnormality

Mean estimated cv

000000 .013984 027968 041952 055936 069921 083905 .097889
006992 020976 034960 048944 062929 076913 090897

std cv pattern

Mean estimated cv

006992 020976 034960 048944 062929 076913 .090897

std cv pattern

Extreme Nonnormality

000000 013984 027968 041952 055936 .069921 .083905 097889
006992 .020976 .034960 .048944 062929 .076913 .090B97

std cv pattern

Fig. 1 Mean estimated CV by distribution shape.
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Table 5 Average, minimum, and maximum ECR by CV pattern by distribution shape (based on 1000 replications).

Normal Mild NN Moderate NN Extreme NN

CV Pattern Avg Min Max Avg Min Max Avg Min Max Avg Min Max

j—

0.950 0.945 0955 0.953 0.948 0.959 0.951 0.946 0956 0937 0.932 0.942

2 0.950 0946 0955 0.953 0.946 0.958 0.951 0.945 0956 0.937 0932 0.943
3 0.950 0944 0955 0.953 0.947 0.959 0.951 0945 095 0.937 0932 0.944
4 0.950 0.945 0955 0953 0947 0958 0950 0945 0.955 0937 0932 0.943
5 0.949 0944 0954 0.952 0947 0957 0950 0944 0954 0.937 0.931 0.943
6 0.949 0943 0.954 0.951 0.945 0957 0.949 0.944 0954 0.937 0.931 0.943
7 0.948 0.943 0.953 0.951 0.946 0956 0949 0944 0954 0936 0.931 0.941
8 0.948  0.941 0.953 0950 0.944 0.956 0948 0.942 0953 0.936 0.931 0.942
9 0.947 0940 0952 0.949 0944 0954 0947 0940 0.952 0936 0.930 0.941
10 0.946 0.940 0952 0.948 0.942 0.953 0946 0.941 0.951 0.936 0930 0.942
11 0.945  0.941 0.951 0.946  0.941 0.951 0.945 0939 0952 0.935 0.930 0.940
12 0.944 0938 0950 0.945 0939 0950 0944 0937 0949 0935 0.930 0.941
13 0.943 0937 0949 0944 0.938 0.949 0943 0937 0.948 0.934 0.928 0.940
14 0.942 0937 0947 0.943 0936 0.948 0.941 0.935 0947 0.933 0.928 0.938
15 0.941 0.936 0.946 0.941 0.936 0946 0940 0.935 0945 0933 0927 0.939
16 0.940 0934 0945 0940 0935 0944 0939 0933 0944 0932 0.927 0.938
17 0939 0932 0944 0.938 0932 0943 0939 0932 0943 0.931 0.926  0.937
18 0.938 0.933 0944 0.937 0.931 0.941 0.936  0.931 0.943  0.931 0.925 0.937
19 0.937  0.931 0.942 0936 0.931 0.943 0.935 0930 0.941 0.930 0.923 0.934
20 0.936 0.930 0.941 0.935 0930 0940 0.934 0.929 0939 0929 0924 0.934
21 0935 0930 0940 0933 0928 0938 0933 0927 0938 0928 0923 0.933
22 0.934 0929 0940 0.932 0927 0.938 0.931 0926 0937 0927 0922 0.933
23 0.933 0928 0.939 0.931 0.924 0937 0930 0924 0936 0.927 0.921] 0.932
24 0932 0928 0938 0930 0924 0936 0929 0924 0934 0926 0919 0.931
25 0.931 0926 0937 0929 0924 0934 0928 0922 0934 0925 0920 0.930
26 0.931 0.926 0936 0928 0923 0934 0927 0923 0932 0924 0919 0.930
27 0.930 0925 0936 0.928 0.923 0.932 0926 0.922 0.931 0.924 0916 0.929
28 0.929 0924 0936 0.927 0.921 0.932 0926 0.921 0.931 0.922 0917 0.929
29 0.929 0923 0934 0926 0.920 0.931 0.925 0919 0.931 0.922 0.917 0.927
30 0.928 0923 0934 0925 0920 0930 0924 0919 0930 0922 0.°216 07927
Overall 0.940 0923 0955 0940 0.920 0.959 0.939 0919 0956 0.931 0.916  0.944

normal shapes. As a general rule, the DE is more positive aseffects are also presented in Table 6. Distortion effects are
the distribution shape gets closer to normality. strongly positively correlated with the four distribution indi-
The moments of the signal ratio distributions are displayed ces. In the case of the ratios under the normality condition, the
in Table 6. The mean, variance, skewness, and kurtosis allclear effects of extreme outliers are observed both in the case
increase as a function of CV heterogeneity. Both Pearson andof the variance of the ratio and in the case of the Pearson
Spearman correlations between these moments and distortiorcorrelation with DE. The nonparametric Spearman correlation
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Fig. 2 Average ECR and ECR15 by SD of CV.

was therefore included to provide an indicator of the relation- 5.4 Modeling of ECR and ECR15

ship of the ratio variance and the distortion effect that is not ¢ graphs of ECR and ECR15ee Figure 2suggest a non-

sensitive to extreme values. linear regression model for containment rates. In particular

The increases in the moments of the ratio distribution as a e following four-parameter logistic modakas employed:
function of CV heterogeneity are moderated by the distribu-

tion shape of the constituent signals. If we take the moments

of the rqtio distribution for the normal condition and CV ho- CR=(A-D)/(1+5S /C)B+ D+e,, (10)
mogeneity as normative, it is clear that all of the non-normal

shapes show a smaller dispersion in the signal ratio at low

levels of CV heterogeneity than this normative level. This where CR; is the containment rate for theh CV pattern
accounts for the negative distortion effects in the non-normal (either ECR or ECR15 S; represents the standard deviation
conditions at low levels of heterogeneity of CV. The signal of theith CV pattern, parametek represents the containment
ratio dispersion increases as the CV heterogeneity increasestate when the standard deviation of the CV pattern equals
and the differences in ratio dispersion among distribution zero,D is the containment rate assuming infinite variation in
shapes of the constituent signals are consistent with the dif-the pattern of CVsC is the standard deviation of the CV
ferences in the graphs of DE by distribution shape of the pattern that produces a containment rate exactly halfway be-

H “ ”
signals. tweenA andD, andB represents a “slope factor” that deter-
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Fig. 3 Average distortion effect, estimation effect, and total effect by SD of CV.
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Table 6 Average mean, average variance, average skew, and average kurtosis of ratio by selected-CV patterns. (All statistics are based on 1000
replications, and correlations are based on a sample size of 30 000.)

Normality Mild non-normality
Pattern Avg. mean Avg. variance Avg. skew  Avg. kurtosis  Avg. mean Avg. variance  Avg. skew  Avg. kurtosis
1 1.0242 0.052 0.791 4.723 1.0223 0.047 0.612 3.547
4 1.0244 0.052 0.828 4.965 1.0225 0.047 0.629 3.643
7 1.0246 0.054 0.943 5.937 1.0228 0.048 0.689 3.978
10 1.0257 0.056 1.230 13.628 1.0233 0.050 0.778 4.487
13 1.0269 0.060 1.511 14.867 1.0241 0.052 0.906 5.235
16 1.0282 0.069 2.454 60.083 1.0252 0.055 1.054 6.115
19 1.0303 0.084 3.687 111.489 1.0263 0.059 1.225 7.199
22 1.0365 97.865 6.918 313.816 1.0282 0.063 1.411 8.462
25 1.0368 1.187 10.438 535.867 1.0300 0.068 1.612 9.898
28 1.0434 22.511 14.630 821.201 1.0318 0.075 1.820 11.562
30 1.0444 5.148 16.541 927.335 1.0338 0.080 1.993 13.094
re 0.161¢ 0.013¢ 0.410¢° 0.295¢ 0.788¢ 0.977¢ 0.966° 0.919¢
rho® 0.841¢ 0.969¢ 0.921¢ 0.899¢ 0.770¢ 0.989¢ 0.973¢ 0.968¢
Moderate non-normality Extreme non-normality
Pattern Avg. mean Avg. variance Avg. skew  Avg. kurtosis  Avg. mean Avg. variance  Avg. skew  Avg. kurtosis
1 1.0207 0.043 0.609 3.596 1.0188 0.040 0.816 4.850
4 1.0208 0.044 0.626 3.683 1.0190 0.040 0.834 4.961
7 1.0209 0.044 0.672 3.938 1.0191 0.041 0.883 5.281
10 1.0213 0.046 0.746 4.348 1.0194 0.042 0.958 5.762
13 1.0221 0.047 0.843 4.892 1.0200 0.043 1.064 6.450
16 1.0228 0.049 0.957 5.529 1.0206 0.045 1.183 7.207
19 1.0238 0.052 1.077 6.195 1.0213 0.047 1.311 8.049
22 1.0252 0.055 1.217 6.993 1.0223 0.049 1.450 8.930
25 1.0264 0.059 1.343 7.715 1.0233 0.052 1.582 9.794
28 1.0282 0.063 1.476 8.502 1.0245 0.056 1.710 10.647
30 1.0291 0.067 1.563 9.030 1.0253 0.058 1.799 11.259
re 0.723¢ 0.982¢ 0.971¢ 0.958¢ 0.651¢ 0.979¢ 0.948¢ 0.925¢
rho® 0.705¢ 0.987¢ 0.971¢ 0.968¢ 0.631¢ 0.980¢ 0.948¢ 0.939¢

@ Pearson’s correlation between the distortion effect and the variable.

b Spearman’s correlation between the distortion effect and the variable.

¢ p<0.01.

4 p<0.05.

mines the slope of the curve. The larger the valudothe mates of parametek accurately reflect ECR15 for each dis-
steeper the curve. Theg term reflects random errors, assumed tribution shape under the CV homogeneity condition.
to be normally distributedsee Table ¥ Likewise, estimates for parametér indicate the impact of

The models for ECR15 reflect the phenomenon of increas- CV heterogeneity on the containment rates via the mechanism
ing distortion effects as a function of CV heterogeneity. Esti- of signal ratio distortion. The fact that the paramedeesti-
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Table 7 Four-parameter logistic model results for both ECR and ECR15. RlzogSt is the proportion of variance in containment rates explained by
logistic model. R3yoys is the proportion of variance in containment rates explained by a one way ANOVA with the CV pattern as the grouping
variable, i.e., the theoretically best fitting model for the containment rate.

ECR

Normal Mild NN Moderate NN Extreme NN
Parameter Est. SE Est. SE Est. SE Est. SE
A 0.9500 0.00002 0.9531 0.00002 0.9507 0.00002 0.9370 0.00002
B 2.3668 0.01843 2.2692 0.01421 2.2807 0.01553 2.7921 0.03361
C 0.0707 0.00052 0.0717 0.00046 0.0783 0.00061 0.0870 0.00110

0.9190 0.00026 0.9126 0.00028 0.9093 0.00036 0.9117 0.00045
R,Zogisl 0.95116 0.96835 0.96469 0.89848
R2\ova 0.95123 0.96840 0.96472 0.89865
ECR15

Normal Mild NN Moderate NN Extreme NN
Parameter Est. SE Est. SE Est. SE Est. SE
A 0.9502 0.00004 0.9616 0.00004 0.9669 0.00003 0.9631 0.00003
B 2.0349 0.01247 1.9642 0.01015 1.9338 0.01075 2.0337 0.01648
C 0.1263 0.00193 0.1293 0.00177 0.1469 0.00259 0.1525 0.00399
D 0.8028 0.00270 0.7975 0.00263 0.7930 0.00370 0.8334 0.00439
Rﬁ)gis1 0.97683 0.98312 0.98121 0.96262
Rinova 0.97686 0.98314 0.98124 0.96266

mates for the ECR15 model are substantially lower than thoseand Bittner, an error in rejecting the null hypothesis that we
for the ECR model is a testament to the “compensatory” ef- would expect to occur only 5% of the time, would, in reality,
fect on ECR resulting from the estimation of the coefficient of occur no more often than 8% of the time.

variation. Another question posed was, “Can an adequate explana-
tory model be developed to predict the ECR from the inde-
pendent variables in the study?” The answer is, again, “Yes.”
Sample size played no role in explaining empirical contain-
ment rates. The ECR decreased as the CV heterogeneity in-
creased. Distribution shape moderated this relationship. In
general, the ECR was closest to the nominal level of 0.95 for

cients of variation of the signal distributions?” The answers to the normality condition and farthest away from 0.95 for the

these questions are “Yes.” The worst case of a deviation from extremg non-normality .Condition.._The results for .th.e tvyo in-
0.950 was 0.916 in 120 000 replications. Each of the distribu- €'mediate non-normality conditions showed similarity to
tion shapes had an average ECR between 0.922 and 0.92&ach other. Each had ECR values that were too high under CV

under even the worst pattern of CV heterogeneity. For most Nomogeneity. However, ECR values dipped below those for

closer to the nominal containment rate of 0.950. A fOUr-parameter |OgiStiC model was used to describe the

In practice this means that even if expression levels in data. It showed an outstanding fit to the data for all cases of
microarrays areot normally distributed and even if the coef- non-normality. The model permitted an estimate of what the
ficients of variation across the gene set mot constant, the ~ ECR would be if the CV heterogeneity were to become infi-
Chen-Dougherty—Bittner procedure may still be used for nitely large. The results were consistent with the previously
constructing highly accurate confidence intervals. Even under expressed finding that the CDB procedure is robust against
extreme deviations from the assumptions of Chen, Dougherty, violations of its relevant assumptions.

6 Discussion

This study was designed to answer three questions. First we
asked, “Is the CDB procedure robust with respect1pde-
viations from normality in the shapes of the signal distribu-
tions and to(2) deviations from homogeneity of the coeffi-
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A final question involved an assessment of why the CDB In summary, we have demonstrated that the Chen—
procedure is robust. The decision as to whether or not to rejectDougherty—Bittner procedure is robust to deviations of as-
the null hypothesis of equality of means has two parts. A ratio sumptions regarding normality and constancy in the coeffi-
is computed and a confidence interval is obtained. If the ratio cients of variation in the signal distributions. We have
is in the interval, the null hypothesis is not rejected. Otherwise developed a statistical model that explains how the empirical
it is rejected. Thus the rate of containment of the procedure is containment rate would be affected if heterogeneity in the
a function of the distribution of the signal ratio and the size of coefficient of variation were to become infinitely large. Fi-
the confidence interval. The size of the confidence interval is nally, we have shown that distortion effects and estimation
strictly a function of the estimate of the common coefficient effects offset each other in contributing to total effects on
of variation. empirical containment rates, further explaining the reasons for

The TE was shown to be the sum of the EE and the DE. the robustness of the procedure.

We found that, for each distribution shape, the two effects
offset each other. For normal data, large positive distortion
effects are greatly offset by large negative estimation effects,
thus stabilizing the total effects and yielding ECRs that are
very close to the nominal level. Other distribution shapes References
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