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Abstract. Chen, Dougherty, and Bittner [Y. Chen, E. R. Dougherty,
and M. L. Bittner, J. Biomed. Opt. 2(4), 364–374 (1997)] provided the
derivation of a probability density function (PDF) for a signal ratio
from a DNA microarray. This PDF is potentially useful for testing
whether a pair of signals from the same gene has a common mean.
The derivation of the PDF assumes the normality of all signal distri-
butions and a common coefficient of variation (CV) for all signals
within a microarray. The testing procedure requires the calculation of
a common confidence interval for a microarray, based on a maximum
likelihood estimator of the ‘‘common’’ CV, and the determination of
whether or not a ratio for a particular gene falls within this interval.
This study used Monte Carlo techniques and demonstrated that the
procedure is robust to violations of normality and also to constancy in
the coefficients of variation. A closer examination of the dynamics of
the procedure found that the robustness was the result of offsetting
effects. The size of the confidence interval was increased as a result of
higher estimates of the common CV, as the actual CV pattern became
heterogeneous. This effect mitigated the inflation in the size of the
ratio as a result of increasing CV heterogeneity. These findings suggest
that the Chen–Dougherty–Bittner procedure may be used even if un-
derlying assumptions do not hold. © 2002 Society of Photo-Optical Instrumenta-
tion Engineers. [DOI: 10.1117/1.1501561]
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1 Introduction
DNA microarray technology has emerged as a useful techno
ogy in genetic research. Using this technology, it is possible to
quantitate nucleic acids through fluorescent intensities of sig
nals from distinct tissue samples. The ratios of these signa
can be calculated and inferences drawn as to which differ
ences in signal intensity are meaningful.

Chen, Dougherty, and Bittner1 studied the problem of ana-
lyzing the mRNA from two distinct tissue samples. They de-
rived an elegant formulation for the probability density func-
tion of a signal ratio under the condition that the means of the
two component signals are equal. The density function wa
derived with the assumption that signal expression level
across the gene population of a microarray are independe
random variables. Further assumptions are that the signal e
pression levels follow a normal distribution and that all signal
expression levels share a common coefficient of variation.

Informal discussions with biologists have suggested tha
the assumption of a constant coefficient of variation for the
entire gene set may not always be appropriate. For exampl
in a recent study we utilized the microarray approach of Ge
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nome Systems, Inc., to measure the expression of RNA f
female mouse liver tissues as it related to the level of ser
corticosterone. Our data consisted of five pairs of samples
compared the livers of mice with high and low serum cor
costerone, thus permitting the calculation of a coefficient
variation ~CV! for each of the 8772 genes in the study. W
found that the ranges for the CVs were substantial. For 2
of the genes, ratios from the five pairs of samples produ
CVs in the range of 0.05–0.9. About 53% of the gene rat
were in the range from 1.0 to 4.9 and 19% were in the ran
from 5.0 to 9.9. Our experience is that wide ranges such
these are not unusual in studies involving large numbers
genes in complex biological systems. In this particular stu
the 20 genes with the lowest expression intensities had
average CV of 6.5~62.6!, a phenomenon commonly ob
served with low expression intensities. The 20 genes with
highest expression intensities, on the other hand, had a lo
average CV of 1.0~61.9!. Of the many genes in a large stud
some may be tightly regulated while others may be induci
or repressible by factors that may not be related to experim
tal parameters.

Our concerns with the normality and constant coefficie
of variation assumptions led us to conduct arobustnessstudy
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Robustness of Chen–Dougherty–Bittner Procedure . . .
in connection with the Chen–Dougherty–Bittner~CDB! pro-
cedure. The question of robustness is an important issue wit
respect to any applied statistical technique. Arobust proce-
dure is one that is affected only slightly by appreciable depar
tures from the assumptions involved. In regard to the CDB
procedure the question of robustness reduces to the following
suppose the expression levels arenot normally distributed and
the coefficients of variation across the entire gene set arenot
constant. Can we still use the CDB procedure for constructing
approximately accurate confidence intervals? How likely are
we to draw erroneous conclusions about observed difference
in expression ratios?

If the CDB procedure is robust, it may be used regardles
of whether or not theoretical assumptions of normality and
constancy in the coefficient of variation are satisfied. This
paper reports results of Monte Carlo studies that assessed t
impact of varying sample sizes, distribution shapes, and de
grees of heterogeneity in coefficients of variation. We shal
demonstrate that the Chen–Dougherty–Bittner procedure
unaffected by varying sample sizes and is, indeed, quite ro
bust to even extreme deviations from normality and to sub
stantial inequalities in the coefficients of variation.

2 Chen–Dougherty–Bittner Procedure
Chen et al.1 developed an expression for the probability den-
sity function for a signal ratio. Assuming we haven genes
represented in a microarray then two signal expressions fo
the kth gene are denoted asXk and Yk , respectively. For
example, these two signals might come from treatment an
control conditions, whereXk represents a signal for thekth
gene obtained from a sample of mRNA taken from a treated
cell andYk represents a signal for thekth gene taken from a
cell in the control condition. Let the ratio of the two signals
for the kth gene be denoted byTk . Therefore

Tk5Xk /Yk , k51,...,n, ~1!

and the probability density function is derived for anyTk in
the microarray under the null hypothesis that the means forXk

andYk are equal, i.e.,

H0 : mXk
5mYk

5mk . ~2!

Assuming that all genes in the array have a common coef
ficient of variation,c, that the distributions ofXk andYk are
N(mk ,c2mk

2), and that all signal measurements are indepen
dent random variables, theapproximateprobability density
function for Tk is given by

f Tk
~ t !5$@~11t !A11t2#/@c~11t2!2A2p#%

3exp@2~ t21!2/2c2~11t2!#. ~3!

The density function is approximate because no signal inten
sity can assume a negative value. Therefore, strictly speakin
signal measurements cannot be normally distributed. The po
tions of the normal curves that fall into the negative regions
are taken to be negligible.

The probability density function~PDF! in Eq. ~3! depends
only on the common coefficient of variationc, and not on the
parameters of the distributions ofXk and Yk . Thus a test of
the null hypothesis in Eq.~2! can be conducted at thea level
:

s

e
-

r

,
-

of significance by integrating Eq.~3! and finding the
100* (a/2) and the100* (12a/2) percentile points of the
distribution of Tk . Performing this integration, however, re
quires a value forc. This value is obtained by use of a max
mum likelihood estimator, obtained by calculating the like
hood function across the entire gene array and then sol
for ĉ as the maximizing value. Thusc can be estimated from
the data as follows:

ĉ5A~1/n!(
k51

n

~ tk21!2/~11tk
2!, ~4!

where n is the number of genes in the array andtk is the
observed signal ratio, calculated from the data.

With c estimated from the data using Eq.~4!, the rejection
region for testing, Eq.~2!, can be established. Under th
assumption of Eq.~2!, approximatelya* 100% of the tk
values would fall outside the region of rejection, i.
(12a)* 100% of the tk values would be contained in th
interval between the critical values for such a region of rej
tion. This assumes the distribution of the ratio behaves
accordance with Eq.~3!.

3 General Method and Research Questions
The dependent variable of interest throughout this paper is
empirical containment rate~ECR! of the CDB procedure. The
ECR is the proportion of times the CDB procedure correc
accepts the null hypothesis of equal signal means under
cific sets of experimental conditions that are described bel
The ECR is the complement of the empirical type I error ra
~EER!. The ECR and the EER must sum to 1.0. For examp
suppose under a specific experimental setup, the proportio
times the procedure accepts the null hypothesis~the ECR! is
0.937. Then the proportion of times the procedure rejects
null hypothesis~the EER! is 0.063. Thus, in this example
ECR1EER50.93710.06351.0. Since the ECR and the
EER always sum exactly to 1.0, whatever factors explain
ECR also explain the EER.

The three independent variables that we consider are~1!
sample size, the number of simulated pairs of signals per g
array, ~2! distribution shape, the proximity of the simulate
data to normality, and~3! pattern of coefficients of variation
within a given gene array.

Three general questions are proposed and evaluated in
paper.~1! Is the CDB procedure robust with respect to~i!
violation of the normality assumption and~ii ! with respect to
violation of the assumption of a common coefficient of var
tion across all genes in the array?~2! Can an adequate statis
tical model be developed to predict ECR from the indepe
dent variables in the study?~3! What accounts for the
robustness or lack of robustness of this procedure?

The answer to the second question will determine to
great extent the answer to the first question. If a highly ac
rate predictive model can be developed for ECR, then
robustness or nonrobustness of the CDB procedure is in
able from such a model. In fact, the answer to the sec
question can even provide a more sensitive answer to
robustness question by informing researchers about what
els of deviation from basic assumptions do not cause subs
tial deviations from nominal~expected! rates of containment
Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4 651
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The answer to the third question involves an analysis o
the dynamics of the CDB procedure to determine how it pro-
duces a decision to reject or not reject the null hypothesis. Th
procedure computes a ratio and then calculates a pair of crit
cal values to be used as criteria for rejection. The latter de
pends on the proper estimation of the common coefficient o
variation, c. Thus, non-normality and heterogeneous coeffi-
cients of variation can affect the procedure in two different
ways: ~1! by a possibledistortion in the distribution of the
ratio, or ~2! by a possible effect on theestimationof c. The
robustness, or lack thereof, of the CDB procedure will depend
on the interplay of these two effects.

4 Study I: Method and Results
The first simulation study investigated the effects of the three
independent variables on the empirical containment rate. Th
three independent variables are described in turn.

4.1 Sample Size
The sample size refers to the size of the microarray of paire
signals. Four sample sizes were considered: 1000, 2000, 400
and 8000. For a sample size ofn, an array ofn rows and two
columns was generated, with the first column representing th
X values and the second column representing theY values.

4.2 Shape of Distribution
Four distribution shapes were simulated. These shapes we
~1! extreme non-normality, skewness of 1.75 and excess ku
tosis ~i.e., kurtosis23! of 3.75, ~2! moderate non-normality,
skewness of 1.00 and excess kurtosis of 1.00,~3! mild non-
normality, skewness of 0.50 and excess kurtosis of 0.25, an
~4! normality, skewness of 0.0 and excess kurtosis of 0.0.

The same distribution shape was induced for both theX
andY columns of each gene pair for a microarray withn rows.
The distribution shape was induced by means of the Fleish
man power method.2 In this method, the desired distribution
shape is induced by transforming a standard normal variate b
means of a cubic transformation,

U5A1BZ1CZ21DZ3, ~5!

whereZ;N(0,1), A, B, C, andD are constants corresponding
to the particular skewness and kurtosis that is required, with
the condition thatA52C, andU is a resulting random vari-
ate with mean equal to zero, variance equal to one, and wit
the required skewness and kurtosis.

4.3 Coefficient of Variation Pattern
Ten different patterns for the coefficients of variation of theX
andY signals were used. For each pattern, 10 different level
of coefficient of variation were employed for a given array of
sizen. One tenth of the rows in each array received a poten
tially different coefficient of variation. A pattern for an array
is thus defined by the degree of variation in the coefficients o
variation that was induced in the array. Selected patterns ar
presented in Table 1. The average coefficient of variation in
each pattern is equal to 0.12 and the standard deviation withi
the pattern is calculated.

Once an array withn rows and two columns was generated
with a given distribution shape throughout, the pattern of co-
652 Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4
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efficients of variation was induced by multiplying these e
tries by the desired coefficient of variation and then add
one to both theX and Y entries in each row. Because th
Fleishman transformation produces random variates wit
mean of zero and a standard deviation of unity, the multip
cation by the desired coefficient of variation and then t
addition of one produces a random variate with mean equa
one, standard deviation equal to the desired coefficien
variation, and skewness and kurtosis values as desired.

4.4 Design of Simulation
The ratios(T’s) were calculated by dividing theX entries by
the Y entries for each row in the array. The estimated ‘‘co
mon’’ coefficient of variation was obtained by means of E
~4!. If a row contained a negative value forX and/or a nega-
tive value forY, it was not used in the simulation.

Once the estimate of the common coefficient of variati
( ĉ) was obtained, a 95% confidence interval was genera
for the entire array. EachT value was checked to see if it wa
contained in this interval or not. The total proportion of val
rows ~those containing both positiveX andY values! that had
a T value contained within the 95% confidence interval w
computed. This proportion represented the ECR for that ar

The design of the simulation thus constituted a complet
crossed design with 4 sample sizes, 4 distribution shapes,
10 coefficient of variation patterns. The resulting434310
design produced 160 cells. For each cell in the design,
replicates~i.e., 100 arrays! were simulated. The depende
measure, the ECR, was computed for each replication wi
each cell. Thus a total of1603160516 000cases was gen
erated in the simulation. All simulations were accomplish
via programs written in theGAUSS programming language3

and independently confirmed by programs written inS-PLUS.4

Table 1 CV values for CV patterns: Study I.

Pattern CV valuesa SD of CVs

1 0.120 – 0.120 0.000

.

.

.

4 0.090 – 0.150 0.021

.

.

.

7 0.060 – 0.180 0.042

.

.

.

10 0.030 – 0.210 0.063
a Mean CV for all patterns50.120.



Robustness of Chen–Dougherty–Bittner Procedure . . .
Table 2 Three-way fixed effects ANOVA model for Study I. Dependent variable: ECR. Weighted least
squares.

Source Degree of freedom Sum of squares Mean square F statistic p value of F

Sample 3 3.151 1.050 2.57 0.053

Shape 3 9900.964 3300.321 8077.68 <0.0001

CV Pattern 9 19 948.005 2216.445 5424.85 <0.0001

Sample
Shape

9 6.333 0.704 1.72 0.078

Sample
CV Pattern

27 11.069 0.410 1.00 0.459

Shape
CV Pattern

27 1402.131 51.931 127.10 <0.0001

Sample
Shape
CV Pattern

81 29.225 0.361 0.88 0.764

Error 15 840 6471.792 0.409
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4.5 Analysis of Results
The data from the simulation were analyzed by means of
three-way fixed effects analysis of variance~ANOVA !. The
analysis5 was done via weighted least squares with ECR being
the dependent variable and the three independent variabl
previously described as factors. Each ECR was weighted b
the reciprocal of its respective sampling variance to compen
sate for the heterogeneity of variances that is inherent in th
analysis of proportions.

For this analysis the ECR was multiplied by(12ECR)
and then divided by the number of valid rows for the gene
array to establish the sampling variance for the estimated pro
portion. The results for this analysis are given in Table 2.

From this analysis a preliminary step towards a genera
model can be made. Sample size shows no statistically sig
nificant relationship with ECR, either in terms of main effects
or interaction effects. On the other hand, the distribution
shape and CV pattern both show significant main effects an
a significant interaction effect. The results suggest a two-wa
model for ECR with both CV pattern and distribution shape
playing explanatory roles.

5 Study II: Method and Results
To further investigate the relationship between non-normality
CV pattern, and ECR, a more extensive study was done
Given the lack of a significant relationship between sample
size and ECR, the data for all cells was simulated with a
sample size of 8000. The study also took into account the fac
that an interaction effect was found between the CV pattern
and the distribution shape in study I.

5.1 General Procedure
To investigate the fact that the relationship among CV pattern
and ECR is influenced by distribution shape, a separate simu
lation was done for each of the four distribution shapes tha
were employed in study I. Thirty different patterns for the
s

-

-

.

t

-

coefficient of variation were used in this second study. S
lected CV patterns are given in Table 3. We note that
average CV in each pattern is 0.15. Each of the 30 CV p
terns was simulated 1000 times for each of the four distri
tion shapes. This led to 30 000 ECRs for each distribut
shape. The simulations were done by means of programs w
ten in theGAUSS computer language3 and results were inde
pendently confirmed by a set of programs written inS-PLUS.4

In addition to the ECR, the quantity ECR15 was comput
The ECR15 statistic is the rate of containment in a 95% c
fidence interval for the signal ratio, assuming the coeffici
of variation is fixed at 0.15. Thus the ECR is computed by
actual estimate of the assumed to be the common coeffic
of variation using Eq.~4!. The ECR15 is computed by fixing
the CV at the average CV level for each pattern, i.e., 0.
More precisely, the ECR15 was computed by specifically
ing the lower and upper 95% confidence limits forc50.15.

5.2 Assessment of Robustness
The total impact of the variation in distribution shape and C
pattern is defined as the difference between 0.95 and the E
Thus, thetotal effect, TE, of variation in both the CV pattern
and distribution shape is given by

TE50.952ECR. ~6!

A positive value of the TE reflects a rate of containment le
than 0.95, i.e., a rate of rejection in excess of 0.05. A nega
value of the TE reflects a rate of containment greater th
0.95, i.e., a rate of rejection less than 0.05.

The ECR is a composite of two separate effects. The C
procedure estimates the assumed to be the common co
cient of variation,c, and produces the estimateĉ. It then uses
this value to calculate a confidence interval that either c
tains the calculated value ofT or does not. Thus, the ECR is i
part affected by the size of this confidence interval due to
value of ĉ. It is also affected by any distortion in the distr
Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4 653
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Powell et al.
bution ofT itself. The TE might thus be a good ‘‘bottom-line’’
statistic in assessing robustness, but it does not tell us why th
ECRs deviate from the nominal value of 0.95.

Two components of TE are now defined. Thedistortion
effect~DE! reflects the amount of deviation of the empirical
containment rate from the nominal value of 0.95 when the
size of the confidence interval is held constant. In this study
the size of the confidence interval was held constant by usin
an interval based on a CV equal to 0.15. The DE is thus give
by

DE50.952ECR15. ~7!

A positive value of DE reflects a rate of containment less than
0.95 and a negative value reflects a rate of containmen
greater than 0.95, with the rates of containment being com
puted by holding the size of the confidence interval constant
Variation in the size of DE reflects the pure effect of the
distortion of the distribution ofT because of different CV
patterns and different distribution shapes.

A second component of TE reflects the difference in the
rate of containment with the fixed confidence interval size and
the rate of containment based on a variable confidence inte
val size. The variation in confidence interval size is a function
of the variation in the estimated common coefficient of varia-
tion. This effect is termed theestimation effect~EE! and is
defined as follows:

Table 3 CV values for CV patterns: Study II.

Pattern CV valuesa SD of CVs

1 0.150 – 0.150 0.000

.

.

.

8 0.115 – 0.185 0.024

.

.

.

15 0.080 – 0.220 0.049

.

.

.

23 0.040 – 0.260 0.077

.

.

.

30 0.005 – 0.295 0.101
a Mean CV for all patterns50.150.
654 Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4
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EE5ECR152ECR. ~8!

A positive value of EE reflects a higher rate of containme
with the fixed confidence interval as opposed to the co
dence interval deriving from the estimation of the CV. A neg
tive value of EE reflects a lower rate of containment with t
fixed confidence interval size as opposed to the confide
interval deriving from the estimation of the CV. It is true th
the larger the estimated CV the larger the size of the co
sponding confidence interval.1 Thus, larger estimated CVs ar
associated with higher ECRs and smaller EEs.

Combining Eqs.~6!–~8! permits the statement of the fol
lowing relationship:

TE5DE1EE. ~9!

Robustness can thus be conceived of as the pattern of be
ior of TE. If TE is always zero, we would have ‘‘perfect
robustness. If TE has an average value far removed from
under conditions where either distribution shape devia
from normality or the CV pattern deviates from equality
CV, then it can be concluded the CDB procedure is not rob

Furthermore, by using the relationship in Eq.~9! the ques-
tion of why the procedure is robust or not robust may
addressed. By examining the patterns of DE and EE in a
tion to that of TE, one may determine whether a finding
robustness is due to comparably small absolute average
and EEs across different experimental conditions, or is du
large absolute DEs and EEs that are moving in opposite
rections. Likewise, a finding of nonrobustness might be due
near zero EEs and huge DEs or vice versa, or modera
large departures from zero for both DEs and EEs.

5.3 Results
To demonstrate that the data were generated accordin
specifications, the average values of the mean, varia
skewness, and excess kurtosis are reported for both theX and
Y variables, for each distribution shape, at the CV pattern t
involves complete homogeneity of CV. These results are p
sented in Table 4. The four moments of the distribution
very close on average to the intended values, although
Fleishman procedure slightly underestimates the excess
tosis.

The average estimated coefficients of variation by the
pattern are displayed in Figure 1 for each distribution sha
The average estimated CV increases as the heterogenei
the CV pattern increases. This relationship holds for all d
tribution shapes, although in the three non-normality con
tions, the common CV of 0.15 is underestimated under
experimental condition of complete homogeneity of the CV
The degree of underestimation is in direct proportion to
non-normality of the distribution.

The average, minimum, and maximum values of ECR
each CV pattern by distribution shape are given in Table 5
quick summary of the findings shows that of the 120 000 r
lications in the entire study, the lowest ECR observed w
0.916~minimum for CV pattern 30 with Extreme NN! and the
highest ECR observed was 0.959~maximum for CV pattern 1
with Mild NN !. For the condition combining the most seriou
deviation from normality~Extreme NN! and the most extreme
heterogeneity of coefficients of variation~CV pattern 30!, the
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Table 4 Average mean, variance, skew, and excess kurtosis by distributional shape, CV pattern reflect-
ing all CVs equal to 0.15. (Averages are based on 1000 replications.)

Statistic Normal Mild NN Moderate NN Extreme NN

Avg mean X 0.999 97 1.000 07 1.000 09 1.000 03

Avg variance X 0.022 48 0.024 90 0.022 51 0.022 49

Avg skew X 0.000 60 0.496 73 0.992 99 1.733 32

Avg xkur Xa −0.007 67 0.238 94 0.968 38 3.633 37

Avg mean Y 1.000 01 1.000 09 0.999 95 0.999 93

Avg variance Y 0.022 50 0.022 51 0.022 48 0.022 48

Avg skew Y −0.000 18 0.495 17 0.992 66 1.737 66

Avg xkur Ya −0.007 14 0.232 05 0.965 50 3.639 52
a xkur5excess kurtosis.
h

-

-
i-

l

ted
the
EE
the
u-
tern
as

ore,
no
pe
on-
average ECR was 0.922. The ECRs are represented grap
cally in Figure 2. Also represented in Figure 2 are the
ECR15s. Note that for the CV pattern reflecting complete ho
mogeneity@standard deviation~SD! of CV50# and with a
normal distribution of the signals, both the ECR and the
ECR15 are precisely equal to 0.95. The two sets of contain
ment rates exhibit the same decreasing pattern for all distr
bution shapes.

TEs, DEs, and EEs were computed and are represente
graphically in Figure 3 as a function of the heterogeneity of
the CV pattern. The EE shows a decreasing pattern for a
i-

d

l

distribution shapes. This reflects the fact that the estima
coefficient of variation increases with the heterogeneity in
CV pattern. Likewise, the displacement in the graphs of
by the distribution corresponds to the displacement in
graphs of the estimated coefficients of variation by distrib
tion shape. The pattern in the DE shows an opposing pat
to that in the EE. DE increases for every distribution shape
the heterogeneity of the CV pattern increases. Furtherm
under the homogeneity of the CV condition, there was
observed distortion effect for the normal distribution sha
but there were negative distortion effects for each of the n
Fig. 1 Mean estimated CV by distribution shape.
Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4 655



Powell et al.
Table 5 Average, minimum, and maximum ECR by CV pattern by distribution shape (based on 1000 replications).

CV Pattern

Normal Mild NN Moderate NN Extreme NN

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1 0.950 0.945 0.955 0.953 0.948 0.959 0.951 0.946 0.956 0.937 0.932 0.942

2 0.950 0.946 0.955 0.953 0.946 0.958 0.951 0.945 0.956 0.937 0.932 0.943

3 0.950 0.944 0.955 0.953 0.947 0.959 0.951 0.945 0.956 0.937 0.932 0.944

4 0.950 0.945 0.955 0.953 0.947 0.958 0.950 0.945 0.955 0.937 0.932 0.943

5 0.949 0.944 0.954 0.952 0.947 0.957 0.950 0.944 0.954 0.937 0.931 0.943

6 0.949 0.943 0.954 0.951 0.945 0.957 0.949 0.944 0.954 0.937 0.931 0.943

7 0.948 0.943 0.953 0.951 0.946 0.956 0.949 0.944 0.954 0.936 0.931 0.941

8 0.948 0.941 0.953 0.950 0.944 0.956 0.948 0.942 0.953 0.936 0.931 0.942

9 0.947 0.940 0.952 0.949 0.944 0.954 0.947 0.940 0.952 0.936 0.930 0.941

10 0.946 0.940 0.952 0.948 0.942 0.953 0.946 0.941 0.951 0.936 0.930 0.942

11 0.945 0.941 0.951 0.946 0.941 0.951 0.945 0.939 0.952 0.935 0.930 0.940

12 0.944 0.938 0.950 0.945 0.939 0.950 0.944 0.937 0.949 0.935 0.930 0.941

13 0.943 0.937 0.949 0.944 0.938 0.949 0.943 0.937 0.948 0.934 0.928 0.940

14 0.942 0.937 0.947 0.943 0.936 0.948 0.941 0.935 0.947 0.933 0.928 0.938

15 0.941 0.936 0.946 0.941 0.936 0.946 0.940 0.935 0.945 0.933 0.927 0.939

16 0.940 0.934 0.945 0.940 0.935 0.944 0.939 0.933 0.944 0.932 0.927 0.938

17 0.939 0.932 0.944 0.938 0.932 0.943 0.939 0.932 0.943 0.931 0.926 0.937

18 0.938 0.933 0.944 0.937 0.931 0.941 0.936 0.931 0.943 0.931 0.925 0.937

19 0.937 0.931 0.942 0.936 0.931 0.943 0.935 0.930 0.941 0.930 0.923 0.934

20 0.936 0.930 0.941 0.935 0.930 0.940 0.934 0.929 0.939 0.929 0.924 0.934

21 0.935 0.930 0.940 0.933 0.928 0.938 0.933 0.927 0.938 0.928 0.923 0.933

22 0.934 0.929 0.940 0.932 0.927 0.938 0.931 0.926 0.937 0.927 0.922 0.933

23 0.933 0.928 0.939 0.931 0.924 0.937 0.930 0.924 0.936 0.927 0.921 0.932

24 0.932 0.928 0.938 0.930 0.924 0.936 0.929 0.924 0.934 0.926 0.919 0.931

25 0.931 0.926 0.937 0.929 0.924 0.934 0.928 0.922 0.934 0.925 0.920 0.930

26 0.931 0.926 0.936 0.928 0.923 0.934 0.927 0.923 0.932 0.924 0.919 0.930

27 0.930 0.925 0.936 0.928 0.923 0.932 0.926 0.922 0.931 0.924 0.916 0.929

28 0.929 0.924 0.936 0.927 0.921 0.932 0.926 0.921 0.931 0.922 0.917 0.929

29 0.929 0.923 0.934 0.926 0.920 0.931 0.925 0.919 0.931 0.922 0.917 0.927

30 0.928 0.923 0.934 0.925 0.920 0.930 0.924 0.919 0.930 0.922 0.916 0.927

Overall 0.940 0.923 0.955 0.940 0.920 0.959 0.939 0.919 0.956 0.931 0.916 0.944
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normal shapes. As a general rule, the DE is more positive a
the distribution shape gets closer to normality.

The moments of the signal ratio distributions are displayed
in Table 6. The mean, variance, skewness, and kurtosis a
increase as a function of CV heterogeneity. Both Pearson an
Spearman correlations between these moments and distorti
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effects are also presented in Table 6. Distortion effects
strongly positively correlated with the four distribution ind
ces. In the case of the ratios under the normality condition,
clear effects of extreme outliers are observed both in the c
of the variance of the ratio and in the case of the Pear
correlation with DE. The nonparametric Spearman correlat
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Fig. 2 Average ECR and ECR15 by SD of CV.
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was therefore included to provide an indicator of the relation-
ship of the ratio variance and the distortion effect that is no
sensitive to extreme values.

The increases in the moments of the ratio distribution as
function of CV heterogeneity are moderated by the distribu-
tion shape of the constituent signals. If we take the moment
of the ratio distribution for the normal condition and CV ho-
mogeneity as normative, it is clear that all of the non-norma
shapes show a smaller dispersion in the signal ratio at low
levels of CV heterogeneity than this normative level. This
accounts for the negative distortion effects in the non-norma
conditions at low levels of heterogeneity of CV. The signal
ratio dispersion increases as the CV heterogeneity increase
and the differences in ratio dispersion among distribution
shapes of the constituent signals are consistent with the di
ferences in the graphs of DE by distribution shape of the
signals.
s,

-

5.4 Modeling of ECR and ECR15
The graphs of ECR and ECR15~see Figure 2! suggest a non-
linear regression model for containment rates. In particu
the following four-parameter logistic model6 was employed:

CRi5~A2D !/~11Si /C!B1D1ei , ~10!

where CRi is the containment rate for thei th CV pattern
~either ECR or ECR15!, Si represents the standard deviatio
of the i th CV pattern, parameterA represents the containmen
rate when the standard deviation of the CV pattern equ
zero,D is the containment rate assuming infinite variation
the pattern of CVs,C is the standard deviation of the CV
pattern that produces a containment rate exactly halfway
tweenA andD, andB represents a ‘‘slope factor’’ that dete
Fig. 3 Average distortion effect, estimation effect, and total effect by SD of CV.
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Table 6 Average mean, average variance, average skew, and average kurtosis of ratio by selected-CV patterns. (All statistics are based on 1000
replications, and correlations are based on a sample size of 30 000.)

Pattern

Normality Mild non-normality

Avg. mean Avg. variance Avg. skew Avg. kurtosis Avg. mean Avg. variance Avg. skew Avg. kurtosis

1 1.0242 0.052 0.791 4.723 1.0223 0.047 0.612 3.547

4 1.0244 0.052 0.828 4.965 1.0225 0.047 0.629 3.643

7 1.0246 0.054 0.943 5.937 1.0228 0.048 0.689 3.978

10 1.0257 0.056 1.230 13.628 1.0233 0.050 0.778 4.487

13 1.0269 0.060 1.511 14.867 1.0241 0.052 0.906 5.235

16 1.0282 0.069 2.454 60.083 1.0252 0.055 1.054 6.115

19 1.0303 0.084 3.687 111.489 1.0263 0.059 1.225 7.199

22 1.0365 97.865 6.918 313.816 1.0282 0.063 1.411 8.462

25 1.0368 1.187 10.438 535.867 1.0300 0.068 1.612 9.898

28 1.0434 22.511 14.630 821.201 1.0318 0.075 1.820 11.562

30 1.0444 5.148 16.541 927.335 1.0338 0.080 1.993 13.094

ra 0.161c 0.013d 0.410c 0.295c 0.788c 0.977c 0.966c 0.919c

rhob 0.841c 0.969c 0.921c 0.899c 0.770c 0.989c 0.973c 0.968c

Pattern

Moderate non-normality Extreme non-normality

Avg. mean Avg. variance Avg. skew Avg. kurtosis Avg. mean Avg. variance Avg. skew Avg. kurtosis

1 1.0207 0.043 0.609 3.596 1.0188 0.040 0.816 4.850

4 1.0208 0.044 0.626 3.683 1.0190 0.040 0.834 4.961

7 1.0209 0.044 0.672 3.938 1.0191 0.041 0.883 5.281

10 1.0213 0.046 0.746 4.348 1.0194 0.042 0.958 5.762

13 1.0221 0.047 0.843 4.892 1.0200 0.043 1.064 6.450

16 1.0228 0.049 0.957 5.529 1.0206 0.045 1.183 7.207

19 1.0238 0.052 1.077 6.195 1.0213 0.047 1.311 8.049

22 1.0252 0.055 1.217 6.993 1.0223 0.049 1.450 8.930

25 1.0264 0.059 1.343 7.715 1.0233 0.052 1.582 9.794

28 1.0282 0.063 1.476 8.502 1.0245 0.056 1.710 10.647

30 1.0291 0.067 1.563 9.030 1.0253 0.058 1.799 11.259

ra 0.723c 0.982c 0.971c 0.958c 0.651c 0.979c 0.948c 0.925c

rhob 0.705c 0.987c 0.971c 0.968c 0.631c 0.980c 0.948c 0.939c

a Pearson’s correlation between the distortion effect and the variable.
b Spearman’s correlation between the distortion effect and the variable.
c p,0.01.
d p,0.05.
-

-
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mines the slope of the curve. The larger the value ofB, the
steeper the curve. Theei term reflects random errors, assumed
to be normally distributed~see Table 7!.

The models for ECR15 reflect the phenomenon of increas
ing distortion effects as a function of CV heterogeneity. Esti-
658 Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4
mates of parameterA accurately reflect ECR15 for each dis
tribution shape under the CV homogeneity conditio
Likewise, estimates for parameterD indicate the impact of
CV heterogeneity on the containment rates via the mechan
of signal ratio distortion. The fact that the parameterD esti-
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Table 7 Four-parameter logistic model results for both ECR and ECR15. Rlogist
2 is the proportion of variance in containment rates explained by

logistic model. RANOVA
2 is the proportion of variance in containment rates explained by a one way ANOVA with the CV pattern as the grouping

variable, i.e., the theoretically best fitting model for the containment rate.

Parameter

ECR

Normal Mild NN Moderate NN Extreme NN

Est. SE Est. SE Est. SE Est. SE

A 0.9500 0.00002 0.9531 0.00002 0.9507 0.00002 0.9370 0.00002

B 2.3668 0.01843 2.2692 0.01421 2.2807 0.01553 2.7921 0.03361

C 0.0707 0.00052 0.0717 0.00046 0.0783 0.00061 0.0870 0.00110

D 0.9190 0.00026 0.9126 0.00028 0.9093 0.00036 0.9117 0.00045

R logist
2 0.95116 0.96835 0.96469 0.89848

RANOVA
2 0.95123 0.96840 0.96472 0.89865

Parameter

ECR15

Normal Mild NN Moderate NN Extreme NN

Est. SE Est. SE Est. SE Est. SE

A 0.9502 0.00004 0.9616 0.00004 0.9669 0.00003 0.9631 0.00003

B 2.0349 0.01247 1.9642 0.01015 1.9338 0.01075 2.0337 0.01648

C 0.1263 0.00193 0.1293 0.00177 0.1469 0.00259 0.1525 0.00399

D 0.8028 0.00270 0.7975 0.00263 0.7930 0.00370 0.8334 0.00439

R logist
2 0.97683 0.98312 0.98121 0.96262

RANOVA
2 0.97686 0.98314 0.98124 0.96266
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mates for the ECR15 model are substantially lower than thos
for the ECR model is a testament to the ‘‘compensatory’’ ef-
fect on ECR resulting from the estimation of the coefficient of
variation.

6 Discussion
This study was designed to answer three questions. First w
asked, ‘‘Is the CDB procedure robust with respect to~1! de-
viations from normality in the shapes of the signal distribu-
tions and to~2! deviations from homogeneity of the coeffi-
cients of variation of the signal distributions?’’ The answers to
these questions are ‘‘Yes.’’ The worst case of a deviation from
0.950 was 0.916 in 120 000 replications. Each of the distribu
tion shapes had an average ECR between 0.922 and 0.9
under even the worst pattern of CV heterogeneity. For mos
cases of CV heterogeneity the resulting ECRs were eve
closer to the nominal containment rate of 0.950.

In practice this means that even if expression levels in
microarrays arenot normally distributed and even if the coef-
ficients of variation across the gene set arenot constant, the
Chen–Dougherty–Bittner procedure may still be used for
constructing highly accurate confidence intervals. Even unde
extreme deviations from the assumptions of Chen, Dougherty
e

8

r
,

and Bittner, an error in rejecting the null hypothesis that
would expect to occur only 5% of the time, would, in realit
occur no more often than 8% of the time.

Another question posed was, ‘‘Can an adequate expla
tory model be developed to predict the ECR from the ind
pendent variables in the study?’’ The answer is, again, ‘‘Ye
Sample size played no role in explaining empirical conta
ment rates. The ECR decreased as the CV heterogeneit
creased. Distribution shape moderated this relationship
general, the ECR was closest to the nominal level of 0.95
the normality condition and farthest away from 0.95 for t
extreme non-normality condition. The results for the two
termediate non-normality conditions showed similarity
each other. Each had ECR values that were too high under
homogeneity. However, ECR values dipped below those
the normality condition as the CV heterogeneity increased

A four-parameter logistic model was used to describe
data. It showed an outstanding fit to the data for all case
non-normality. The model permitted an estimate of what
ECR would be if the CV heterogeneity were to become in
nitely large. The results were consistent with the previou
expressed finding that the CDB procedure is robust aga
violations of its relevant assumptions.
Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4 659
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A final question involved an assessment of why the CDB
procedure is robust. The decision as to whether or not to rejec
the null hypothesis of equality of means has two parts. A ratio
is computed and a confidence interval is obtained. If the ratio
is in the interval, the null hypothesis is not rejected. Otherwise
it is rejected. Thus the rate of containment of the procedure i
a function of the distribution of the signal ratio and the size of
the confidence interval. The size of the confidence interval is
strictly a function of the estimate of the common coefficient
of variation.

The TE was shown to be the sum of the EE and the DE
We found that, for each distribution shape, the two effects
offset each other. For normal data, large positive distortion
effects are greatly offset by large negative estimation effects
thus stabilizing the total effects and yielding ECRs that are
very close to the nominal level. Other distribution shapes
show a similar pattern of rising distortion effects accompanied
by falling estimation effects. The non-normality conditions
have negative distortion effects offset by positive estimation
effects at low CV heterogeneity levels. However, the trends in
the graphs are the same for each distribution shape. For th
extreme non-normality condition, the actual level of the EE
remains positive over all CV patterns. The two effects of CV
heterogeneity have opposite directions. They serve to mitigat
each other. Increased dispersion in the ratio distribution is
checked by increases in the estimated common coefficient o
variation, leading to concomitantly larger confidence inter-
vals. The net effect is relative stability in the ECR.
660 Journal of Biomedical Optics d October 2002 d Vol. 7 No. 4
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In summary, we have demonstrated that the Che
Dougherty–Bittner procedure is robust to deviations of
sumptions regarding normality and constancy in the coe
cients of variation in the signal distributions. We ha
developed a statistical model that explains how the empir
containment rate would be affected if heterogeneity in
coefficient of variation were to become infinitely large. F
nally, we have shown that distortion effects and estimat
effects offset each other in contributing to total effects
empirical containment rates, further explaining the reasons
the robustness of the procedure.
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