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Abstract. A fundamental challenge in neuroscience is the determina-
tion of the three-dimensional �3D� morphology of neurons in the cor-
tex. Here we describe a semiautomated method to trace single
biocytin-filled neurons using a transmitted light brightfield micro-
scope. The method includes 3D tracing of dendritic trees and axonal
arbors from image stacks of serial 100-�m-thick tangential brain sec-
tions. Key functionalities include mosaic scanning and optical sec-
tioning, high-resolution image restoration, and fast, parallel comput-
ing for neuron tracing. The mosaic technique compensates for the
limited field of view at high magnification, allowing the acquisition of
high-resolution image stacks on a scale of millimeters. The image
restoration by deconvolution is based on experimentally verified as-
sumptions about the optical system. Restoration yields a significant
improvement of signal-to-noise ratio and resolution of neuronal struc-
tures in the image stack. Application of local threshold and thinning
filters result in a 3D graph representation of dendrites and axons in a
section. The reconstructed branches are then manually edited and
aligned. Branches from adjacent sections are spliced, resulting in a
complete 3D reconstruction of a neuron. A comparison with 3D re-
constructions from manually traced neurons shows that the semiauto-
mated system is a fast and reliable alternative to the manual tracing
systems currently available. © 2007 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.2815693�

Keywords: three-dimensional automatic reconstruction; three-dimensional mosaic
microscopy; three-dimensional neuron morphology; large data processing; axonal
morphology; axons.
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Introduction

he accurate tracing of single neurons is one prerequisite for
he determination of anatomical features of different neuronal
ell types required for biophysical modeling of single cells
nd signal processing in small circuits. Several automated re-
onstruction approaches have been reported previously. These
econstructions, made with two-photon,1 confocal2–10 or
rightfield images,10,11 focus mainly on the dendritic tree and
he extraction of geometrical features such as volumes or sur-
ace areas of dendrites or spines. Hence, these approaches
ompletely lack a reconstruction of the axonal arbor. The rea-
on is that the axonal branching pattern is more complex and
hat axons spread over a much larger volume �cubic millime-
ers� compared to dendrites �a few hundred cubic microme-
ers�. Furthermore, axonal staining is fainter than that of den-
rites because of the smaller diameters of axons and their
reater distance from the soma where a tracer is loaded into

ddress all correspondence to Philip Broser, Cell Physiology, Max Planck Insti-
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9120, Germany. Tel: 0049 172 6783108; Fax: 0049 6221 486 459; E-mail:

hilip.broser@mpimf-heidelberg.mpg.de
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the cell. Thus, no successful automated tracing of these
widely spreading neuronal projections has yet been reported.

Nevertheless, the determination of individual cells’ projec-
tion patterns,12 of connections between different areas of the
brain, the number of synaptic contacts between cells and the
difference in axonal growth under various developmental
conditions12–15 are problems that illustrate the need for de-
tailed three-dimensional �3D� reconstruction of axonal arbors.
The method presented here focuses on the accurate tracing
of all neuronal projections. The dendritic tree and the exten-
sively spreading axonal arbor are traced and reconstructed
simultaneously.

Typically the cells are filled in vivo with a tracer, like
biocytin.16 The brain is then perfused with fixative and cut in
sections of about 100-�m thickness. The current approach for
tracing these neurons and their axons in three dimensions is a
manual one, based on the Camera Lucida technique �e.g., The
Neurolucida System,17 FilamentTracer.18 Here, neuronal
structures in each section are traced manually. A human user
interacts with a microscope that is enhanced with computer
1083-3668/2007/12�6�/064029/19/$25.00 © 2007 SPIE
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maging hardware and software.11,13 The user recognizes pat-
erns and marks neuronal structures on a live camera image
isplayed on a computer screen. By moving the stage in the x
nd y directions and focusing through the brain slice in the z
irection, a progressively larger volume is inspected. The 3D
racings of neuronal branches from this volume are collected
y the computer system interfaced to the camera and result in
3D graph representation of neurons.
Manual tracings of dendritic trees are very reliable. The

eliability is due to the localized branching pattern and the
elatively large diameters ��2 to 5 �m� of dendrites. How-
ver, the axonal arbor frequently extends further away from
he soma. The average volume that has to be inspected by the
ser is for most cell types around 1 mm�1 mm�100 �m
er brain section. For accurate tracing, this volume should be
nspected in a raster scan order, moving from one field of
iew to the next and progressively focusing through the
pecimen.

Using a 40� objective and a standard charge-coupled de-
ice �CCD� camera �e.g., Q ICAM �Q Imaging, Surrey, Brit-
sh Columbia, Canada��, the number of fields of view is ap-
roximately 5 500, with an average sampling along the optical
xis of 1 �m. Because axons can have diameters less than
�m, a 100� objective is usually used for manual tracing.

n this case, approximately 37 000 fields of view have to be
nspected. Taking a typical cell �e.g., layer 2 /3 pyramidal
euron of rat cortex� that spreads over 10 to 20 brain sections,
he number of fields of view that have to be inspected is of the
rder of 105. The manual reconstruction of axonal branching
atterns is hence tedious and time-consuming. Therefore, cor-
ect manual tracing of axons requires experienced users to
each a reliable level of reconstruction quality.

We present a semiautomatic “reconstruction” pipeline �Fig.
� that traces reliably both dendrites and axonal arbors by
xtracting their skeleton �approximate midlines�. In addition,
he method presented here needs significantly less time com-
ared to manual tracing. The automated tracing is carried out
n large image stacks acquired by mosaic scanning19 and op-
ical sectioning20 using a transmitted light brightfield �TLB�

icroscope. The manual inspection of thousands of fields of
iew is replaced by the acquisition of a stack of mosaic im-
ges. A rectangular pattern of overlapping mosaic tiles �adja-
ent fields of view� is scanned, covering an area of a brain
lice sufficient for the tracing of axonal arbors usually 1

1 mm2 �Fig. 2�a��. The 3D information is obtained via op-
ical sectioning, meaning the recording of such mosaic planes
t multiple focal positions that are ideally separated by
.5 �m.

This large 3D image is then deconvolved21 based on mea-
ured optical properties of the microscope, such as lack of
berrations within the optical pathway. This guarantees an im-
rovement of signal-to-noise ratio and resolution, in particular
long the z direction. A local threshold function that checks
or connectivity extracts neuronal structures from the back-
round. The extracted foreground objects are transformed into
hinned approximate midlines �the skeleton� and yield a graph
epresentation of dendrites and the widely spreading axonal
rbor. The automatically reconstructed branches from serially
ectioned brain slices are than manually edited and spliced

sing NEUROLUCIDA software for editing.

ournal of Biomedical Optics 064029-
2 Methods
2.1 Sample Preparation
All cells were filled in Wistar rats �P28 to P31; Charles River
Laboratory�. Experiments were carried out in accordance with
the animal welfare guidelines of the Max Planck Society.

Briefly, animals were anesthetized with urethane or isoflu-
rane. Body temperature was maintained at 37°C by a servo-
controlled heating blanket. A metal post for positioning the
head was attached to the skull overlying the cerebellum by
dental acrylic. A craniotomy was made overlying the left bar-
rel cortex �each �0.5 mm2� or the ventral posteriomedial
nucleus of the thalamus ��2.0 mm2�. Thalamic craniotomies
were centered at 3.5 mm posterior to bregma and 3.0 mm
lateral of the midline. The dura was removed for some of the

Fig. 1 Semiautomated neuron tracing. �a� Idealized TLB microscope
equipped with a motorized x-y-z stage �1�. A 546 nm±5 nm band-
pass illumination filter �2� is attached to the diaphragm of the light-
house and provides quasi-monochromatic �green� illumination of the
specimen. The green illuminating light is transmitted via a high NA
�1.4� oil immersion condenser �3�. The specimen is imaged by a high
NA oil immersion objective �100� �1.4 NA� combined with a 0.5 TV
mount or 40� �1.3 NA� combined with nonmagnifying TV mount�
�4�. The images are recorded by a CCD camera �5�. �b� Schematic
drawing of reconstruction pipeline. The key step comprises a high-
resolution image restoration �deconvolution�. The improved image
quality is sufficient for an automatic neuron tracing. Reconstructions
from adjacent brain slices are edited and spliced manually. �c� Sche-
matic drawing of the automatic image processing, comprising image
restoration and neuron tracing. Image restoration is based on treating
the TLB image like a fluorescent image. Inversion of the gray values is
followed by a subdivision of the mosaic image into bricks that can be
processed by the HUYGENS software. This software package executes a
linear deconvolution. After a maximum down sampling of the bricks,
the neuron tracing is executed. It comprises various raster image–
based segmentation algorithms that extract candidates for neuronal
structures from the background. These candidates are converted into a
vector image representation. Various algorithms are applied to extract
a smooth midline �skeleton� representation of the foreground objects.
The resultant graph is written into a date file for further manual editing
and splicing steps. �High resolution image available online only.
�URL: http://dx.doi.org/10.1117/1.2815693.1��
experiments. The craniotomy was kept covered with artificial
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erebral spinal fluid �aCSF; in millimoles: 135 NaCl, 5.4 KCl,
.8 CaCl2, 1.0 MgCl2, and 50 N-�2-hydroxyethyl�piperazine-
�-2-ethanesulfonic acid �HEPEs�; pH 7.2�.

Cells were filled with biocytin either extracellularly using
uxtasomal recording and electroporation22 or via whole-cell
ecording.23 In both cases, we used patch pipettes, pulled from
nfilamented borosilicate glass on a Sutter P-97 puller �Sutter
nstruments�. The outside diameter of the shank entering the
rain varied from 25 to 75 �m, and the tip opening had an
nside diameter less than 1 �m.

Whole-cell recording pipettes were tip-filled with �in
illimoles� 135 K-gluconate, 10 HEPEs, 10 phosphocreatin-
a, 4 KCl, 4 adenosine triphosphate–Mg, 0.3 guanosine triph-
sphate, and 0.2% biocytin �pH 7.2, osmolarity 291�. Pipettes
ere inserted perpendicular to the pia under high pressure

200 to 300 mbar�, and cells were searched for blindly under
ow pressure �20 to 30 mbar�.23 Recordings were made in

ig. 2 Mosaic scanning and optical sectioning. �a� Overview of a
iocytin-filled neuron �pyramidal neuron located in layers 2 and 3 of
at cortex� from a brain slice taken with a 100� objective and a 0.5
V mount. The black box indicates the scanning area
1.5�1.5 mm2�. A 3D image stack is acquired by the mosaic scan-
ing and optical sectioning techniques. A rectangular pattern of adja-
ent fields of view is scanned. �b� The pattern of overlapping tiles
adjacent fields of view� shown in �a� is stitched to a large 2D mosaic
mage. Mosaics are recorded for all focal planes separated by 0.5 �m,
esulting in a 3D mosaic image with size of 1.5 mm�1.5 mm

100 �m. �c� Enlargement of the box shown in �b�. A faint axonal
ranch is seen about 1 mm away from the soma. This illustrates the
equirement to scan large volumes at high resolution. �d� Result of the
emiautomated reconstruction pipeline. All neuronal projections, the
ocalized dendritic tree, and the widely spreading axons, within the
riginal mosaic image stack in �b� are traced and reconstructed. The
oma �solid circular structure in the center� was manually edited for
llustration. �High resolution image available online only.
URL: http://dx.doi.org/10.1117/1.2815693.2��
ridge mode for 30 to 60 min during which biocytin pas-

ournal of Biomedical Optics 064029-
sively diffused into the cells. Seal resistance was �1 G�,
access resistance was 1 to 100 M�, and spike height and
overall Vm were stable throughout the recording. No holding
current was used.

Juxtasomal fillings were made with pipettes filled with
aCSF containing 1% biocytin. No pressure was applied to the
pipette at any time. Once a cell was isolated extracellularly,
current pulses �1 to 5 nA, 200 ms on, 200 ms off� were ap-
plied continuously for several minutes.22

At least 1 h was allowed to pass after cell filling and prior
to tissue fixation to ensure sufficient diffusion of the biocytin
throughout the axonal arbor. The animal was deeply anesthe-
tized and perfused transcardially with phosphate buffer fol-
lowed by 4% paraformaldehyde. Cortex and thalamus were
cut tangentially and coronally, respectively, in 100-�m vi-
bratome sections. Biocytin in these sections was stained with
the chromogen 3,3�-diaminobenzidine tetrahydrochloride us-
ing the avidin-biotin-peroxidase method.16 Sections were
sometimes counterstained for cytochrome oxidase.24 Pro-
cessed sections were then mounted on slides and coverslipped
with Mowiol �Hoechst, Austria�. For comparison with our re-
construction approach, four well-filled cells from four differ-
ent rats were manually reconstructed using a Neurolucida sys-
tem with a 100� oil immersion objective �Olympus 100�
Plan; 1.25 numeric aperture �NA�.�

2.2 Image Acquisition
A standard TLB microscope �Olympus BX-51, Olympus, Ja-
pan� equipped with a motorized x-y-z stage �Maerzhaeuser
Wetzlar, Germany� was used for image acquisition �1 in Fig.
1�a��. A 546-nm±5-nm bandpass illumination filter
�CHROMA AF-analysentechnik, Germany�, which is attached
to the diaphragm of the lighthouse, provides quasi-
monochromatic illumination of the specimen �2 in Fig. 1�a��.
This bandpass filter minimizes the chromatic aberrations of
the imaging system and simplifies the theoretical description
of the optical pathway from a polychromatic to a monochro-
matic one.

The light is transmitted by a high NA �1.4 NA� oil immer-
sion condenser �Olympus, Japan� �3 in Fig. 1�a��, ensuring
parallel illumination of the specimen under
“Koehler”-conditions.25 The specimen is imaged by a 100�
high NA oil immersion objective �Olympus 100� UPL-
SAPO; 1.4 NA� in combination with a 0.5� television �TV�-
mount �Olympus U-TV0.5XC-3� or a 40� objective �Olym-
pus 40� UPLFLN; 1.3 NA� in combination with a
nonmagnifying TV mount �4 in Fig. 1�a��. The immersion oil
has a refractive index of noil=1.516 similar to glass.

The stage is navigated in three spatial directions by
OASIS-4i-controller hardware and software �Objective Imag-
ing Ltd., Cambridge, United Kingdom�. It allows the acquisi-
tion of large mosaic images19 at different focal planes. Mosaic
in this context refers to a two-dimensional �2D� image of
overlapping tiles �i.e., adjacent fields of view� that are aligned
automatically and then stitched during the image acquisition,
resulting in a large composite image �Fig. 2�a��. The user-
defined scan area is automatically divided into a series of
overlapping fields of view that we call tiles. For each tile
location, a stack of images is acquired using optical

20
sectioning with a typical separation of 0.5 �m between the
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ig. 3 Illustration of PSF modeling. �a� The x-y view of the cone of
ight from a dendrite. Its intensity distribution is approximately sym-
etric with respect to the focal plane and the optical axis. �b� Mod-

led PSF obtained by treating the TLB microscope as if it would be a
uorescent microscope that suffers from no primary aberrations.
hese assumptions have been verified �Ref. 21�. �High resolution im-
ge available online only.

URL: http://dx.doi.org/10.1117/1.2815693.3��
ig. 9 Neighborhood in 3D images, nonsimple and simple compartments. Panels �a� to �c� show a visualization of different neighborhood
opologies in 3D images. Compartments are visualized as boxes centered on their position in image space. The central compartment is always
isualized in red. All other compartments are presented in cyan. The boxes have an edge length of 1. In panels �a� to �c�, the boxes are slightly
oved away from the center box for better visualization. �a� The six adjacent neighborhood �N6� around a central compartment. Compartments

re adjacent if their boxes share one face. �b� The 18 adjacent neighborhood �N18�. Compartments are adjacent if their boxes share at least one
dge. �c� The 26 adjacent neighborhood �N26�. Compartments are adjacent if their boxes share at least one point. Panels �d� to �f� show different
ossible configurations of compartments adjacent to each other. �d� This panel shows a central compartment, which is essential to preserve
onnectivity. If the red compartment is removed, the two cyan compartments are no longer connected. �e� As in �d�, the red compartment is
ssential to preserve connectivity. Furthermore, this example illustrates the definition of an intersection compartment. �f� This panel shows a simple
enter compartment. If one removes the red compartment, the three remaining compartments are still connected. This is an example of a template,
hich is used to test during the thinning algorithm whether a compartment is removable, or not. �High resolution image available online only.

URL: http://dx.doi.org/10.1117/1.2815693.9��
Color Pla

ournal of Biomedical Optics 064029-
Fig. 18 Relative shape deviation. A bounding box is put around the
x-y projection of an individual branch. This box is iteratively divided
into eight subboxes and the numbers of boxes that are intersected by
the branch are counted �Fig. 12�. This is done until a box size be-
tween 200 and 300 nm is reached. The relative difference in the num-
ber of boxes that are intersected by automated and manually recon-
structed branches is shown for various box sizes �resolution� �Fig. 13�.
The y axis refers to the frequency of how often the difference between
the boxes was of a certain percentage. For box sizes of 1 �m, most
branches differ by approximately 2%. At the highest measured reso-
lution of 300 nm, the relative deviation is approximately 5%. �High
resolution image available online only.
�URL: http://dx.doi.org/10.1117/1.2815693.18��
te 1
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ocal planes. For each focal plane, the corresponding tiles are
hen stitched together, resulting in a 3D stack of 2D mosaic
mages for each focal position �Fig. 2�b��. This process is
xecuted by the Surveyor Software �Objective Imaging Ltd.�.

The images are recorded by a Q ICAM Fast 1394 camera
QImaging� �5 in Fig. 1�a�� equipped with a CCD chip, which
n combination with the 100� objective and the 0.5 TV
ount yields an x /y sampling of 92 nm per pixel �116 nm

er pixel if the 40� objective and a nonmagnifying TV
ount are used�. Because the illumination is limited to one
avelength, eight-bit gray value images, rather than red-
reen-blue color images, are acquired. Other cameras, such as
he Retiga 2000R Fast 1394 Mono Cooled �QImaging�, were
ested as well and showed no significant improvement in reso-
ution or signal-to-noise ratio.

To guarantee a similar dynamic range of the gray values
or mosaic image stacks from different brain slices and ani-
als, the exposure time of the CCD camera is set semiauto-
atically by the Surveyor Software. Therefore, the mean gray

alue in a typical field of view within the scan area is calcu-
ated and is set to be 190. Typical here refers to a field of view
ithout any stained neuron somata or blood vessels. This
ighly important feature of the image acquisition is the basis
or an optimal deconvolution and, therefore, a robust neuron
racing. However, significant exposure gradients within the
can area are a considerable constraint to our method. The
onsequences and limitations for neuron tracing will be dis-
ussed later.

In summary, image acquisition results in a high-resolution
D mosaic image. The typical image stack for neuron tracing
hat we use is 1 mm�1 mm�100 �m. However, the mo-
aic pattern can be adjusted to smaller or larger areas. Using
he 100� objective in combination with the 0.5 TV mount or
he 40� objective with a nonmagnifying TV mount, the sam-
ling is 92�92�500 nm3 or 116�116�500 nm3 per
oxel. Hence, the data volume for such a stack is approxi-
ately 15 GB.

.3 Hardware and Software Requirements for
Automated Image Processing

n general, the data size is between 10 and 30 GB per section.
herefore, a fast image processing pipeline based on multi
rocessor computing that can handle such large data sets was
eveloped. The algorithms are written in C++.26 The raster
mage file input/output, iteration through a raster image and
he dilation as well as the closing filter, use the ITK Image
rocessing Library.27 The algorithms were parallelized by ap-
lying the OPENMP standard.28 They are executed on AMD
ual-core 64-bit Opteron servers, equipped with either 4 cen-
ral processing units �CPUs� and 32 GB memory �DELTA
omputer Products GmbH, Reinbek, Germany� or 8 CPUs
nd 64 GB memory �fms-computer.com, Netphen, Germany�.

Once the mosaic image stack has been saved to disk, a
oftware daemon �a custom written PERL script� detects new
ata on the hard drive and starts the processing pipeline. Ad-
itional image stacks are added to a queue and processed
equentially. The script initiates the subsequent image pro-
essing steps: inversion of the gray values, subdivision into
ricks, deconvolution, down sampling, and finally the 3D

euron tracing �Figs. 1�b�, 1�c�, and 5�. Therefore, the auto-

ournal of Biomedical Optics 064029-
matic tracing routine can run 24 h a day, because the queue of
scanned image stacks is sequentially processed. The next step
needing user interaction is the manual postprocessing of the
final 3D reconstructions.

2.4 Image Restoration
Diffraction as well as interference phenomena decrease the
image quality and resolution of image stacks acquired through
a TLB microscope. The resolution along the optical axis �z
axis� is usually insufficient for an automatic tracing of faint
axonal branches surrounded by more prominent neuronal
structures.11 Image restoration �deconvolution� can partly
compensate for this limited resolution. Deconvolution is the
most important step for the performance of the automatic trac-
ing procedure.29

The image formation is described by a convolution of the
3D intensity distribution within the object with a point spread
function �PSF�.30 The PSF �Fig. 3, see Color Plate 1� de-
scribes the optical properties of the imaging system. The con-
volution results in the 3D intensity distribution within the im-
age. The intensity distribution within the object is then
restored by deconvolving the recorded image stack using the
PSF. Deconvolution is essentially an inversion of the image
formation process. Thus deconvolution yields the best results
provided the PSF can be determined exactly.

2.4.1 Inversion of gray values
The TLB microscope is treated like a fluorescence microscope
that lacks primary aberrations. Image formation can then be
simplified and modeled as a monochromatic point source that
is imaged by the circular entrance pupil of the objective. This
can be calculated analytically for low NA objectives25 and
numerically for high NA ones.31 Justification for these simpli-
fications, as well as verification, can be found in Ref. 21.
Simplifications are essentially based on considerations of
propagation of mutual coherence32 and measurements of
spherical aberrations, using a Shack-Hartmann wavefront
sensor.33 Treating the TLB images like fluorescence data, the
gray values have to be inverted. This inverted image stack
will be referred to as the “original image” stack.

2.4.2 Subdivision into bricks and linear
deconvolution

The deconvolution is carried out by the HUYGENS software.34

With the assumptions described above, the PSF is calculated
in a wide-field fluorescence mode �Fig. 3�, which is suggested
by the HUYGENS software. An important parameter is the re-
fractive index �n� of the specimen. Aberration mea-
surements21 yield a uniform value of nspecimen=1.44 for the
specimen that is a 100-�m-thick brain slice embedded in
Mowiol nmowiol=1.49. Because the simplifications of the im-
age formation process are justified, the imaging system is well
described by the modeled PSF �Fig. 3�.

This PSF is applied to the recorded image stack by a linear
Tikhonov-Miller restoration filter.35 It is derived from a least
squares approach. This approach is based on minimizing the
squared difference of the acquired image and a blurred esti-
mate of the original object. The resultant image stack is im-

proved significantly in terms of resolution and signal-to-noise

November/December 2007 � Vol. 12�6�5
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atio �Fig. 4�. This deconvolved imaged stack is then of suf-
cient quality to apply an automatic tracing of neuronal struc-

ures �Figs. 5–7�.
Using the Tikhonov-Miller filter, the HUYGENS software is

ot capable of processing images larger than 2 GB at once.
herefore, the mosaic image stack is divided into smaller
tacks of appropriate size �e.g., 3100�3100�120 voxels�,
verlapping by 100 voxels, that can be processed by HUY-

ENS. These substacks, hereafter called bricks, are regrouped
uring the neuron tracing, resulting in a deconvolved and seg-
ented mosaic image stack.

.4.3 Maximum down sampling
fter deconvolution, the data size is reduced to facilitate fur-

her computationally intensive steps. Maximum down sam-
ling is applied for each deconvolved image brick in the x-y
lane. Two neighboring voxels are merged to one voxel, com-
uting their maximum gray value. Because this procedure is
one in both lateral directions �x and y�, the data set is re-
uced in size by a factor of 4. Because neuronal structures are
ocal intensity maxima, all branches will be conserved.

As a consequence, the new lateral sampling is
84�184 nm2 per voxel if the 100� objective in combina-

2

ig. 4 Illustration of image restoration �deconvolution�. �a� The x-z
iew of various cones of light from dendrites and axons from one
rain slice of 100-�m thickness. The intensity is measured along the z
xis through a dendrite �white vertical line�. �b� The x-z view of the
mage stack after the application of a linear deconvolution filter. The
ongitudinal intensity is measured along the same line. �c� Intensity
ine plots before and after deconvolution. The signal-to-noise ratio is
mproved significantly, and the dendrite’s depth is decreased by a
actor of more than 2.5. �one voxel is 0.5 �m wide.� �See Color Plate
.� �High resolution image available online only.
URL: http://dx.doi.org/10.1117/1.2815693.4��
ion with the 0.5 TV mount is used or 216�216 nm per

ournal of Biomedical Optics 064029-
Fig. 5 Image processing. �a� Maximum intensity z projection of in-
verted image stack cropped from the mosaic image shown in Fig. 2�b�
�box�. Clearly visible is a fragmented axon with intensely filled bou-
tons �swellings with likely synaptic contact sites� and weak stain be-
tween them. �b� Maximum intensity z projection of deconvolved, in-
verted image stack. The image quality is improved in terms of signal-
to-noise ratio and resolution, especially along the z direction. �c�
Maximum z projection after intermediate voxels �gray� being tested
with the first part of the local threshold property function. �d� Maxi-
mum z projection after intermediate voxels �gray� being tested with
the second part of the local threshold property function. �e� Maximum
z projection after hit or miss transformation. Rectangular frame masks
of increasing size �1-to-3-voxel radius� delete small and isolated arti-
facts. �f� Maximum z projection after dilation and closing. A spherical
structuring element tends to smooth the foreground objects and fills
small gaps in the contour. �g� Maximum z projection illustrating the
end-line locations �white� that are local distance maxima from an
inner seed compartment. These end-line locations will not be erased
and, therefore, guarantee connectivity of objects during thinning. �h�
Maximum z projection illustrating the result of iterative layer-by-layer
thinning. The end-line locations �white� remain unchanged. �i� Maxi-
mum z projection illustrating the validation of the thinned graph. The
shortest distance from one end-line location to all others will be cal-
culated �gray value coded�. �j� Maximum z projection illustrating the
validation of the thinned graph. Compartments and intercompartmen-
tal connections that are not part of a shortest connection �gray� will be
erased. �k� Maximum z projection illustrating the pruning of the
thinned and validated graph. Because end-line locations were local
intensity maxima, morphological swellings �boutons, spines� result in
short branches that will be pruned if shorter than 3 �m. �l� Maximum
z projection after midline extraction. The prior fragmented axon is
transformed to the thin less fragmented line representation. �m� Maxi-
mum z projection of final edited and spliced graph. The remaining
background objects were manually erased and the axonal fragments
were spliced. The scale bar in the lower left corner applies to all
panels. �High resolution image available online only.
November/December 2007 � Vol. 12�6�6
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ig. 6 Image processing. �a� Maximum intensity z projection of inverted image stack cropped from the mosaic image shown in Fig. 2�b� �box�.
learly visible is a fragmented axon with intensely filled boutons �swellings with likely synaptic contact sites� and a weak stain between them. �b�
aximum intensity z projection of deconvolved, inverted image stack. The image quality is improved in terms of signal-to-noise ratio and

esolution, especially along the z direction. �c� Maximum z projection after intermediate voxels �gray� being tested with the first part of the local
hreshold property function. �d� Maximum z projection after intermediate voxels �gray� being tested with the second part of the local threshold
roperty function. �e� Maximum z projection after hit or miss transformation. Rectangular frame masks of increasing size �1-to-3-voxel radius�
elete small and isolated artifacts. �f� Maximum z projection after dilation and closing. A spherical structuring element tends to smooth the

oreground objects and fills small gaps in the contour. �g� Maximum z projection illustrating the end-line locations �white� that are local distance
axima from an inner seed compartment. These end-line locations will not be erased and, therefore, guarantee connectivity of objects during

hinning. �h� Maximum z projection illustrating the result of iterative layer-by-layer thinning. The end-line locations �white� remain unchanged. �i�
aximum z projection illustrating the validation of the thinned graph. The shortest distance from one end-line location to all others will be

alculated �gray value coded�. �j� Maximum z projection illustrating the validation of the thinned graph. Compartments and intercompartmental
onnections that are not part of a shortest connection �gray� will be erased. �k� Maximum z projection illustrating the pruning of the thinned and
alidated graph. Because end-line locations were local intensity maxima, morphological swellings �boutons, spines� result in short branches that
ill be pruned if shorter than 3 �m. �l� Maximum z projection after midline extraction. The prior fragmented axon is transformed to the thin less

ragmented line representation. The scale bar in the lower left corner applies to the panels ��a�,�a1� to ��l�,�l1��. Figures �a1� to �11� show maximum
-y projections of the same image stack. Figures �a2� to �12� show enlargements to illustrate the fragmented boutonlike axon filling.
he scale bar in the lower right corner applies to the panels �a2� to �l2�. �High resolution image available online only.

URL: http://dx.doi.org/10.1117/1.2815693.6��
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ig. 7 Image processing. Illustration of the image processing pipeline for axonal branches. For detailed figure legends, see Fig. 6. �High resolution
mage available online only.
URL: http://dx.doi.org/10.1117/1.2815693.7��
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oxel if the 40� objective in combination with a nonmagni-
ying TV mount is used. Therefore the sampling in both cases
s still below the physical resolution limit �approximately half
he wavelength, �232 nm� according to the Rayleigh
riterion.25

.5 Neuron Tracing

.5.1 Raster image–based segmentation
major feature of image acquisition is the semiautomated

etting of the exposure time of the CCD camera to control the
mage histogram as described previously. This feature is criti-
al to the downstream neuron tracing algorithms. Their pa-
ameters were adjusted and systematically tested to derive the
est possible tracings from such images. This issue of neuron
racing will be discussed later.

The down-sampled 3D image bricks are now subjected
ndividually to segmentation algorithms �Figs. 5–7�. The pur-
ose is to separate voxels that represent neuronal structures
rom voxels that are part of the background.

Local threshold filtering. A target image with the dimen-
ions of a deconvolved image brick is created and initialized
ith gray value zero. The voxels of the deconvolved bricks

re then separated into three groups.
One group, below a lower threshold is set to background

gray value 0 in the deconvolved brick�. A second group of
oxels belonging to potential neuronal structures, with values
bove an upper threshold, is assigned as foreground �gray
alue 255 in the target image�. The foreground consists of
isjointed voxel regions that will be referred to as foreground
bjects. Voxels with values between the two thresholds form
he third group of intermediate value voxels. The intermediate
oxels are tested for local features defined by a local property
unction to decide whether they belong to foreground objects
r the background.

The lower threshold is determined by calculating the inten-
ity distribution of the deconvolved image brick. The decon-
olution produces a thin unimodal histogram with the back-
round clustered near 0, structures in the high range, and
ome remaining intermediate gray values. The lower thresh-
ld is taken as the histogram’s mean value plus 1.5 standard
eviations �SDs�. This gray value is usually between 1 and 15.
t was derived after systematic testing and essentially deletes
he background noise from unstained tissue.

The upper threshold assigns the prominent and most in-
ense structures to the foreground. The value of the upper
hreshold is determined by calculating the histogram of the

aximum z projection of the deconvolved image brick. The
pper threshold is then taken as the mean value plus 3.0 SDs.
ystematic testing yielded that this is the best value to detect
endrites, well-filled axons, and the prominent parts of frag-
ented filled axons �Figs. 5�c�, 6�c�, and 7�c��. This upper

hreshold usually has a gray value between 30 and 60. The
emaining voxels between the background �1 to 15� and the
oreground �30 to 60� margins are referred to as the interme-
iate voxels.

The local property function comprises two steps. First,
ach intermediate voxel is set as the center of an
1-� -11-voxel mask in the x-y plane and the mean intensity

f the voxels, regardless of group �background voxels were

ournal of Biomedical Optics 064029-
already set to 0�, within this 2D neighborhood is calculated. If
the centered intermediate voxel has a gray value that is larger
than this mean intensity plus an epsilon value of 5 gray val-
ues, it is set to an intermediate gray level of 125 �Figs. 5�c�,
6�c�, and 7�c�� in the target image. Otherwise it is set to back-
ground �gray value 0 in the target image�. The optimal value
of � was derived by systematic testing. The group of interme-
diate voxels consists usually of isolated artifacts or dim
bridges between bright structures. These dim bridges are often
found between axonal boutons �swellings of the axon that are
likely sites of synaptic contact �Figs. 6�a2� to 6�e2�� and
should therefore be part of the foreground. The resultant tar-
get image comprises three gray values: 0, 125, and 255 for the
background, intermediate and foreground voxels, respectively.

The second part of the local property function inspects the
intermediate voxels of the target image for connectivity to a
foreground object. Systematic testing suggested that an inter-
mediate voxel is set to the foreground if 10% of the voxels
from a 17�17 mask in the x-y plane centered on this inter-
mediate voxel are part of a foreground object, otherwise it is
set to background �Figs. 5�d�, 6�d�, and 7�d��.

Hit or miss transformation. The application of the above
local threshold filter results in a binary image. This is then
subjected to a hit or miss transformation36 with rectangular
frame masks of increasing size as structuring elements. The
transformation is applied to every image plane. Isolated fore-
ground objects that are completely surrounded by a frame are
converted to background. Beginning with a radius of one
voxel and increasing the frame size subsequently to three vox-
els, small, isolated artifacts that were introduced by the linear
deconvolution are removed �Figs. 5�e�, 6�e�, and 7�e��.

Dilation and closing. Next, dilation and closing filters36

are applied. The dilation filter bridges gaps between the ax-
onal boutons that have not been closed by the local threshold
filter. Finally, a closing filter is applied �Figs. 5�f�, 6�f�, and
7�f��. Its geometrical interpretation is that a “sphere” rolls
along the outside boundary of a foreground object within the
image. Therefore, it tends to smooth sections of contours and
fuses narrow breaks as well as long thin gulfs, eliminates
small holes, and fills small gaps in the contour.36 The 3D
structuring element �sphere� for the closing and dilation has a
radius of three voxels. Larger radii could result in a fusion of
objects that should not be connected, and smaller radii would
have no significant effect on the foreground objects. The ra-
dius of three, therefore, proved to be the best compromise
after systematic testing.

Object labeling. The brickwise segmentation yields bi-
nary image stacks. Regrouping of these segmented bricks
leads to a binary 3D image stack with the dimensions of a
down-sampled mosaic image stack. This large 3D binary
stack is subjected to an object labeling algorithm. Once a
foreground voxel is detected, a region growing algorithm36

fuses all connected foreground voxels to a subregion and as-
signs a unique integer label. The binary image is thus trans-
formed to an image of N individually labeled subregions, each
representing a foreground object. Labeled objects are sorted

according to their number of voxels. The largest foreground

November/December 2007 � Vol. 12�6�9
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bject is labeled as number 1, and the smallest object is as-
igned number N. The background voxels are labeled as 0.

Raster to vector image conversion. Because the neuron
ccupies only a small fraction of the scanned image volume,
he 3D raster image representation requires inappropriately
arge data storage. A more sophisticated vector data folder is
reated that stores only foreground objects but keeps the 3D
nformation of the image. Figure 8 illustrates schematically
he architecture of the new data folder. The voxels of each
oreground object are replaced by vectors, hereafter called
ompartments. Each compartment stores the 3D coordinates
f the prior voxel and could in the future store additional
orphological information, such as local properties �e.g., ra-

ii, surface distance�.
Furthermore, each compartment is linked to its neighbor-

ng compartments by intercompartmental smart pointers,
hich allow access of neighboring compartments �e.g., top-

eft, bottom, left�. Therefore, the implicit neighborhood repre-
entation by voxel coordinates of the 3D raster image is
apped to an explicit neighborhood construct in the compart-
ent representation. The neighborhood pointers between the

ompartments preserve the 3D topology of any object. Fur-
hermore, fast navigation through the object is possible using
hese intercompartmental smart pointers.

The compartments representing one object are grouped in
“double linked” list, which guarantees fast access to each

ig. 8 Structure of the vector image. �a� Double linked list of objects.
ach object represents an individual island of foreground subregions
n the segmented raster image. The background is not stored. �b� Items
f the object list are double linked lists of compartments. Each com-
artment represents one voxel of a foreground subregion �object� of

he prior image. �c1� A compartment is realized as a vector. The 3D
oordinates, as well as additional information, can be stored.
c2�. The 3D topology of the image is maintained by intercompart-
ental smart pointers referencing the neighboring compartments and

toring their relative positions �e.g., top left�. These connections
re used for navigating the vector image. �High resolution image
vailable online only.
URL: http://dx.doi.org/10.1117/1.2815693.8��
ompartment. Therefore, the 3D raster image of N labeled

ournal of Biomedical Optics 064029-1
foreground objects is converted to N compartment lists. This
transformation replaces the 3D raster image of labeled fore-
ground objects by a double linked list, where each list item
represents one of these disjointed foreground objects by a
list of topology preserving compartments �vector image
representation�.

2.5.2 Vector image–based midline extraction
Representing objects by their main structure or skeleton �ap-
proximate midline� is a commonly used technique in image
processing. A fast and reliable way to calculate the skeleton of
an object is thinning. Generally, thinning is a layer-by-layer
�boundary voxel/compartment� erosion until only a unit-width
skeleton is left.37–39 Therefore, three different classes of com-
partment topologies are defined: 6-adjacent �N6� 18-adjacent
�N18�, and 26-adjacent �N26�.38 Two neighboring compart-
ments are N6 if their Euclidean distance is equal to 1, N18 if
their Euclidean distance is between �or equal to� 1 and the
square root of 2, and N26 if their Euclidean distance is be-
tween �or equal to� 1 and the square root of 339 �Fig. 9, see
Color Plate 1�.

A thinning algorithm has to obey the following demands
that are derived from a 2D definition by Seul et al.:40 �1�
Connected objects must thin to connected line structures. �2�
The thinned lines should be minimally 26-connected. Two
compartments are 26-connected if they are connected by a
chain of N26 adjacent compartments. �3� Approximate end-
line locations should be maintained. �4� The result of thinning
should approximate the midlines of the structures. �5� Extra-
neous short branches introduced by thinning should be
minimized.

To address these demands, we use the template matching
algorithm described by Jonker.41 It is one of the most efficient
thinning algorithms and can be briefly summarized as follows.
First, a set of end-line locations is determined to represent the
topology of the object. The end-line locations will not be re-
moved. All other compartments, starting from the object
boundary, are tested to check whether or not their removal
affects the 26-connectivity of the object �Fig. 9�. If compart-
ment removal has no affect on the connectivity, this compart-
ment is termed simple.

To determine whether a compartment is simple or not, its
N26 neighborhood is compared with all possible N26 neigh-
borhood templates that preserve local connectivity �Fig. 9�. If
the compartment neighborhood matches one of these tem-
plates, the removal of this compartment will not affect the
local connectivity and the global connectivity will be pre-
served as well.41 Hence, this compartment is assigned to be
simple and is removed. Whether or not a compartment is
simple may change after deleting compartments. Therefore,
the algorithm is iterative and finishes when no more compart-
ments are removed �i.e., the thinning algorithm is an idempo-
tent algorithm. The implementation of this thinning approach
is described in detail below.

Detection of end-line locations. The end-line locations
are determined by calculating the compartment, which is most
distant to the object boundary �compartments with less than
26 neighbors�. This is done by calculating the Euclidean dis-
tance map42 of the object. The compartment with the highest

distance number is selected and called the seed point. In the
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ase of several compartments sharing the highest distance
alue, one of them is selected randomly. Now the Euclidean
raph distance39 from each compartment in the object to the
eed compartment is computed. This is the shortest connec-
ion along the graph between two compartments. Compart-

ents with a local maximal graph distance are assigned as
ine endings �Figs. 5�g�, 6�g�, and 7�g��.

Thinning. One disadvantage of thinning is the possibility
f inward erosion, which could potentially create holes in the
bject. To prevent these artifacts, an iterative approach is
sed.38

Using the 6-adjacent �N6� and 18-adjacent �N18� topolo-
ies defined above, boundary layers are assigned that are
eeled by an iterative algorithm:

1. Collect the set of N6 boundary compartments �compart-
ents where at least one of the N6 neighbors is missing�.
2. Delete all simple compartments �according to the N26

opology� in this set, starting with those who have the lowest
umber of neighbors �i.e., intercompartmental pointers�.

3. Collect the set of N18 boundary compartments �com-
artments where at least one of the N18 neighbors is missing�.

4. Delete all simple compartments �according to the N26
opology� in this set, starting with those who have the lowest
umber of neighbors.

5. Repeat steps 1 to 4 until no more simple compartments
re found �Figs. 5�h�, 6�h�, and 7�h��.A detailed description of
uch an algorithm can be found in He et al.38 and Jonker.41

Graph validation and pruning. Imaging and segmenta-
ion can lead to artifacts such as loops and clusters in the
hinned midline representation of the objects, which have to
e removed by postprocessing. Loops are removed by select-
ng one end-line location and calculating the shortest path
rom this end-line location to all other end-line locations in
he object. Compartments or intercompartmental pointers that
re not used by any path within this validation step �Figs. 5�i�,
�j�, 6�i�, 6�j�, 7�i�, and 7�j�� are removed from the object.

Because the approximate end-line locations were local dis-
ance maxima from an inner seed point, swellings within the
euronal branches will result in a short subbranch that we
egard as artificial �Figs. 5�k�, 6�k�, and 7�k��. Therefore,
hese short branches are removed within this pruning step
rom the object if the distance from the according end-line
ocation to the first intersection �Fig. 9� compartment is
horter than 3 �m �derived by systematic testing�. Nonartifi-
ial axonal subbranches below this length threshold will
ence be pruned as well. However, for most scientific prob-
ems, this error is negligible.

.6 Editing and Splicing
he image processing, so far, transformed the deconvolved

aster image into a vector image representation of thinned
oreground objects. Therefore, each object is represented as a
D graph with end-line locations �endings�. Furthermore,
ompartments that are connected to more than two neighbors
ill be set to be an intersection �Fig. 9�. This set of endings,

ntersections, and normal compartments is converted to an
SCII �American Standard Code for Information Inter-

hange� file that can be either visualized in AMIRA
43 or NEU-
OLUCIDA. Up to this point, all processing steps are auto-

ournal of Biomedical Optics 064029-1
mated. Final editing and splicing of the reconstructions is
done manually.

2.6.1 Editing
Artifacts that are similar in shape or gray value to neuronal
structure have to be erased. In most cases, these artifacts are
astrocytes �star-shaped glial cells�. This editing is done by
superimposing the reconstruction with the maximum z projec-
tion of the original image stack. Within the projection image,
neuronal structure can be easily distinguished from artifacts.
Neuronal branches appear as elongated structures within the
projection image; whereas, falsely traced artifacts are either
small spots �most intense parts of unstained neurons� or star-
shaped if they are the remains of glial cells. These artifacts are
then marked and erased in NEUROLUCIDA, which is used here
as a graph editor. Axonal branches that were not well-filled
and, therefore, traced as a fragmented structure can be re-
stored by splicing their closest ending points to form a single
continuous axon arbor.

Within this step, additional anatomical landmarks, such as
section outlines, can be integrated. Superimposing the edited
neuron reconstruction with a low magnification image, any
visible anatomical structure �e.g., pia outlines� can be manu-
ally added to the automatic reconstruction of the neuron.

2.6.2 Splicing
The results of this semiautomated reconstruction pipeline are
3D tracings of neuronal branches from adjacent,
100-�m-thick sections. To obtain a complete reconstruction
of a cell, the reconstructions from different sections have to be
aligned and spliced �Fig. 10�. Fortunately, large radial blood
vessels running perpendicular to the pial surface retain their
positions within each tangentially cut brain slice, rendering
them ideal as position reference points. Therefore, the blood
vessel pattern is extracted during the automatic tracing proce-

Fig. 10 Splicing of adjacent brain slices. �a� Three-dimensional visu-
alization of automatically reconstructed axonal branches located in
two adjacent brain slices. A coarse alignment is made using the blood
vessel pattern �circular profiles�. Detailed alignment is made by con-
necting the branch endings. �b� and �c� Enlargements of sample
branches from the two sections in �a�. The fitting branch endings are
spliced and ultimately result in a fully connected neuronal arbor.
�High resolution image available online only.
�URL: http://dx.doi.org/10.1117/1.2815693.10��
dure. Blood vessels are detected via a region-growing algo-
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ithm in a maximum intensity z projection of the original
mage stack, prior to the deconvolution. Voxels with values
lose to 0 �maximum transparent regions� are used as seed
oints for a region-growing algorithm. The region-growing
lgorithm seeks dark and almost circular shapes �shape num-
er algorithm�36 and labels these structures as blood vessels.
ccording to the vessel pattern, the reconstructions are

ligned coarsely. More accurate alignment is then done by
atching the upper branch endings from a lower slice with

he lower branch endings from an upper slice. Once all
ranches are aligned with their counterparts from the adjacent
ection, the nearest ending points are spliced �Fig. 10�. Start-
ng at the slice including the soma, progressively more sec-
ions will be connected resulting in a complete 3D cell recon-
truction �Fig. 11�a��. If no soma is present �e.g., the cortical

ig. 11 Semiautomatic reconstruction of a pyramidal neuron in layers
and 3 and a thalamo-cortical axonal arbor. �a� Final version of an

utomatically reconstructed pyramidal neuron �in layers 2 and 3� in
he rat barrel cortex. Twelve tangentially cut brain sections were
canned. After automatic image restoration and tracing, the user
anually postprocessed the reconstruction by erasing artifacts and

plicing axonal fragments within a section. After that, the 12 slices
ere aligned and the branch endings were spliced, resulting in the 3D

raph representation of the neuron. �b� Final version of a cortical axon
rom a thalamocortical neuron. Twenty-eight tangentially cut brain
ections were scanned and then automatically traced. Axonal
ranches were manually edited, aligned, and spliced to result in a
ully connected 3D axonal arbor. The axon was reconstructed within

days, comprising 22 h of human interaction. �High resolution image
vailable online only.
URL: http://dx.doi.org/10.1117/1.2815693.11��
art of the thalamocortical axonal arbor�, the splicing starts at

ournal of Biomedical Optics 064029-1
the deepest �most distant from the pia surface� section �Fig.
11�b��.

An international patent application is pending.44

2.7 Fractal Box Counting for Quantification of
Relative Shape Deviation

For comparing the shape of automatically reconstructed
branches with manual Camera Lucida–based reconstructions,
a relative measure was used.45 The aim was to obtain the
percentage of relative deviation in shape at various resolu-
tions. The shape comparison was applied to 2D x-y projec-
tions of the traced branches. This reduction to projections is
necessary because the embedding medium �Mowiol� may ex-
pand or contract over time depending on the ambient room
temperature. After several hours at room temperature, the tis-
sue tends to shrink in the z direction �along the optical axis�.
After cooling the slide, this shrinkage is reversed �Table 1�.
Thus a comparison of the 3D morphology could be con-
founded by shrinkage and expansion of the tissue.

First, a bounding box is put around the x-y projection of an
individual branch �Fig. 12�a��. Second, this box is divided into
eight subboxes, and the numbers of boxes that are intersected
by the branch are counted �Fig. 12�b��. In subsequent steps,
each box is divided into eight boxes45 until a box size between
200 and 300 nm is reached. This is done for both the manu-
ally and automatically traced branches.

If two reconstructions would match perfectly in shape, the
number of boxes intersected by the branch would be the same
within each dividing step. If one branch differs in shape from
its counterpart, the number of intersected boxes will be differ-
ent from a certain box size onward. We checked the difference
in the number of intersected boxes at a box size �resolution�
of 5 �m, 1 �m, 500 nm, and 300 nm �Fig. 13�, which is
nearing the physical resolution limit of the imaging system
�Rayleigh Criterion�.25 The number of intersected boxes from

Table 1 Mowiol shrinkage. Qualitative measurement of the shrink-
age effect of tissue embedded in Mowiol. After 3 h at room tempera-
ture, the specimen showed shrinkage of 2 to 4 �m along the optical
axis. After a few hours at 4 °C this process is reverted. By keeping the
room air-conditioned and using the narrow illumination bandpass fil-
ter that protects the specimen from any infrared light, the specimen
shrinkage is slowed down. However, once the specimen is at thermal
equilibrium with the surroundings, the shrinkage is extremely slow
that it can be regarded static over the scanning period.

Cell

Brain Slice
Thickness

Directly from
Refrigerator

3 h at Room
Temperature

After 3.5 h Re
cooling �4 °C�

1 55±1 �m 51±1 �m 54±1 �m

2 76±1 �m 74±1 �m 74±1 �m

3 78±1 �m 72±1 �m 75±1 �m

4 47±1 �m 45±1 �m 48±1 �m

5 32±1 �m 29±1 �m 33±1 �m
the automatically reconstructed branch at the highest resolu-
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ig. 13 Results from the box counting method. The overlay of an automatically reconstructed branch �blue� and its manual counterpart �red� are
nalyzed at resolutions of 5 �m, 1 �m, 500 nm, and 300 nm. Identical boxes will be assigned a green color. When more than two braches match,
hen more green boxes are observed. At low resolution, the branches overlap almost entirely; whereas, at high resolutions, additional boxes within
he automatic version increase. This depicts the quite sophisticated fractal box counting method. �High resolution image available online only.

URL: http://dx.doi.org/10.1117/1.2815693.13��
ig. 14 Fractal box counting method 2. �a� An axonal branch reconstructed by the semiautomated system is shown �1�. Progressively parts of the
ranch were erased, indicated in red ��1a� to �1d��. The manual version of the branch is shown in �2�. �b� The decreasing number of boxes becomes
ignificant at a box size of approximately 10 �m. �c� Differences between the cropped branches and the original one �a1� in log-log plots. The
ifference in the number of boxes increases progressively. The number of boxes at the lowest resolution from the original branch is taken to be
00% of the structure. Percentages are plotted as horizontal lines. This gives an estimated measure for the relative deviation in shape between the
riginal and the cropped branches at various resolutions. �High resolution image available online only.
URL: http://dx.doi.org/10.1117/1.2815693.14��
Color Plate 2
ournal of Biomedical Optics November/December 2007 � Vol. 12�6�064029-13
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ion �300 nm� is set to be 100% of the branch. Differences in
he number of intersected boxes will be given as percentages
ith respect to this value. This is illustrated in Fig. 14, where

he differences in structure-intersected boxes are shown for an
ncreasingly cropped branch �Fig. 14�a1� to 14�a1d��.

Results
.1 Image Processing
n important constraint for the image processing is based on

he exposure time setting of the CCD camera before the image
cquisition process. The mean gray value in a typical field of
iew within the scan area is calculated and set to be 190.
herefore, the dynamic gray value range for neuronal struc-

ures is maximized and comparable within image stacks ac-
uired from different brain slices. Furthermore, we avoid clip-
ing of gray values,34 which prevents artifacts from being
ntroduced by deconvolution.

After acquisition of the mosaic image, the gray values are
nverted and the large 3D mosaic image is subdivided into 3D
ricks that can be processed by the HUYGENS software in
ombination with a linear Tikhonov-Miller filter. Because the
econvolution is performed on individual bricks, the gray
alue ranges for neuronal structure can be slightly shifted be-
ween the bricks. This is because HUYGENS estimates the
ackground for each individual brick. The brickwise local
hreshold filtering compensates for this effect. Hence, the re-
rouped segmented mosaic image shows a uniform �not brick-
ise� distribution of foreground objects.

Connected subregions of foreground voxels within the seg-
ented raster image are converted to lists of compartments
ith explicit intercompartmental neighborhood connections

vector image�. The background is usually 103 to 104 times
arger than the sum of the foreground voxels. Therefore, the
torage size and the processing time decrease significantly
fter the data conversion from raster to vector image. Instead
f processing gigabytes of data, the data set is reduced to a
ew hundred megabytes.

Template-based thinning reduces each object to its skel-
ton �approximate midline� �Figs. 5�h�, 6�h�, and 7�h��. The

ig. 12 Fractal box counting method 1. �a� A bounding box around an
utomatically reconstructed axonal branch. The same box was put
round the manual branch. �b� Each box is subsequently divided into
ight subboxes and the number of structure intersected boxes is
ounted. In the illustrated case, six of eight boxes are intersected by
he axon. �High resolution image available online only.
URL: http://dx.doi.org/10.1117/1.2815693.12��
esulting graph is further validated and corrected until all thin-

ournal of Biomedical Optics 064029-1
ning artifacts are erased. This correction usually creates
smooth midline representations �Figs. 5�l�, 6�l�, and 7�l��, ne-
glecting morphological swellings such as dendritic spines or
axonal boutons.

The tracing of poorly stained axons can result in a frag-
mented reconstruction of these structures �Figs. 5–7�. Further
small artifacts from unstained tissue, mainly astrocytes, are
traced as well. Splicing of fragmented structures and erasing
of artifacts during the manual postprocessing result in a 3D
reconstruction of all neuronal branches within the brain sec-
tion �Fig. 1�.

3.2 Comparison to State-of-the-Art Technique

The state-of-the-art technique for the 3D reconstruction of
neuron morphology, especially of the largely extending ax-
onal arbors, is the computer-aided interactive Camera Lucida
technique �e.g., Neurolucida�.13 Therefore, we compared the
performance of the semiautomated reconstruction method to
the manual reconstruction approach, as implemented with the
Neurolucida system.

First, we checked whether manually traced branches were
detected by the automated system and vice versa. We quanti-
fied whether branches were missed by either of the recon-
struction approaches. In a second comparison step, the rela-
tive deviation in shape between manually and automatically
traced neuronal structures was determined. Finally, the time
frame for reconstructing complete cells with their entire ax-
onal arbor was compared for the conventional method sys-
tems. The comparison was done for 54 slices containing 4
different filled cells �from 4 different rats�. They were ran-
domly chosen from a pool of already manually reconstructed
cells. Each manual reconstruction was done by a different
individual. Users manually traced a pyramidal neuron in lay-
ers 2 and 3, two star pyramids from layer 4, and one ventro-

Fig. 15 Comparison of automated and manual tracing of axonal ar-
bors. �a� Three-dimensional visualization of a tangentially cut brain
slice containing a filled thalamocortical cell. The reconstruction is
done by the semiautomated system. All branches are part of the ax-
onal arbor. �b� Three-dimensional visualization of the manual recon-
struction of the thalamocortical cell. The twofold enlargement shows
that the two reconstructions are almost identical. Statistics from
branch counting of 22 brain sections from this cell showed that the
automated system traced 95% of the manually reconstructed
branches. The manual tracer found 96% of its counterparts obtained
by automated tracing. �High resolution image available online only.
�URL: http://dx.doi.org/10.1117/1.2815693.15��
posteromedial �VPM� thalamocortical axon.
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.2.1 Number of identical branches
igure 15 shows a comparison between an automated recon-
truction of a section containing parts of a thalamocortical
xon and its manually reconstructed counterpart. Example

ig. 16 Comparison of brain slices for four different rats. The automat
he right column. All scale bars are 100-�m wide and apply to th
halamocortical cell. The comparison yielded that the performance o
-y projections of a slice from a layer 4 cell. The comparison yielded th
e� and �f� The x-y projections of a slice from a layer 4 cell. The com
he automatic one. �g� and �h� The x-y projections of a slice from a la
he manual system was much worse than the automatic one, due to th
tained cells. �High resolution image available online only.
URL: http://dx.doi.org/10.1117/1.2815693.16��
lices for the 4 neurons can be found in Figure 16.

ournal of Biomedical Optics 064029-1
Each automatically reconstructed cell was inspected for
missing braches that have been traced by the manual system
and vice versa. The amount of manually reconstructed
branches that were missed by the automatic system was simi-

raced brain slices can be seen in the left column, the manual ones in
nd right panels. �a� and �b� The x-y projections of a slice from a

anual and the automatic tracing were 96% identical. �c� and �d� The
performance of the manual system was worse than the automatic one.

yielded that the performance of the manual system was worse than
ll in layers 2 and 3. The comparison yielded that the performance of
perience of the human tracer and some artifacts from unintentionally
ically t
e left a
f the m
at the
parison
yer ce
e inex
lar for all four traced neurons. For the thalamocortical VPM
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ell, 5.4% were missing �Fig. 17�, 3.5% and 3.4% for the
ayer 4 cells, and no manually reconstructed branch was miss-
ng for the cell in layers 2 and 3. In the case of branches that
ere missing in the manual tracing but found by the auto-
ated system, the result was less homogeneous. Approxi-
ately 4% of automatically reconstructed branches were
issing in the manual version of the thalamocortical VPM

ell, 29% and 47% were missed for the layer 4 cells, and
lmost 70% of the automatically traced branches were not
ound manually for the neuron in layers 2 and 3.

For the 4 cells, the automated method missed 29 of 682
anually reconstructed branches in 54 sections from 4 differ-

nt rats. In other words, the new reconstruction technique
ound 96% of the manually reconstructed branches. The
anual tracings were missing 268 of 923 automatically recon-

tructed branches from the same 54 slices. This means only
1% of the neuronal structures traced by the automated
ethod could be found in the manual reconstructions. All of

he missing branches, independent of whether they were

ig. 17 Comparison of automated and manually traced neuron recon-
truction. �a� and �b� Tangential view of 22 brain slices from a
halamocortical axonal arbor reconstructed automatically �a� and
anually �b�. �c� and �d� Coronal view of the 22 brain slices from the

halamocortical axon tree. Clearly visible are the cutting planes be-
ween the individual brain sections that need to be spliced. The
anual tracing was done by an experienced person �T. K.�. Compari-

on shows that the automatic system �c� performs as well as a well-
rained human using a Camera Lucida system �d�. �High resolution
mage available online only.
URL: http://dx.doi.org/10.1117/1.2815693.17��
issed by the manual or automatic system, were part of the

ournal of Biomedical Optics 064029-1
axonal arbor. The dendritic branches were traced equally re-
liably by the two methods.

3.2.2 Fractal box counting
The fractal box counting method was applied to 167 randomly
picked branches from the 54 slices that were reconstructed by
both methods. The frequency of the same percentage in the
difference of the number of intersected boxes between an au-
tomatically traced branch and its manual counterpart is shown
as a histogram �Fig. 18, see Color Plate 1�. For each of the
four box sizes, a histogram of intersected boxes was made and
fitted with a Gaussian curve. The mean values of these Gauss-
ian fits yielded the average deviation in shape at various reso-
lutions. The relative deviation in shape is almost 0% at the
lowest resolution, meaning a box size of 5 �m. With increas-
ing resolution �decreasing box size�, the deviation increases to
a value of around 2% at a box size of 1 �m and further to
more than 3% at a resolution of 500 nm. At the highest mea-
sured resolution of 300 nm, the relative shape difference was
around 5%. However, it can be seen that some branches de-
viate a lot more in shape than the mean values suggest. These
large deviations were mainly observed for branches from den-
dritic trees.

3.2.3 Reconstruction time
The average amount of time for a manual tracing of 1 cell �10
to 30 sections�, including its axonal arbor, is approximately 60
to 90 working hours. This means the reconstruction of a single
brain slice takes between 4 and 6 h.

Using the automatic system, an image size of 1 mm
�1 mm�100 �m proved to be sufficient for most slices.
The computing time for an image stack of this size varies
from 3 to 6 h, depending on the amount of structure within
the volume. The human interaction time with the system is
approximately 1 h per slice. This comprises the setting up of
the scanning pattern �5 min�, as well as the manual editing
and splicing of the automatically reconstructed slices
�5 to 45 min�. Therefore, the average amount of time for re-
constructing 1 cell with the semiautomatic system is between
30 to 90 h of computing and 10 to 20 h of human interac-
tion. Given a working day of 8 h, the reconstruction using the
manual system takes approximately 2 weeks, whereas the au-
tomatic system yields a comparable reconstruction within
2–4 days �Fig. 17�.

4 Discussion
The method of semiautomated reconstruction is based on the
acquisition of stacks of rectangular mosaic images. One of the
key steps is the high-resolution deconvolution, improving the
image quality of stained neurons significantly. This is suffi-
cient to extract neuronal structures from the background by
applying a local threshold filter that seeks connectivity. The
segmented raster image, consisting of disjointed foreground
subregions is then converted to a vector image of objects.
These are converted to thinned midlines, yielding a graph
representation of the neuronal structure candidates. These
graphs are then manually edited and spliced, resulting in a

complete 3D reconstruction of the neuron.
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.1 Recovery
he results showed that approximately 96% of the manually

econstructed axon branches were traced by the automated
ystem. For each of the 4 cells, the performance of the new
econstruction technique is of a similar quality in terms of
racing branches that were found in their manual counterparts.
he 4% of structure details that were not recovered fall into

hree groups.
The first group ��1% in the sample of four cells� consists

f faint axonal branches. An indicator for faintness is that
hese branches are not local intensity maxima. Therefore, the
econvolution algorithm tends to weaken these branches in-
tead of amplifying their intensity.

The second group �less than 1%� comprises small axonal
ndings that are not distinguishable from reconstructed arti-
acts and, therefore, are erased by the user during manual
diting and splicing. To minimize the loss of small axonal
ndings, we superimpose the maximum projection of the
riginal image stack with the 3D reconstruction.

The third group comprises branches that are not located
ithin the scanning area. By default, an area of 1�1 mm2 is

canned. For some sections, this area is not sufficient as the
xons spread over a larger area. For these particular brain
ections, the missing parts of the slice can be scanned. The
ranches missed initially are simply added to the rest of re-
onstructed branches, using NEUROLUCIDA for editing.

Summarizing these three groups, one can state that the 0 to
% of missing automatically reconstructed branches consist
ither of small endings, faint branches, or not-scanned
ranches. By additionally scanning adjacent areas and in-
pecting the projection image, the number of missed branches
an be minimized. Therefore, the performance of the semiau-
omatic reconstruction pipeline is limited by the first group,
hich implies the prerequisite that neuronal structures are lo-

al intensity maxima.

.2 Comparison with Manual Tracing
nly 71% of the automatically traced branches were found by

he manual tracers. The number of missing structures varied
idely between 4% and almost 70%. The missed branches

an be grouped into two cases.
The first group consists of branches that were filled and

tained but do not belong to the cell of interest. In some cases,
urrounding neurons take up the tracer molecule, and some of
heir dendrites or their main axon will be traced.

The second group comprises neuronal structures that were
issed by the human tracer. The user usually starts tracing at

he soma. If an axonal branch ending is missed in that section,
he human tracer tends to ignore these areas in the subsequent
ections and, therefore, sometimes misses large parts of the
xonal branching patterns. In some cases, this error becomes
bvious during splicing and the human tracer has to go back
o the tissue and to identify the connections missed previ-
usly. The size of the group of missing branches closely cor-
elates to the experience of the user. Only training, double
hecking, and anatomical knowledge will minimize the loss
f branches and improve the tracing quality.

Comparing the two groups, an explanation for the large
eviation from 4 to 70% in missed branches can be given. The

ortical part of the axonal arbor from the thalamocortical cell

ournal of Biomedical Optics 064029-1
is far away from the biocytin injection site �soma� in the
thalamus.13 Therefore, no artificial branches from other cells
were found in cortex. Furthermore, this cell was traced manu-
ally by an experienced person in the laboratory �T. K.�. Both
facts result in the small number �4%� of missed branches.

In contrast, the manual reconstruction of one cell in layers
2 and 3 was missing almost 70% of the automatically recon-
structed axonal branches. This probably has two reasons.
First, layers 2 and 3 are closer to the site of cell filling. There-
fore, some artificial branches from unintentionally filled cells
were traced automatically and left out intentionally by the
manual tracer. The second reason is that this cell was the first
reconstruction of axonal morphology this individual ever
attempted.

In conclusion, the manual reconstruction of neurons and
their axonal arbors using a computer-aided Camera Lucida
system �e.g., Neurolucida� depends strongly on the abilities of
the individual tracer, and reconstructions will be somewhat
subjective.46 In contrast, the semiautomated tracing system
delivers reliable and objective reconstructions even in the
hands of new users �S. E.�. S. E. was able to reconstruct the
axonal arbor presented in Fig. 11�b� with no significant dif-
ferences compared to a reconstruction of this neuron done by
an experienced tracer �T. K.� �data not presented�.

The automated system fails if the staining of the axon is
insufficient, if the background is too high or in the presence of
a strong gradient in thickness or contrast within the tissue.
The latter will result in different optimal camera exposure
times depending on the location of the field of view within the
scanning pattern. Because the exposure is set to one value for
the entire pattern, this may result in a failure of the subsequent
deconvolution and neuron tracing. However, we are currently
trying to compensate for this problem by applying of an ex-
posure mask that compensates for inhomogeneous tissue.

Another limitation is that, due to the small diameters and
tortuous paths of axons combined with physical resolution
limits of the system, two close lying axons may occasionally
be mistakenly connected by the automatic tracing algorithm.
Because of the stereotyped nature of these errors, we may be
able in the future to develop an algorithm to correct them.
Nevertheless, because action potentials are propagated by sal-
tatory conduction and the axon is surprisingly relatively elec-
tronically compact,47 modelers and experimentalists are often
unconcerned with the precise locations of all branch points.
Rather, the focus is usually on the length and spatial organi-
zation of the axonal arbor. Thus, despite this limitation, our
current system already measures the two main parameters of
interest with high reliability and accuracy.

Indeed, the box counting method yielded small deviations
in shape between manually and automatically reconstructed
branches. This difference mainly arises from the larger num-
ber of points used by the automatic system to represent the
graph. At low resolution, this difference is almost 0. At high
resolutions �300 nm�, close to the physical resolution limit,
the relative deviation was approximately 5%. Therefore, de-
pending on the scientific aim, these slight deviations can be
irrelevant.

Nevertheless, Fig. 18 shows clearly that some branches, in
particular at the highest resolution, deviate substantially from
the 5% mean value given by the Gaussian fit. This group

consists of dendritic branches. Because the dendrites are not
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s smooth as axonal branches, their automated reconstruction
ill also not be perfectly smooth. Reconstructed spine heads

hat were not removed during the graph validation and/or
runing, result in quite large relative shape deviations �Fig.
9�. However, because the spines are part of the dendrites, the
elative difference in shape can usually be neglected.

.3 Reconstruction Time
n important issue is the reconstruction time needed to trace
neuron �e.g., the pyramidal neuron in layers 2 and 3 takes 10

o 30 brain slices�. Because the automatic tracing is running
4 h a day and the human interaction time decreases from
pproximately 60 to 90 to 10 to 20 h, the reconstruction time
ecreases from weeks to days.

.4 Comparison to Other Methods
econstructing the branching pattern of neurons is a challeng-

ng task. In the literature, several methods for different imag-
ng and processing approaches have been described.1–9,11 Most
f the methods available today are based on confocal or two-
hoton imaging. This is due to the good signal-to-noise ratio
nd the high resolution along the optical axis for both of these
maging techniques. Rodriguez9 showed that laser scanning

icroscopy in combination with sophisticated software algo-
ithms is even capable of resolving the neuronal morphology
f dendrites at spine level. Their method is capable of recon-
tructing the dendritic arbor and visualizing the surface of the
pines. By scanning several adjacent image stacks, the field of
iew is increased, but still their method lacks the possibility
f reconstructing the axonal arbor. This is due to the limited
eld of view of laser scanning microscopes, the bleaching of

he tissue,48 and the lack of suitable mosaic systems for this
maging technique.

Another method that has been developed to analyze axonal
rbors is the method described by Broser et al.15 Here lentivi-
al gene transfer is used to transfect a population of pyramidal
eurons. The axonal arbors of these cells are subsequently

ig. 19 Relative shape deviation for dendrites. �a� Maximum intensity
rojection of original image stack showing some dendritic branches.
b� Automatic tracing of dendritic branches. Spine fragments and thin-
ing artifacts yield a rugged image. �c� Manual tracing of the same
raches shown in �b�. �See Color Plate 1.� �High resolution image
vailable online only.
URL: http://dx.doi.org/10.1117/1.2815693.19��
tained. Two-dimensional mosaic microscopy in combination

ournal of Biomedical Optics 064029-1
with extended focus imaging �EFI� is used to resolve the ax-
ons. Automatic 2D traces then quantify the axonal length in
different areas of the tissue.

The appropriate reconstruction method strongly depends
on the scientific task. To analyze spine shapes and distribu-
tions along a dendrite, the electron or confocal microscope
methods described by Denk and Horstmann49 and Rodriguez
et al.9 might be the most suitable. For determination of statis-
tical connectivity patterns, the 2D EFI method proposed by
Broser et al.15 could be used. However, if the precise 3D
extension of the axonal arbor is important, one can either use
the time-consuming Camera Lucida technique or one can use
the alternative method presented here.

4.5 Future Improvements
We found that the human influence on the reconstruction dur-
ing the splicing of neuronal branches from individual sections
may result in ambiguous tracings. To further minimize the
subjective issue of pattern recognition, we currently are de-
veloping a semiautomated interactive 3D editing and splicing
tool �AMIRA extension: SPATIAL GRAPH�43 in cooperation with
the Konrad-Zuse Institute, which will replace the 2D editing
environment of NEUROLUCIDA we used so far. The interface
file format is the .hoc format �NEURON�.50,51 After editing and
splicing in AMIRA, such a .hoc file can then be integrated into
morphological databases or used for simulations in NEURON

or NEURODUNE.52 Furthermore, an automated extraction of
approximate dendritic radii will be added, because this is es-
sential information for the simulation of neuron properties.

4.6 Conclusions
We conclude that the semiautomated method of 3D tracing of
neuronal morphology is a reliable, objective, and less time-
consuming alternative to the current manual systems. Further-
more, the quality of reconstruction depends less on the abili-
ties of the human tracer. Our method should facilitate the
creation of large databases of neuron morphologies. This will
yield interesting possibilities for simulation of information
processing in small neuronal circuits. Furthermore, axonal
outgrowth under various conditions of development and ex-
perience can now be more easily quantified in three-
dimensions and statistically analyzed.
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