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Abstract. The aim of this work is to draw the attention of the biopho-
tonics community to a stochastic decomposition method �SDM� to
potentially model 2-D scans of light scattering data from epithelium
mucosa tissue. The emphasis in this work is on the proposed model
and its theoretical pinning and foundation. Unlike previous works that
analyze scattering signal at one spot as a function of wavelength or
angle, our method statistically analyzes 2-D scans of light scattering
data over an area. This allows for the extraction of texture parameters
that correlate with changes in tissue morphology, and physical char-
acteristics such as changes in absorption and scattering characteristics
secondary to disease, information that could not be revealed other-
wise. The method is tested on simulations, phantom data, and on a
limited preliminary in-vitro animal experiment to track mucosal tissue
inflammation over time, using the area Az under receiver operating
characteristics �ROC� curve as a performance measure. Combination
of all the features results in an Az value up to 1 for the simulated data,
and Az�0.927 for the phantom data. For the tissue data, the best
performances for differentiation between pairs of various levels of in-
flammation are 0.859, 0.983, and 0.999. © 2008 Society of Photo-Optical In-
strumentation Engineers. �DOI: 10.1117/1.2982527�
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Introduction

bout 90% of all cancers arise from epithelial cells that cover
urfaces of the body and the lining of the internal organs.1

alignancies occurring in the epithelium lining the internal
urfaces of organs �e.g., aerodigestive tract or colon� typically
re discovered late in the course of the disease, usually be-
ause they are “hidden” from the physician, and are not usu-
lly found in a routine physical exam. Dysplasia is a precursor
issue change prior to epithelial cancer that can be reversible
f it is detected at very early stages. Dysplasia is invisible to
he eye, and can only be detected using biopsy.1 Investigators
re working on alternatives for biopsy to detect precancerous
onditions.2,3 Noninvasive and minimally invasive optical
echniques are becoming staples of modern medical
echnology.4 Dysplasia can occur less than 1 mm in size. For
uch small lesions, optical techniques are a good choice for
etecting the structural changes in the tissue that cannot be
asily detected visually.

A variety of optical techniques has been developed and
nclude reflectance,5–9 fluorescence,10–12 light scattering spec-
roscopy �LSS�,13–16 time-resolved autofluorescence,12,17 po-
arization imaging,18–20 optical coherence tomography
OCT�,21–23 diffused optical tomography �DOT�,24 near-
nfrared imaging,25 Raman scattering spectroscopy,26–28 and

ddress all correspondence to Ezgi Taslidere, Electrical and Computer Engineer-
ng Dept., Drexel Univ., Philadelphia, PA 19104; E-mail: et43@drexel.edu
ournal of Biomedical Optics 054039-
frequency domain spectroscopy.29 Of these, reflectance and
fluorescence methods are of particular interest for their appli-
cation to early detection of cancer, particularly those of the
aerodigestive tract. For example, in the work reported in Ref.
8, cell size and density are determined through backscattered
light using spectroscopy. The scattered light is modeled as
Mie scattering by surface cell nuclei. In contrast, in Ref. 30,
precancerous detection is performed through fluorescence sig-
natures. Since each of these optical modalities has its own
points of advantage, combinations of such methods often pro-
duce specificity and sensitivities that are unattainable by indi-
vidual techniques.7

Optical techniques do not necessitate tissue removal and
analysis can be made in real time, hence offering the potential
of detecting mucosal changes at the microstructural, bio-
chemical, and molecular level. The detailed spatial intensity
distribution of light scattered by an individual particle is a
complex function of the particle’s size, shape, and orientation
with respect to the wavelength as well as the incident
illumination.31 Among other important measures, scattered
light provides an objective measure of epithelial nuclear en-
largement and crowding, which are the most significant char-
acteristics of dysplasia and early cancer.1

Our goal is to establish a textural model that models the
reflected scattered signal and shows its sensitivity to differen-
tial changes in the morphology and physical characteristics of

1083-3668/2008/13�5�/054039/14/$25.00 © 2008 SPIE
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he tissue being optically scanned. Textural models have been
uccessfully used by us to model radio frequency �rf� ultra-
ound images of breast tissue,32–34 where we have proven the
odel to be quite effective for discrimination between benign,

ormal, and malignant breast tissues �the Az values were in
he range of 0.862 to 0.999�. Similar to our work on rf mod-
ling of breast tissue, we adopt a stochastic decomposition
ethod �SDM� to model the scattered signal optically re-
ected from mucosal tissues to track down differential
hanges in the morphology and physical characteristics of the
maged �scanned� tissue. One of the original contributions of
his work is the application of the SDM model to optical data,
hich is totally new to this application field. A second contri-
ution is the systematic analysis and correlation between the
ignal parameters in predicting and tracking morphological
nd physical characteristics of epithelial tissue as it undergoes
hanges. Simulations and phantom data are used to test the
alidity of the model. The test scenarios are driven with bio-
ogical applications �such as dysplasia� in mind. Differentia-
ion based on nuclei sizes and densities �a trademark of
uclear crowding in dysplasia� were embedded in the choice
f the simulation parameters of the light scattered from the
ells mimicking dysplasia based on the Monte Carlo �stochas-
ic� simulation of Mie scattering. Some of the parameters in
ur stochastic Mie scattering simulator relate directly to the
issue morphology, such as: number of cells, size of cells, and
ocation of cells; while others relate to the physical staining
haracteristics of the tissue, which affect and are affected by
he absorption and refraction indices. The model is also tested
sing phantoms with nuclei sizes and density scatterers
spheres� varying in accordance with biological epithelial tis-
ue as it undergoes dysplastic changes. We used phantom data
o see the performance of the technique to discriminate be-
ween two different morphologies reflecting tissue size of cell
uclei sizes mimicking normal and dysplastic epithelium. The
imulations and phantom experiments show that some of the
DM parameters are extremely effective in picking up
hanges in tissue morphologies.

To further illustrate the feasibility of the model, we have
onsidered a preliminary animal model from mouse colon in
itro with different levels of induced inflammation, where we
est the ability of the SDM to differentiate between the vari-
us stages of inflammation as it develops in the mouse colon
pithelium. This is of particular relevance, as there is a func-
ional relationship between inflammation and cancer.35 Balk-
ill and Mantovani36 described that issue as: if genetic dam-

ge is the “match that lights the fire” of cancer, some types of
nflammation may provide the “fuel that feeds the flames.”36

or instance, ulcerative colitis �UC� associated colorectal can-
er follows a histological sequence starting in the inflamed
ucosa as a hyperplastic lesion develops through dysplasia

nto adenocarcinoma.37,38 This is sometimes summarized as
he “inflammation-dysplasia-carcinoma” sequence.39

Stochastic Decomposition Method and the
Extracted Features

he decomposition of the LSS image �2-D scan� is consistent
ith the general decomposition of regular stochastic fields

nto predictable �the specular field� components and unpre-
ictable �the diffused field� components, known in the litera-
ournal of Biomedical Optics 054039-
ture of stochastic processes as the World decomposition, used
to decompose the scattered or reflected signal into its two
components.33,40 The specular scattering component is mod-
eled by periodic or quasiperiodic image field of point scatter-
ers corresponding to the cell boundaries, whereas the diffuse
component is modeled by an autoregressive field, which cor-
responds to a linear filter driven by white noise:

y�n� = c�n� + d�n� , �1�

where the diffuse component d�n� is modeled as a zero-mean
autoregressive process of order p driven by a zero-mean white
noise sequence w�n� �not necessarily Gaussian� with variance
�2,

d�n� = �
s=1

p

asd�n − s� + w�n� . �2�

The resolvable scattering structure c�n� can be viewed as a
summation of smeared modulated delta functions located at
the resolvable scatterers’ locations, and of random strength,
the coherent component c�n� can be modeled by a superposi-
tion of Gaussian modulated sinusoids:

c�n� = �
l=0

Ne Al

�cl
�2�

exp� �n − mi�2

2�cl
2 �cos�wcn� , �3�

where wc is related to the wavelength of the light, mi indicates
the location of the coherent scatterer, �ci is a parameter re-
lated to the bandwidth, Ai is related to the strength of the
coherent scatterer, and Nc is the number of coherent scatterers
in the window examined. The only known parameter is wc.

The SDM first checks for the existence of coherent scat-
terers by testing the hypothesis of Rayleigh scattering, which
can be achieved by using the nonparametric Kolmogorov-
Smirnov �KS� test for color field.41 The rejection of the Ray-
leigh scattering hypothesis indicates the existence of a coher-
ent component. If a coherent component exists, the signal is
decomposed into its coherent c�n� and diffuse d�n� compo-
nents using the wavelet decomposition described in Ref. 32.
The SDM consists of taking the wavelet transform of the scat-
tered signal and thresholding its energy. The decomposition
uses the continuous wavelet transform and was thoroughly
described and tested on simulated ultrasound rf data.32,33 After
the decomposition, we fit the autoregressive �AR� model to
the diffuse part and extract the parameters of the diffuse part
as well as the coherent part. If the test of presence of a coher-
ent component fails, the signal is totally diffused and is mod-
eled as an AR process.

The parameters for the coherent component are as follows.
Number of detected coherent scatterers Nc in a region of

interest (ROI).The locations of large fluctuation of the scale-
averaged wavelet power around its mean value are the loca-
tions of the coherent scatterers in the probed region under
study.33,34 The number of the fluctuations that exceed a thresh-
old is the number of coherent scatterers in the tissue. The
number of coherent scatterers is related to the number of re-
solvable scatterers in the tissue (single scatterers). This pa-
rameter is correlated with the size of the window. The larger
September/October 2008 � Vol. 13�5�2
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he size of the window is, the more coherent scatterers might
e detected.

Mean energy of the coherent scatterers E. This parameter
eflects differences in energy due to changes in index of re-
raction that affect the absorption and reflected energy.

The parameters and features of the diffuse component are
stimated from the model parameters and are given as fol-
ows.

Residual error variance of the diffuse component �2. The
quivalent of the energy of the coherent scatterers for the
iffuse component is the unconditional variance. The uncon-
itional variance is related to the residual error variance �con-
itional variance of the diffuse component� through the coef-
cients of the autoregressive model �AR parameters�. The
alues of the unconditional variance are reflected mainly on
he residual error variance.33,34 They are also weakly reflected
n the AR parameters. It follows that the same argument made
or the mean energy of the coherent scatterers applies for the
esidual error variance as well, because if the resolution in-
reases drastically, the previously unresolved scatterers will
e resolvable. In our previous research for breast cancer char-
cterization using ultrasound, this parameter showed excellent
iscrimination ability between benign, normal, and malignant
issues.33

Rayleigh scattering degree of the diffuse component D.
his parameter describes the discrepancy between the empiri-
al distribution of the innovation process of the diffuse com-
onent and the Gaussian distribution by calculating the KS
istance. The KS distance is the distance between two cumu-
ative probability distribution functions; it is the distance used
o test the hypothesis that given data follow a certain nominal
istribution. The lower the value of D, the closer to Rayleigh
cattering the diffuse component is.33,34 In our previous re-
earch with ultrasound backscattering, this parameter was
ound to be tightly connected with the density of scatterers per
esolution cell; large scatterers per resolution cell caused Ray-
eigh scattering and less scatterers caused deviation from
hat.33 Based on our past experience, we anticipate this param-
ter to be able to differentiate between the various stages of
yplasia formation as it directly relates to formation of new
ysplastic cells and the increase/decrease in the dysplastic cell
ensity that directly reflects on that KS distance.

Normalized correlation coefficient of the diffuse compo-
ent �N This parameter reflects the correlations between
eighboring diffuse scatterers in the tissue, and depends on
he density of the diffuse scatterers in the tissue in relation to
he sampling period. The normalized correlation coefficient is
he determinant of the covariance matrix normalized to set the
iagonal of the matrix equal to 1.33 The determinant of the
ormalized covariance matrix is real, nonnegative, and equals
if the data are linearly dependent, and equals 1 if the data

re independent.
The parameters can be analyzed either individually and/or

n combination to construct a detailed map of a tissue region.
hen using parameters in combination, global decision fu-

ion must be used.34 The global decision fusion we use is
xplained in detail in the following paragraphs.

Let Yi be the i’th feature, H0 be the null hypothesis �nor-
al tissue�, and H1 be the alternative hypothesis �cancerous

issue�. The local Neyman Pearson �NP� decision rule with the
ournal of Biomedical Optics 054039-
highest detection rate among all other decision rules for any
fixed false alarm rate is34

p�Yi�H1�
p�Yi�H0�

�
H0

H1

�i. �4�

This reduces to

Xi = 1 iff Ti � �i and Xi = 0 iff Ti � �i, �5�

where Ti is a sufficient statistic associated with the data Yi,
which could be the data itself Yi, as for the case, for example,
when Yi is Gaussian with different means but the same vari-
ance under H0 and H1; or it could be some function of Yi, for
example34

Ti =
�Yi − �0�2

�0
2 −

�Yi − �1�2

�1
2 , �6�

for the case when Yi is Gaussian with different means and
variances under H0 and H1. �i is the threshold such that the
false alarm rate is 	l= p�Ti��i �H0� and the probability of
detection is �1−
i�= p�Ti��i �H1�. A global NP decision rule
or fusion would be34

p�Y� H�H1�

p�Y� H�Ho�
�
H0

H1

� , �7�

where Y� H is the feature vector consisting of the individual

parameters �H set�. If Y� H is normally distributed with mean
�� 0 and covariance matrix �0 under H0, and �� 1 and �1 under
H1, then the global NP statistics reduce to34:

Tg = �Y� − �� 0�T�0
−1�Y� − �� 0� − �Y� − �� 1�T�1

−1�Y� − �� 1� . �8�

Since the NP has the highest probability of detection for a
fixed false alarm rate among all other decision rules, it there-
fore follows that the power �detection rate� of the global like-
lihood ratio test �1−
�� �1−
i�, i�H. Hence, the global
receiver operating characteristics �ROC� curve, which is a
plot of probability of detection versus probability of false
alarm, bounds from above all the local ROC curves. Simply
stated, this proves that the addition of further information
�sum of features� improves the probability of detection over
using the individual features alone, and that is true for any
given false alarm rate.34 This means that the fusion of the
various SDM features will result in better detection than ei-
ther alone.

We use the area under the ROC curve Az as a metric, since
it integrates out the dependence of the performance on which
false alarm rate to use. A sample ROC curve and sample class
distributions from which the ROC curve is determined are
shown in Fig. 1. Az values close to 0.5 indicate very weak
discrimination power between two classes �total chance deci-
sion rule amounting to coin tossing�, whereas values close to
1 indicate very strong discrimination power and yield very
high sensitivity and specificity values.34
September/October 2008 � Vol. 13�5�3
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Details of Experiments and Data Collection
n the experiments either based on simulations or on phantom
ata, we select the parameters and their values to mimic the
nterrogation of a biological epithelium tissue that is undergo-
ng neoplastic changes, either dysplastic or of a malignant
ature. Dysplasia is a term that refers to a precancerous con-
ition. Malignant neoplastic changes mostly follow preexist-
ng dysplastic changes. Removal of adverse environmental
timulus leads to restoration of normal cell growth patterns,
hich makes dysplasia reversible if detected in its very early

tages. Dysplasia is recognized by cells altering their appear-
nce �cytology�. As tissue becomes dysplastic, the nuclei en-
arge and become crowded.6 Healthy tissue epithelial nuclei
ave a characteristic diameter of 4 to 7 �m and are arranged
n neat rows.8 In dysplastic epithelium, the cells proliferate
nd the nuclei enlarge and appear darker when stained.1 Nu-
lei can be as large as 20 �m in diameter.8 Normal intestinal
ells are characterized by uniform nuclear size distribution
here malignant cells have larger nuclei and more variation in
uclear size.18 In Ref. 18, for a normal tissue sample, the
verage diameter was found to be 4.8 �m, a standard devia-
ion of the sizes was 0.4 �m. For the cancerous tissue sample,
he corresponding values were 9.75 and 1.5 �m. The detec-
ion of dysplasia is a challenging problem, since it does not
orm macroscopically observable structures that can be picked
uring colonoscopy.

Finally, to further show the feasibility of the model, we
ave also considered a preliminary in vitro animal model of a
ouse colon with different levels of induced inflammation.
ere we test the ability of the SDM to differentiate between

he various stages of inflammation as it develops in the mouse
olon epithelium.

.1 Simulation of Scattered Light from Cluster of
Spheres Subjected to Changes in Morphology
and Physical Characteristics

he simulations are based on linear arrays of light scattering
ata at a given wavelength. The results on simulated overlap-
ing and nonoverlapping 1-D scans �256 points� of data obey-
ng Mie scattering have been obtained. The theoretical details
or the simulations are given in the Appendix �Sec. 6�. Each

1

1

PD (probability of detection)

PFAα

1-β

(probability of false alarm

(a)

Az
(area of the

shaded region)

Fig. 1 �a� A sample ROC curve and �b� sample cla
ournal of Biomedical Optics 054039-
intensity point �See Eq. �14�	 on the 1-D scan results from a
cluster of N multiscattering spheres located at given positions
�x ,y ,z� within a cube extending from −20 to +20 �m on all
three axes. Unless otherwise stated, the term “resolution cell”
refers to this volume. Since we do not deal with overlapping
spheres, the sphere locations are selected to be sufficiently
spaced. The spheres were of a given size and index of refrac-
tion �RI� Figure 2 shows an ensemble of sphere scattering
clusters, with each cluster comprising N spheres, each with
diameter d. The strength of the incident light I at a fixed
wavelength 
 �580 nm in the experiment� and the direction of
the detector �� ,�� were control parameters in the simulator.
The scattering matrix corresponding to a direction of �45 and
90 deg� is calculated. The output of the simulator is the scat-
tered light received at the detector from the ensemble of the
scattering spheres obtained using the Mueller scattering ma-
trix �see Eq. �11�	. The scattered light was calculated at vari-
ous positions of the resolution cell �centroids of the cube�.
The contour map is rectangular, with � and � values repre-
senting the vertical and horizontal coordinates. The output of
the program is the Mueller scattering matrix map written se-
quentially for each set of � and � values. The simulator cal-
culates the scattering matrix for nt+1 values of � between 0
and �, and nt+1 values of � between 0 and 2�. The output

P(f|H0) P(f|H1)

β α
ζ α

(b)

ibutions from which the ROC curve is determined.

Cluster ensemble of 256 clusters
(40µ x 256 = 10.24mm) – 1D scan

100 different realizations of cluster ensembles
(40µ x 100 = 4mm)

Cluster containing
N spheres with diameter d

40µ

40µ

Cluster ensemble of 256 clusters
(40µ x 256 = 10.24mm) – 1D scan

100 different realizations of cluster ensembles
(40µ x 100 = 4mm)

Cluster containing
N spheres with diameter d

40µ

40µ

Fig. 2 Distribution of scattering spheres within 256 uniformly distrib-
uted cluster ensembles with each cluster having N spheres each with
diameter d.
)

ss distr
September/October 2008 � Vol. 13�5�4
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onsidered out of this nt+1 by nt+1 matrix always corre-
ponds to 45 deg �� value� and 90 deg �� value�. The output
f the simulation gives the elements of the Mueller scattering
atrix of the scattered light, corresponding to �=45 deg and
=90 deg �Eqs. �12� and �13�	. The intensity is calculated

rom the scattering matrix using Eq. �14�.
To introduce randomness into Mie scattering,16 we slightly

nd randomly perturb the spheres’ position coordinates, and
umber and refractive index �RI� of the scattering spheres
round nominal values defining a given tissue structure. The
oordinates of the first cluster ensemble are specified and the
oordinates for the remaining 256 clusters are calculated, gen-
rating from the first cluster by adding a random position
omponent to each of the N spheres in the first cluster using a
aussian random number generator. The position of each

phere in the first cluster using a Gaussian random number
enerator. The position of each sphere in the new cluster is
omputed as follows:

�x,y,z�i = �x,y,z�1 + random coordinates

from random number generator. �9�

andom order permutations are obtained from the generated
ata of length 256. We obtain 100 independent realizations
ith 256 points of intensity values for each case considered.
00 realizations of 256 points each are deemed sufficient to
btain reliable parameter estimates and good statistical
amples for testing and reliable classification. Each realization
ccounts for one 1-D scan. For each such realization, we com-
ute the parameters of our decomposition. We then proceed to
tudy the discrimination power of the SDM parameters for
ifferent scattering conditions corresponding to different tis-
ue structures.

We have considered resolution cells and we picked param-
ters �cell sizes, number, and index of refraction �RI�	 that are
lose in values to normal and crowding epithelial nuclei that
re encountered in dysplasia. Two types of cells are simulated,
ormal cells and diseased cells. For the simulation of the nor-
al cells, the cluster volume is assumed to contain 9 to 11

ells of 5 �m diameter. For the simulation of the diseased
ells, each cluster ensemble is considered to consist of four
ells of 12 �m diameter. The index of refraction �RI� of the
issue is generally in the range of 1.33 to 1.5.42,43 RI takes a
inimal value when the content of water in tissue is maximal

nd vice versa.42,44 We used two different indices of refrac-
ion, RI1 and RI2 �RI1=1.38+0.005i and RI2=1.41+0.010i�,
alues that are consistent with many other studies in the
iterature.42,45–53

Table 2 Parameter values for simulation set 3.

Cell diameter

Single sphere
scattering

A1 30 �m

A2 10 �m

MultiSphere
scattering

A3 5 �m
ournal of Biomedical Optics 054039-
Three different sets of simulations are considered. In simu-
lation sets 1 and 2, four types of data are created, L1, L2, S1,
and S2. L1 stands for large spheres with cell diameter of
12 �m with index of refraction. 1.38+0.005i, whereas L2
stands for the same configuration except that the index of
refraction is increased to 1.41+0.01i. S1 stands for small
spheres with cell diameters of 5 �m with index of refraction
1.38+0.005i, whereas S2 stands for the same configuration
except that the index of refraction is increased to 1.41
+0.01i. L1 and L2 represent diseased cells, while S1 and S2
represent normal cells. Descriptions for the four types of data
are summarized in Table 1.

We repeat the experiment �simulation set 2�, but now we
vary the resolution so that some of the scatterers behave as
coherent scatterers as well as diffuse. For simulation set 1,
there is no overlap between consecutive samples. However,
for this new case, we take samples that are measured every
10 �m, thus producing an overlap between the 256 samples
as opposed to the simulation set 1.

Finally, in simulation set 3 we consider the case of one
single scatterer per resolution cell as opposed to many �mul-
tiscattering�, and there is no overlap between consecutive
samples. Three types of data are created, A1, A2, and A3. For
A1 and A2, there is a single sphere with diameters 30 and
10 �m, respectively, in the resolution cell. All 256 samples
are randomized through small random uniform perturbations
on the index of refraction around 1.38+0.005i: positions of
the spheres are fixed from cluster to cluster. A3 has ten
spheres �multiscattering case� of 5 �m diameter and index of
refraction 1.38+0.005i. The descriptions of these three types
of data are given in Table 2.

3.2 Details of Phantom Experiments
�Probe, spectrometer, and light source are provided by Drexel
Photonics Laboratory members Vitol, Kurzweg and Nabet�.

Table 1 Parameter values for simulation sets 1 and 2.

Cell Diameter Number of Cells Index of Refractio

Diseased
cells

L1 12 �m 4 1.38+0.005i

L2 12 �m 4 1.41+0.010i

Normal cells S1 5 �m 9 to 11 1.38+0.005i

S2 5 �m 9 to 11 1.41+0.010i

er of cells Index of refraction

1 Perturbed around 1.38+0.005i

1 Perturbed around 1.38+0.005i

10 1.38+0.005i
Numb
September/October 2008 � Vol. 13�5�5
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hantom and in-vitro animal data are collected using a probe,
pectrometer, and light source.54 The sample is illuminated
ith white light, and the reflected light spectrum is collected

t equal intervals during scanning using a staging station. In-
ensities collected at one specific wavelength at each data
oint from an image �2-D scan� of the sample. Various 2-D
cans are formed by the intensities at different specific wave-
engths. Our method images the tissue area under investiga-
ion, and extracts from the data features �SDM parameters�
hat change with changes in the tissue morphology. A distinc-
ive feature of our technique compared to DOT, OCT, and
SS is the formation of an image �2-D scan�, rather than a
pot, from which pertinent data are extracted. In this fashion,
btaining more data cannot only lead to a more confident
alculation of the relevant features, such as nuclear size dis-
ribution, but can also lead to additional information embed-
ed in the spatial texture that our decomposition technique
rrives at by modeling the hidden correlations that are ob-
ained only by interrogating a wide sample area.

In our first set of experiments, we use polystyrene latex
icrospheres �Polysciences Incorporated, Washington, Penn-

ylvania� suspended in deionized water.54 We used phantom
ata to see the performance of the technique to discriminate
etween two different morphologies reflecting tissue cell nu-
lei sizes mimicking normal and dysplastic epithelium. The
icrospheres exist in a 2.5% aqueous suspension with a re-

ractive index of 1.59 to 1.60 at 589 nm. We examined mi-
rospheres at diameter sizes of 3 and 10 �m. A schematic
iagram for the experimental system setup is shown in Fig. 3,
nd a picture of the actual system �probe, spectrometer, and
yz stage� is shown in Fig. 4. We use a bifurcated reflectance
robe �Ocean Optics, Dunedin, Florida� consisting of one cen-
ral fiber used for light delivery and six surrounding fibers
sed for light collection, each with a core of 200 �m.54 The
robe has a special 30 deg window at the end to reduce
pecular reflectance from the sample surface. The probe is
onnected to the light source �tungsten halogen lamp; LS-1,
cean Optics, Dunedin, Floria� and the spectrometer

HR4000, Ocean Optics, Dunedin, Florida� having an output
f 3648 points with a wavelength step size of 0.12 nm. To
reate the image �2-D scan�, the fiber is placed on an xyz

Light Source

Micro manipulator

Sample

Spectrometer

Controller

x
y

z

Probe

Light Source

Micro manipulator

Sample

Spectrometer

Controller

x
y

z

Probe

ig. 3 3-D schematic figure of the experimental setup used for data
ollection. The probe is held and moved by the motorized microma-
ipulator �xyz stage� allowing 2-D scanning of the sample. It is con-
ected to a light source and spectrometer.
ournal of Biomedical Optics 054039-
stage, which allows the fiber to be moved and data to be
collected at different points on the sample. At each data point,
the whole spectrum is recorded. After the spectrum is col-
lected at all the data points, the intensity image �2-D scan� is
reconstructed by examining one single wavelength from
which key parameters are extracted for each performance
evaluation.

We use 3-�m spheres to mimic the normal cells, and
10-�m spheres to mimic the dysplastic cells. The surface area
over which the data is collected is 4500�4500 �m. Three
1-D scans are taken for each phantom. The scans are taken at
0, 2250, and 3500 �m �the y direction�. For each 1-D scan,
51 points are taken 90 �m apart in the x direction. At each
point the whole spectrum �at various wavelengths� is com-
puted. Smoothing is used as a preprocessing step for each
point. After the spectrum is smoothed, the intensity values for
specific wavelengths are taken. As the phantom was limited in
size, order permutations are carried out to generate a set of 32
independent 1-D scans from each of the three 1-D scans, re-
sulting into a total of 99 1-D scans used for classification.

3.3 Details of Tissue Experiments
The very preliminary animal study is based on the use of
mid-colon obtained from three mice fed with 4% dextrin sul-
fate solution �DSS�. The DSS model has been used to study
colorectal cancer �CRC�. The DSS colitis model can be used
in mouse as a model for studying the sequence of chronic
inflammation dysplasia in human inflammatory bowel
disease.55 For normal ulcerative colitis, mice are fed with DSS
for one cycle; for chronic inflammation one cycle of DSS is
followed by two cycles of normal water. For dysplasia, mice
are kept on DSS for one cycle, two cycles of water, again
DSS, then followed by water. In our model, what we were
measuring was uncontrolled acute inflammation. Prior histo-
logical studies have shown that during the first seven days, of
DSS feeding, these animals show gradual crypt dropout and
acute to mixed inflammation starting on day 3 of DSS
feeding.56 Colon was excised on days 4 and 7 of DSS feeding.
Clinically, after four days, the disease activity index was 1.3,
which increased to 2.7 on day 7. In our experiments, the in-
flammation certainly increased from day to day while on DSS
feed. We named the samples as mouse1, mouse2, and mouse3.
Mouse1 represents normal mouse colon in vitro, mouse2 rep-
resents increased inflammation with the presence of increased

XYZ stage
(Motorized
Micromanipulator)

Controller

Spectrometer

Light source

Fig. 4 Real pictures of the experimental setup used in data collection.
This corresponds to the schematic figure in Fig. 3.
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eutrophils �polymorph nucleus� on day 4, and mouse3 rep-
esents further increase in inflammation with the possible
resence of mucosal erosions on day 7. The excised colon was
ounted in a petri dish containing phosphate buffered saline.
he colon was imaged within thirty minutes after mounting. It

akes about 7 to 8 min to complete the scan. A schematic of
he animal study is shown in Fig. 5.

Three 1-D scans of the entire piece of the colon �10,000
3000 �m� were taken in a zigzag fashion, using a mi-

rometer stage within 30 min after tissue mounting. The data
ollection process followed a similar protocol as with the
hantom data collection. A 3-D figure of the experimental
etup for in-vitro data collection is shown in Fig. 3. Three
cans are taken as in phantom data. The scans are taken at
00, 1500, and 2500 �m. Each scan consists of 50 points.
he step size is taken as 200 �m. After the data are collected,

he same processing steps as with the phantom data are ap-
lied.

Results and Discussion
he metric that we used for representing the results is the area

z under the ROC curve �plot of probability of detection ver-
us probability of false alarm�. As explained in Sec. 2, we use
he Az value under the ROC curve to determine the perfor-
ance of our classification system.

.1 Performance Evaluation on Simulations
sing the SDM, we calculated five features Nc, D, �2, �N, and
for each realization. The classification performance of each

eature is evaluated separately. For simulation set 1, there is
o overlap between consecutive samples. At the resolution
sed, the test for the existence of coherent scatterers was re-
ected as expected, since for this case only diffuse scatterers
ere present. The performances �Az values� of individual dif-

use component features for the four cases for simulation set 1
re given in Table 3. Each value in the table presents the area
nder the ROC curve for classification between pairs of data.
sing a combination of features, the global detector yielded a
erfect performance with overall Az values greater than 0.991.
he combination of performance parameters is in accord with

he joint likelihood ratio statistics �NP statistics�, which in-
ures the highest detection rate for a fixed alarm rate over any
ther classifier including the NP based on the individual pa-
ameters in isolation �see Sec. 2�.

It is interesting to note here that the KS distance parameter
, which directly relates to the number of scatterers �spheres�,
as able to differentiate between structures with different
umbers and sizes of scattering spheres but failed �as ex-
ected� for the case with same density �L1-L2 and S1-S2� but

4% dextran sulfate
solution (DSS).

Day 4

Day 7

Mid colon excised and
mounted in a petri dish
containing phosphate-

buffered saline

Imaged
within 30 min

ig. 5 Animal study. Colon was excised on days 4 and 7 of 4% dex-
rin sulfate solution �DSS� feeding, causing increased inflammation
ith feeding. The excised colon was mounted in a petri dish contain-

ng phosphate buffered saline and was imaged within thirty minutes
fter mounting.
ournal of Biomedical Optics 054039-
with different indexes of refraction. On the other hand, since
the energy of the scattered light �and hence the residual error
variance� depends both on the number of scatterers and the
index of refraction, as expected, it performed well in all four
cases. Finally, as expected, the normalized correlation coeffi-
cient was not able to discriminate between the various cases,
as the 256 points resulted from nonoverlapping spheres as we
moved along the simulated structure. The 3-D plots of the
extracted features are given in Fig. 6 to show the good sepa-
ration between different pairs of classes in simulation set 1.

For simulation set 2, the performances �Az values� of indi-
vidual diffuse component features for the four cases are given
in Table 4. Using a combination of features, the global detec-
tor yields a perfect performance with overall Az values greater
than 0.999 for the cases. Unlike the previous case, since there
is an overlap between consecutive samples, a coherent com-
ponent is detected and we have coherent as well as diffuse
parameters. In addition, the normalized correlation coefficient
becomes a discriminating parameter for cases L1-S1 and L2-
S2, where the data between pairs of classes correspond to
different numbers of scatterers and size.

To discover the differentiation performance of the method
for single and multisphere scattering cases, simulation set 3 is
used, and the following results are obtained. The perfor-
mances �Az values� of the individual features for the pairs
A1-A2, A1-A3, and A2-A3 are given in Table 5. Using a
combination of features, the global detector yields a perfect
performance with an overall Az value of 1 for the cases. For
the case of single scattering, as expected, the number of co-
herent scatterers as well as the KS distance cannot discrimi-
nate between cases A1 and A2, since they both have one
scatterer per resolution cell. However, they do successfully
differentiate when the number of scattering spheres is differ-
ent �cases A1-A3 and A2-A3�. As expected, the parameters
�the energy of the coherent and diffuse scatterers� successfully
discriminate between all cases, since they depend on both the
index of refraction and the number of scatterers per resolution
cell. Finally, as anticipated, the normalized correlation coeffi-
cient is not able to discriminate between the various cases due
to data permutations that destroyed any discrimination based
on correlation. The 3-D plots of the extracted features are
given in Fig. 7 to show how good the separation was between
different pairs of classes in simulation set 3.

Table 3 Performance of the system for the extracted features in terms
of Az �area under the ROC curve� values for differentiation between
the pairs in simulation set 1.

L1-S1 L2-S2 L1-L2 S1-S2

D 0.971 0.996 0.672 0.790

�2 1.000 1.000 0.962 1.000

�N 0.586 0.583 0.537 0.505

All 1.000 1.000 0.991 1.000
September/October 2008 � Vol. 13�5�7
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able 4 Performance of the system for the extracted features in terms
f Az values for differentiation between the pairs in simulation set 2.

L1-S1 L2-S2 L1-L2 S1-S2

Nc 0.993 1.000 0.639 0.507

E 0.999 1.000 0.889 0.965

D 0.987 0.968 0.568 0.546

�2 1.000 1.000 0.948 0.983

�N 0.890 0.807 0.679 0.607

All 1.000 1.000 0.999 1.000
ournal of Biomedical Optics 054039-
Table 5 Performance of the system for the extracted features in terms
of Az values for differentiation between the pairs in simulation set 3.

A1-A3 A2-A3 A1-A2

Nc 0.998 1.000 0.683

E 0.989 1.000 1.000

D 0.990 0.975 0.592

�2 1.000 1.000 1.000

�N 0.695 0.676 0.578

All 1.000 1.000 1.000
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ig. 6 3-D plots of extracted features in 3-D feature space. The features are: D �Rayleigh scattering degree of the diffuse component�, �2 �residual
rror variance of the diffuse component� and �N �normalized correlation coefficient of the diffuse component�. These are shown for the simulation
airs: �a� L1-S1, �b� L2-S2, �c� L1-L2, and �d� S1-S2. �refer to Table 1�. The good separation between different simulated sets can be observed from
he given plots.
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.2 Performance Evaluation on Phantom
he performance of the system is calculated for each specific
avelength. For each 1-D scan at a given wavelength, the

able 6 Performance of the system for the extracted features in terms
f Az values for diffuse only model for phantom data at different wave-
engths.

500.04 nm 550.05 nm 571.67 nm 650.00 nm

D 0.694 0.551 0.580 0.519

�2 0.981 0.979 0.982 0.924

�N 0.500 0.576 0.561 0.504

All 0.990 0.982 0.989 0.927
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ig. 7 3-D plots of extracted features in 3-D feature space. The featur
rror variance of the diffuse component�, and �N �normalized correlati
airs: �a� A1-A2, �b� A2-A3, and �c� and A1-A3 �refer to Table 2�. The
lots.
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decomposition parameters were computed, hence a set of 99
imaging parameter datasets for the 3-�m spheres and 99 for
the 10-�m spheres. The classification is reported to be the
best for wavelengths between 500 to 600 nm. The classifica-
tion performance between the normal versus the dysplastic
mimicking cells is evaluated, as in the simulation case, using
the area under the ROC curve as the metric for performance.
This is shown in Tables 6 and 7 for a diffuse scatterer only
model versus a diffuse plus coherent scatterer model. The last
row in both tables shows, the results of classification by fus-
ing all the imaging parameter sets together. The performance
varied from 0.927 to 0.994, which is consistent with the simu-
lation results, and is a very strong result in discriminating
between normal-mimicking cells from dysplastic-mimicking
ones. As with the simulation results, the best feature is still the
residual error variance. The overall performance is above 0.9
for both the simulated and phantom data. It is shown that the
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erformances of the individual parameters remain consistent
ith the simulation results, and the overall performance of the

ystem is still extremely high �Az�0.927�.

.3 Performance Evaluation on Tissue
he classification is reported for wavelengths between
50 to 650 nm in Tables 8–10. As with the phantom results,
e observe that the mean energy of the coherent and diffuse

catterer increased as the animals became sicker. The perfor-
ance is shown in the Tables 8 and 9 in terms of areas under

he ROC curves �Az values� using again the permutation
ethod used with the phantom data to increase the sample

ize �i.e., the number of A scans�. The best performance using
ne wavelength �625.24 nm� was at 0.859 combined Az value
i.e., using all features� for differentiating between normal tis-
ue and 4-day inflammation, whereas it was at 0.999 com-
ined Az value for differentiating between normal tissue ver-
us day-7 inflammation at the same wavelength of
25.24 nm. We have also run the classification algorithm to
ee if we can differentiate between the 4-day inflammations
ersus the 7-day ones. The results are shown in Table 10. The
est performance using one wavelength was at 0.987 com-
ined Az value for differentiating between 4-day inflamma-
ion tissue versus 7-day inflammation tissue at a wavelength
f 575.02 nm. The best performance of the algorithm was

able 7 Performance of the system for the extracted features in terms
f Az values for coherent+diffuse model for phantom data at different
avelengths.

500.04 nm 550.05 nm 571.67 nm 650.00 nm

Nc 0.551 0.587 0.517 0.575

E 0.986 0.967 0.979 0.865

D 0.733 0.530 0.718 0.616

�2 0.984 0.979 0.982 0.924

�N 0.572 0.538 0.508 0.510

All 0.994 0.988 0.991 0.931

able 8 Performance of the system for the extracted features in terms
f Az values for tissue data �mouse colon in vitro� for classification
etween case Mouse 1 versus Mouse 2.

500.33 nm 550.02 nm 575.02 nm 625.24 nm

Nc 0.568 0.559 0.590 0.559

E 0.811 0.741 0.743 0.843

D 0.515 0.505 0.563 0.565

�2 0.809 0.703 0.718 0.821

�N 0.510 0.561 0.506 0.513

All 0.812 0.770 0.798 0.859
ournal of Biomedical Optics 054039-1
obtained at the wavelengths around the peak values of the
spectrum. For the best two performing parameters E and �2,
the wavelengths that show the best detection performances
show consistency with each other for all the classification
pairs. Also, they show consistency with the corresponding
wavelengths for the overall performance �performance gener-
ated by fusing all the features�. Although we have only con-
sidered three mice, we have looked at various area or points
within each of these samples �three scans per sample at dif-
ferent locations with 50 points each�. In Fig. 8, we show the
scattered data for the best two features for the three mice at
575.02 nm. The ROC construction and the Az values are
based on the scattered data points. We can easily see from the
scattered data how well separated the data are between the
normal and 7-day inflammation, and how it is less so between
the normal and the 4-day inflammation, leading to high Az
value under the ROC curve for the former case and lower for
the latter. The separation between the 4-day and the 7-day
inflammations is also quite pronounced, leading to high Az
value under the ROC curve. The scatterer plot shows the di-
rect proportionality of the features to the disease formation.
As the disease level increases, the values of the features’
“mean energy of coherent scatterers” and “residual error vari-
ance” increase as well. This result is promising and consistent
with the findings of the simulations and phantom data.

Table 9 Performance of the system for the extracted features in terms
of Az values for tissue data �mouse colon in vitro� for classification
between case Mouse 1 versus Mouse 3.

500.33 nm 550.02 nm 575.02 nm 625.24 nm

Nc 0.541 0.511 0.549 0.508

E 0.997 0.997 0.994 0.999

D 0.551 0.581 0.538 0.584

�2 0.997 0.998 0.995 0.993

�N 0.555 0.560 0.516 0.589

All 0.998 0.998 0.996 0.999

Table 10 Performance of the system for the extracted features in
terms of Az values for tissue data �mouse colon in vitro� for classifica-
tion between case Mouse 2 versus Mouse 3.

500.33 nm 550.02 nm 575.02 nm 625.24 nm

Nc 0.541 0.596 0.596 0.571

E 0.938 0.961 0.974 0.906

D 0.556 0.578 0.509 0.622

�2 0.816 0.896 0.887 0.784

�N 0.573 0.591 0.501 0.615

All 0.940 0.968 0.987 0.913
September/October 2008 � Vol. 13�5�0
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Conclusions
textural model that models the reflected scattered signal is

resented, and its sensitivity to simulated changes in the mor-
hology and physical characteristics of mimicking tissue be-
ng optically scanned is presented as a proof-of-concept to

odel scattered signals reflected from mucosal tissues. At the
ore of that method is the modeling of the scattered light
sing a SDM texture model that captures how the tissue con-
isting of diffuse and specular scatterers reflects light shined
t different wavelengths to yield textured data and corre-
ponding image model parameters �obtained through the
DM� that correlate closely with these changes in the tissue
orphology and physical characteristics �for example in dys-

lasia formation�. In addition, the method statistically ana-
yzes 2-D scans of light scattering data, hence allowing for the
ssessment of correlation and textural characteristics that oth-
rwise could not be revealed when the analysis of the scatter-
ng signal is a function of wavelength or angle, which has
een done by other investigators. This proof-of-concept is
hown using simulation, phantom data, and on a limited pre-
iminary in vitro animal experiment to track mucosal tissue
nflammation over time. Although the scope of the animal
xperiment is limited, it tests the applicability of the model on
eal tissue. The test scenarios for the simulation and the phan-
om examples are driven by biological applications such as
ysplasia formation and detection. The tissue experiment is
eared more toward inflammation tracking, and the ability of
he SDM to differentiate between the various stages of inflam-

ation as it develops in the mouse colon epithelium. This is
f particular relevance, as there is a functional relationship
etween inflammation and cancer. The performance is mea-
ured by computing the area Az under the ROC curve for each
arameter separately, and by fusing all the estimated param-
ter sets together. Combination of all the features results in an

z value up to 1 �Az�0.991� �perfect detection for any false
larm rate� for simulated data, and A �0.927 for the phan-
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ig. 8 Scatter plot of mean energy of coherent scatterers versus re-
idual error variance for the three animals studied �Mouse1, Mouse2,
nd Mouse3�. The scatter plot shows good separation of extracted
eatures between the three levels of inflammation. As the disease level
ncreased, so did the values of these two features.
z
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tom data. The performances for differentiation between pairs
of various levels of inflammation are 0.859, 0.983, and 0.999.
These encouraging results show that the proposed texture
model and technique are excellent candidates to be applied to
biological tissues, with the potential for enhanced endoscopy
for detection of changes in epithelial tissue.
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Appendix: Mie Scattering and Signal Formation
for Stochastic Simulator
The Mie scattering theory describes the light scattered by
spherical particles.57 Scattering of light in tissue mainly con-
sists of two components: singly scattered and multiply scat-
tered. Singly scattered light, as predicted by the Mie theory, is
not randomized and contains information about individual
scatterers. On the other hand, multiply scattered light is thor-
oughly randomized. Diffusely scattered light from tissue con-
tains information about its basic structures. In the epithelial
tissue, the light transport is dominated by multiple
scattering.58–60

For multisphere scattering simulation, we used the
T-matrix approach. The main complication here is how the
presence of another scatter center in the neighborhood affects
the radiation patterns, scattering matrix, and efficiencies.
When two or more identical spheres aggregate into a cluster,
the resulting composite particle is nonspherical.61 The Mie
theory, although widely used in the literature as a scattering
approximation theory, requires, modeling a cell as a homoge-
neous sphere.62 Various techniques have been reported for
generalizing the Mie theory62 to deal with the application of it
to a volume of spheres with various size distributions,63 and
for modeling a spherical cell containing a homogeneous
spherical nucleus.64 Some used anomalous diffraction
approximations,65 some multiple solutions,66 some used 3-D
finite-difference time-domain �FDTD� models of cellular
scattering,45 and finally some used T-matrix computations.67

The problem of dependent scattering68 in the presence of a
cluster of spheres has been extensively investigated in the
literature.69–73 All of these reported techniques have important
advantages over the Mie theory and helped in alleviating
some of its limitations.62 Recent work has verified the practi-
cal applicability of the T-matrix method to clusters of
spheres.74 The T-matrix method surpasses other frequently
used techniques in terms of its ability to deal with a range of
sphere sizes, as well as to systematically deal with nonspheri-
cal scattering based on the calculation of thousands of par-
ticles in random orientation.75 It is for these reasons that we
chose the T-matrix approach in our multisphere scattering
simulation experiment.

The strategy of the T-matrix solution of the direct light
scattering problem can be introduced with the following algo-
September/October 2008 � Vol. 13�5�1
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ithm: expanding the incident field in vector spherical wave
unctions regular at the origin; expanding the scattered field
utside a circumscribing sphere of scatterers in vector spheri-
al wave functions regular at infinity; and transforming the
xpansion coefficients of the incident field into those of the
cattered field via a T-matrix.76 The relationship between in-
ident and scattered electric field components perpendicular
nd parallel to the scattering plane as observed in the farfield
s described by the amplitude scattering matrix:


E�s

E�s
� = exp

�ik�r − z�	
− ikr


S2 S3

S4 S1
�
E�i

E�i
� , �10�

here k=2�n /
 is the wavenumber, 
 is the wavelength of
he incident light, and n is the scatterer refractive index. Each
lement of the scattering matrix Sj�j=1,2 ,3 ,4� depends on
he scattering angle �. The elements of the amplitude scatter-
ng matrix are found according to the T-matrix theory and
quations are explained in detail in Refs. 77–79. The intensity
nd polarizing properties of the field are described via a
tokes vector80 that specifies the set of parameters associated
ith the phase and polarization of radiation. For a cluster of

pheres, the relationship between incident and scattered
tokes parameters is described by the Mueller scattering
atrix57,61 as:



Is

Qs

Us

Vs

� =
1

k2r2

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

�

Ii

Qi

Ui

Vi

� , �11�

here I is the total intensity, Q is the degree of linear polar-
zation, and U and V characterize the phase. The elements of
he Mueller scattering matrix are described in terms of the
mplitude scattering matrix elements �which are found from
-matrix equations77–79� such as:61

S11 =
1

2
��S1�2 + �S2�2 + �S3�2 + �S4�2	 , �12�

S12 =
1

2
��S2�2 − �S1�2 + �S4�2 − �S3�2	 . �13�

nce the Mueller scattering matrix elements are found, the
tokes parameters can be calculated for any degree of polar-

zation of the incident light. The incident Stokes vector for
inear polarized light with angle � relative to the lab system is
Ii Ii cos 2� Ii sin 2� 0	T, with Li as the intensity of inci-
ent beam. For example, if the incident light is polarized per-
endicular to the scattering plane, the incident Stokes vector
ecomes �Ii− Ii 0 0	T into Eqs. �14� and �15�:

Is = �S11 − S12	Ii, �14�

Qs = �S12 − S11	Ii Us = Vs = 0. �15�
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